|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2012 Google Inc. All rights reserved. | 
|  | // http://code.google.com/p/ceres-solver/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  | // | 
|  | // Limited memory positive definite approximation to the inverse | 
|  | // Hessian, using the LBFGS algorithm | 
|  |  | 
|  | #ifndef CERES_INTERNAL_LOW_RANK_INVERSE_HESSIAN_H_ | 
|  | #define CERES_INTERNAL_LOW_RANK_INVERSE_HESSIAN_H_ | 
|  |  | 
|  | #include "ceres/internal/eigen.h" | 
|  | #include "ceres/linear_operator.h" | 
|  |  | 
|  | namespace ceres { | 
|  | namespace internal { | 
|  |  | 
|  | // LowRankInverseHessian is a positive definite approximation to the | 
|  | // Hessian using the limited memory variant of the | 
|  | // Broyden-Fletcher-Goldfarb-Shanno (BFGS)secant formula for | 
|  | // approximating the Hessian. | 
|  | // | 
|  | // Other update rules like the Davidon-Fletcher-Powell (DFP) are | 
|  | // possible, but the BFGS rule is considered the best performing one. | 
|  | // | 
|  | // The limited memory variant was developed by Nocedal and further | 
|  | // enhanced with scaling rule by Byrd, Nocedal and Schanbel. | 
|  | // | 
|  | // Nocedal, J. (1980). "Updating Quasi-Newton Matrices with Limited | 
|  | // Storage". Mathematics of Computation 35 (151): 773–782. | 
|  | // | 
|  | // Byrd, R. H.; Nocedal, J.; Schnabel, R. B. (1994). | 
|  | // "Representations of Quasi-Newton Matrices and their use in | 
|  | // Limited Memory Methods". Mathematical Programming 63 (4): | 
|  | class LowRankInverseHessian : public LinearOperator { | 
|  | public: | 
|  | // num_parameters is the row/column size of the Hessian. | 
|  | // max_num_corrections is the rank of the Hessian approximation. | 
|  | // use_approximate_eigenvalue_scaling controls whether the initial | 
|  | // inverse Hessian used during Right/LeftMultiply() is scaled by | 
|  | // the approximate eigenvalue of the true inverse Hessian at the | 
|  | // current operating point. | 
|  | // The approximation uses: | 
|  | // 2 * max_num_corrections * num_parameters + max_num_corrections | 
|  | // doubles. | 
|  | LowRankInverseHessian(int num_parameters, | 
|  | int max_num_corrections, | 
|  | bool use_approximate_eigenvalue_scaling); | 
|  | virtual ~LowRankInverseHessian() {} | 
|  |  | 
|  | // Update the low rank approximation. delta_x is the change in the | 
|  | // domain of Hessian, and delta_gradient is the change in the | 
|  | // gradient.  The update copies the delta_x and delta_gradient | 
|  | // vectors, and gets rid of the oldest delta_x and delta_gradient | 
|  | // vectors if the number of corrections is already equal to | 
|  | // max_num_corrections. | 
|  | bool Update(const Vector& delta_x, const Vector& delta_gradient); | 
|  |  | 
|  | // LinearOperator interface | 
|  | virtual void RightMultiply(const double* x, double* y) const; | 
|  | virtual void LeftMultiply(const double* x, double* y) const { | 
|  | RightMultiply(x, y); | 
|  | } | 
|  | virtual int num_rows() const { return num_parameters_; } | 
|  | virtual int num_cols() const { return num_parameters_; } | 
|  |  | 
|  | private: | 
|  | const int num_parameters_; | 
|  | const int max_num_corrections_; | 
|  | const bool use_approximate_eigenvalue_scaling_; | 
|  | int num_corrections_; | 
|  | double approximate_eigenvalue_scale_; | 
|  | Matrix delta_x_history_; | 
|  | Matrix delta_gradient_history_; | 
|  | Vector delta_x_dot_delta_gradient_; | 
|  | }; | 
|  |  | 
|  | }  // namespace internal | 
|  | }  // namespace ceres | 
|  |  | 
|  | #endif  // CERES_INTERNAL_LOW_RANK_INVERSE_HESSIAN_H_ |