| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. | 
 | // http://code.google.com/p/ceres-solver/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: keir@google.com (Keir Mierle) | 
 |  | 
 | #include "ceres/solver_impl.h" | 
 |  | 
 | #include <cstdio> | 
 | #include <iostream>  // NOLINT | 
 | #include <numeric> | 
 | #include <string> | 
 | #include "ceres/coordinate_descent_minimizer.h" | 
 | #include "ceres/cxsparse.h" | 
 | #include "ceres/evaluator.h" | 
 | #include "ceres/gradient_checking_cost_function.h" | 
 | #include "ceres/iteration_callback.h" | 
 | #include "ceres/levenberg_marquardt_strategy.h" | 
 | #include "ceres/line_search_minimizer.h" | 
 | #include "ceres/linear_solver.h" | 
 | #include "ceres/map_util.h" | 
 | #include "ceres/minimizer.h" | 
 | #include "ceres/ordered_groups.h" | 
 | #include "ceres/parameter_block.h" | 
 | #include "ceres/parameter_block_ordering.h" | 
 | #include "ceres/problem.h" | 
 | #include "ceres/problem_impl.h" | 
 | #include "ceres/program.h" | 
 | #include "ceres/residual_block.h" | 
 | #include "ceres/stringprintf.h" | 
 | #include "ceres/suitesparse.h" | 
 | #include "ceres/trust_region_minimizer.h" | 
 | #include "ceres/wall_time.h" | 
 |  | 
 | namespace ceres { | 
 | namespace internal { | 
 | namespace { | 
 |  | 
 | // Callback for updating the user's parameter blocks. Updates are only | 
 | // done if the step is successful. | 
 | class StateUpdatingCallback : public IterationCallback { | 
 |  public: | 
 |   StateUpdatingCallback(Program* program, double* parameters) | 
 |       : program_(program), parameters_(parameters) {} | 
 |  | 
 |   CallbackReturnType operator()(const IterationSummary& summary) { | 
 |     if (summary.step_is_successful) { | 
 |       program_->StateVectorToParameterBlocks(parameters_); | 
 |       program_->CopyParameterBlockStateToUserState(); | 
 |     } | 
 |     return SOLVER_CONTINUE; | 
 |   } | 
 |  | 
 |  private: | 
 |   Program* program_; | 
 |   double* parameters_; | 
 | }; | 
 |  | 
 | void SetSummaryFinalCost(Solver::Summary* summary) { | 
 |   summary->final_cost = summary->initial_cost; | 
 |   // We need the loop here, instead of just looking at the last | 
 |   // iteration because the minimizer maybe making non-monotonic steps. | 
 |   for (int i = 0; i < summary->iterations.size(); ++i) { | 
 |     const IterationSummary& iteration_summary = summary->iterations[i]; | 
 |     summary->final_cost = min(iteration_summary.cost, summary->final_cost); | 
 |   } | 
 | } | 
 |  | 
 | // Callback for logging the state of the minimizer to STDERR or STDOUT | 
 | // depending on the user's preferences and logging level. | 
 | class TrustRegionLoggingCallback : public IterationCallback { | 
 |  public: | 
 |   explicit TrustRegionLoggingCallback(bool log_to_stdout) | 
 |       : log_to_stdout_(log_to_stdout) {} | 
 |  | 
 |   ~TrustRegionLoggingCallback() {} | 
 |  | 
 |   CallbackReturnType operator()(const IterationSummary& summary) { | 
 |     const char* kReportRowFormat = | 
 |         "% 4d: f:% 8e d:% 3.2e g:% 3.2e h:% 3.2e " | 
 |         "rho:% 3.2e mu:% 3.2e li:% 3d it:% 3.2e tt:% 3.2e"; | 
 |     string output = StringPrintf(kReportRowFormat, | 
 |                                  summary.iteration, | 
 |                                  summary.cost, | 
 |                                  summary.cost_change, | 
 |                                  summary.gradient_max_norm, | 
 |                                  summary.step_norm, | 
 |                                  summary.relative_decrease, | 
 |                                  summary.trust_region_radius, | 
 |                                  summary.linear_solver_iterations, | 
 |                                  summary.iteration_time_in_seconds, | 
 |                                  summary.cumulative_time_in_seconds); | 
 |     if (log_to_stdout_) { | 
 |       cout << output << endl; | 
 |     } else { | 
 |       VLOG(1) << output; | 
 |     } | 
 |     return SOLVER_CONTINUE; | 
 |   } | 
 |  | 
 |  private: | 
 |   const bool log_to_stdout_; | 
 | }; | 
 |  | 
 | // Callback for logging the state of the minimizer to STDERR or STDOUT | 
 | // depending on the user's preferences and logging level. | 
 | class LineSearchLoggingCallback : public IterationCallback { | 
 |  public: | 
 |   explicit LineSearchLoggingCallback(bool log_to_stdout) | 
 |       : log_to_stdout_(log_to_stdout) {} | 
 |  | 
 |   ~LineSearchLoggingCallback() {} | 
 |  | 
 |   CallbackReturnType operator()(const IterationSummary& summary) { | 
 |     const char* kReportRowFormat = | 
 |         "% 4d: f:% 8e d:% 3.2e g:% 3.2e h:% 3.2e " | 
 |         "s:% 3.2e e:% 3d it:% 3.2e tt:% 3.2e"; | 
 |     string output = StringPrintf(kReportRowFormat, | 
 |                                  summary.iteration, | 
 |                                  summary.cost, | 
 |                                  summary.cost_change, | 
 |                                  summary.gradient_max_norm, | 
 |                                  summary.step_norm, | 
 |                                  summary.step_size, | 
 |                                  summary.line_search_function_evaluations, | 
 |                                  summary.iteration_time_in_seconds, | 
 |                                  summary.cumulative_time_in_seconds); | 
 |     if (log_to_stdout_) { | 
 |       cout << output << endl; | 
 |     } else { | 
 |       VLOG(1) << output; | 
 |     } | 
 |     return SOLVER_CONTINUE; | 
 |   } | 
 |  | 
 |  private: | 
 |   const bool log_to_stdout_; | 
 | }; | 
 |  | 
 |  | 
 | // Basic callback to record the execution of the solver to a file for | 
 | // offline analysis. | 
 | class FileLoggingCallback : public IterationCallback { | 
 |  public: | 
 |   explicit FileLoggingCallback(const string& filename) | 
 |       : fptr_(NULL) { | 
 |     fptr_ = fopen(filename.c_str(), "w"); | 
 |     CHECK_NOTNULL(fptr_); | 
 |   } | 
 |  | 
 |   virtual ~FileLoggingCallback() { | 
 |     if (fptr_ != NULL) { | 
 |       fclose(fptr_); | 
 |     } | 
 |   } | 
 |  | 
 |   virtual CallbackReturnType operator()(const IterationSummary& summary) { | 
 |     fprintf(fptr_, | 
 |             "%4d %e %e\n", | 
 |             summary.iteration, | 
 |             summary.cost, | 
 |             summary.cumulative_time_in_seconds); | 
 |     return SOLVER_CONTINUE; | 
 |   } | 
 |  private: | 
 |     FILE* fptr_; | 
 | }; | 
 |  | 
 | // Iterate over each of the groups in order of their priority and fill | 
 | // summary with their sizes. | 
 | void SummarizeOrdering(ParameterBlockOrdering* ordering, | 
 |                        vector<int>* summary) { | 
 |   CHECK_NOTNULL(summary)->clear(); | 
 |   if (ordering == NULL) { | 
 |     return; | 
 |   } | 
 |  | 
 |   const map<int, set<double*> >& group_to_elements = | 
 |       ordering->group_to_elements(); | 
 |   for (map<int, set<double*> >::const_iterator it = group_to_elements.begin(); | 
 |        it != group_to_elements.end(); | 
 |        ++it) { | 
 |     summary->push_back(it->second.size()); | 
 |   } | 
 | } | 
 |  | 
 | }  // namespace | 
 |  | 
 | void SolverImpl::TrustRegionMinimize( | 
 |     const Solver::Options& options, | 
 |     Program* program, | 
 |     CoordinateDescentMinimizer* inner_iteration_minimizer, | 
 |     Evaluator* evaluator, | 
 |     LinearSolver* linear_solver, | 
 |     double* parameters, | 
 |     Solver::Summary* summary) { | 
 |   Minimizer::Options minimizer_options(options); | 
 |  | 
 |   // TODO(sameeragarwal): Add support for logging the configuration | 
 |   // and more detailed stats. | 
 |   scoped_ptr<IterationCallback> file_logging_callback; | 
 |   if (!options.solver_log.empty()) { | 
 |     file_logging_callback.reset(new FileLoggingCallback(options.solver_log)); | 
 |     minimizer_options.callbacks.insert(minimizer_options.callbacks.begin(), | 
 |                                        file_logging_callback.get()); | 
 |   } | 
 |  | 
 |   TrustRegionLoggingCallback logging_callback( | 
 |       options.minimizer_progress_to_stdout); | 
 |   if (options.logging_type != SILENT) { | 
 |     minimizer_options.callbacks.insert(minimizer_options.callbacks.begin(), | 
 |                                        &logging_callback); | 
 |   } | 
 |  | 
 |   StateUpdatingCallback updating_callback(program, parameters); | 
 |   if (options.update_state_every_iteration) { | 
 |     // This must get pushed to the front of the callbacks so that it is run | 
 |     // before any of the user callbacks. | 
 |     minimizer_options.callbacks.insert(minimizer_options.callbacks.begin(), | 
 |                                        &updating_callback); | 
 |   } | 
 |  | 
 |   minimizer_options.evaluator = evaluator; | 
 |   scoped_ptr<SparseMatrix> jacobian(evaluator->CreateJacobian()); | 
 |  | 
 |   minimizer_options.jacobian = jacobian.get(); | 
 |   minimizer_options.inner_iteration_minimizer = inner_iteration_minimizer; | 
 |  | 
 |   TrustRegionStrategy::Options trust_region_strategy_options; | 
 |   trust_region_strategy_options.linear_solver = linear_solver; | 
 |   trust_region_strategy_options.initial_radius = | 
 |       options.initial_trust_region_radius; | 
 |   trust_region_strategy_options.max_radius = options.max_trust_region_radius; | 
 |   trust_region_strategy_options.min_lm_diagonal = options.min_lm_diagonal; | 
 |   trust_region_strategy_options.max_lm_diagonal = options.max_lm_diagonal; | 
 |   trust_region_strategy_options.trust_region_strategy_type = | 
 |       options.trust_region_strategy_type; | 
 |   trust_region_strategy_options.dogleg_type = options.dogleg_type; | 
 |   scoped_ptr<TrustRegionStrategy> strategy( | 
 |       TrustRegionStrategy::Create(trust_region_strategy_options)); | 
 |   minimizer_options.trust_region_strategy = strategy.get(); | 
 |  | 
 |   TrustRegionMinimizer minimizer; | 
 |   double minimizer_start_time = WallTimeInSeconds(); | 
 |   minimizer.Minimize(minimizer_options, parameters, summary); | 
 |   summary->minimizer_time_in_seconds = | 
 |       WallTimeInSeconds() - minimizer_start_time; | 
 | } | 
 |  | 
 | #ifndef CERES_NO_LINE_SEARCH_MINIMIZER | 
 | void SolverImpl::LineSearchMinimize( | 
 |     const Solver::Options& options, | 
 |     Program* program, | 
 |     Evaluator* evaluator, | 
 |     double* parameters, | 
 |     Solver::Summary* summary) { | 
 |   Minimizer::Options minimizer_options(options); | 
 |  | 
 |   // TODO(sameeragarwal): Add support for logging the configuration | 
 |   // and more detailed stats. | 
 |   scoped_ptr<IterationCallback> file_logging_callback; | 
 |   if (!options.solver_log.empty()) { | 
 |     file_logging_callback.reset(new FileLoggingCallback(options.solver_log)); | 
 |     minimizer_options.callbacks.insert(minimizer_options.callbacks.begin(), | 
 |                                        file_logging_callback.get()); | 
 |   } | 
 |  | 
 |   LineSearchLoggingCallback logging_callback( | 
 |       options.minimizer_progress_to_stdout); | 
 |   if (options.logging_type != SILENT) { | 
 |     minimizer_options.callbacks.insert(minimizer_options.callbacks.begin(), | 
 |                                        &logging_callback); | 
 |   } | 
 |  | 
 |   StateUpdatingCallback updating_callback(program, parameters); | 
 |   if (options.update_state_every_iteration) { | 
 |     // This must get pushed to the front of the callbacks so that it is run | 
 |     // before any of the user callbacks. | 
 |     minimizer_options.callbacks.insert(minimizer_options.callbacks.begin(), | 
 |                                        &updating_callback); | 
 |   } | 
 |  | 
 |   minimizer_options.evaluator = evaluator; | 
 |  | 
 |   LineSearchMinimizer minimizer; | 
 |   double minimizer_start_time = WallTimeInSeconds(); | 
 |   minimizer.Minimize(minimizer_options, parameters, summary); | 
 |   summary->minimizer_time_in_seconds = | 
 |       WallTimeInSeconds() - minimizer_start_time; | 
 | } | 
 | #endif  // CERES_NO_LINE_SEARCH_MINIMIZER | 
 |  | 
 | void SolverImpl::Solve(const Solver::Options& options, | 
 |                        ProblemImpl* problem_impl, | 
 |                        Solver::Summary* summary) { | 
 |   VLOG(2) << "Initial problem: " | 
 |           << problem_impl->NumParameterBlocks() | 
 |           << " parameter blocks, " | 
 |           << problem_impl->NumParameters() | 
 |           << " parameters,  " | 
 |           << problem_impl->NumResidualBlocks() | 
 |           << " residual blocks, " | 
 |           << problem_impl->NumResiduals() | 
 |           << " residuals."; | 
 |  | 
 |   if (options.minimizer_type == TRUST_REGION) { | 
 |     TrustRegionSolve(options, problem_impl, summary); | 
 |   } else { | 
 | #ifndef CERES_NO_LINE_SEARCH_MINIMIZER | 
 |     LineSearchSolve(options, problem_impl, summary); | 
 | #else | 
 |     LOG(FATAL) << "Ceres Solver was compiled with -DLINE_SEARCH_MINIMIZER=OFF"; | 
 | #endif | 
 |   } | 
 | } | 
 |  | 
 | void SolverImpl::TrustRegionSolve(const Solver::Options& original_options, | 
 |                                   ProblemImpl* original_problem_impl, | 
 |                                   Solver::Summary* summary) { | 
 |   EventLogger event_logger("TrustRegionSolve"); | 
 |   double solver_start_time = WallTimeInSeconds(); | 
 |  | 
 |   Program* original_program = original_problem_impl->mutable_program(); | 
 |   ProblemImpl* problem_impl = original_problem_impl; | 
 |  | 
 |   // Reset the summary object to its default values. | 
 |   *CHECK_NOTNULL(summary) = Solver::Summary(); | 
 |  | 
 |   summary->minimizer_type = TRUST_REGION; | 
 |   summary->num_parameter_blocks = problem_impl->NumParameterBlocks(); | 
 |   summary->num_parameters = problem_impl->NumParameters(); | 
 |   summary->num_effective_parameters = | 
 |       original_program->NumEffectiveParameters(); | 
 |   summary->num_residual_blocks = problem_impl->NumResidualBlocks(); | 
 |   summary->num_residuals = problem_impl->NumResiduals(); | 
 |  | 
 |   // Empty programs are usually a user error. | 
 |   if (summary->num_parameter_blocks == 0) { | 
 |     summary->error = "Problem contains no parameter blocks."; | 
 |     LOG(ERROR) << summary->error; | 
 |     return; | 
 |   } | 
 |  | 
 |   if (summary->num_residual_blocks == 0) { | 
 |     summary->error = "Problem contains no residual blocks."; | 
 |     LOG(ERROR) << summary->error; | 
 |     return; | 
 |   } | 
 |  | 
 |   SummarizeOrdering(original_options.linear_solver_ordering, | 
 |                     &(summary->linear_solver_ordering_given)); | 
 |  | 
 |   SummarizeOrdering(original_options.inner_iteration_ordering, | 
 |                     &(summary->inner_iteration_ordering_given)); | 
 |  | 
 |   Solver::Options options(original_options); | 
 |   options.linear_solver_ordering = NULL; | 
 |   options.inner_iteration_ordering = NULL; | 
 |  | 
 | #ifndef CERES_USE_OPENMP | 
 |   if (options.num_threads > 1) { | 
 |     LOG(WARNING) | 
 |         << "OpenMP support is not compiled into this binary; " | 
 |         << "only options.num_threads=1 is supported. Switching " | 
 |         << "to single threaded mode."; | 
 |     options.num_threads = 1; | 
 |   } | 
 |   if (options.num_linear_solver_threads > 1) { | 
 |     LOG(WARNING) | 
 |         << "OpenMP support is not compiled into this binary; " | 
 |         << "only options.num_linear_solver_threads=1 is supported. Switching " | 
 |         << "to single threaded mode."; | 
 |     options.num_linear_solver_threads = 1; | 
 |   } | 
 | #endif | 
 |  | 
 |   summary->num_threads_given = original_options.num_threads; | 
 |   summary->num_threads_used = options.num_threads; | 
 |  | 
 |   if (options.trust_region_minimizer_iterations_to_dump.size() > 0 && | 
 |       options.trust_region_problem_dump_format_type != CONSOLE && | 
 |       options.trust_region_problem_dump_directory.empty()) { | 
 |     summary->error = | 
 |         "Solver::Options::trust_region_problem_dump_directory is empty."; | 
 |     LOG(ERROR) << summary->error; | 
 |     return; | 
 |   } | 
 |  | 
 |   event_logger.AddEvent("Init"); | 
 |  | 
 |   original_program->SetParameterBlockStatePtrsToUserStatePtrs(); | 
 |   event_logger.AddEvent("SetParameterBlockPtrs"); | 
 |  | 
 |   // If the user requests gradient checking, construct a new | 
 |   // ProblemImpl by wrapping the CostFunctions of problem_impl inside | 
 |   // GradientCheckingCostFunction and replacing problem_impl with | 
 |   // gradient_checking_problem_impl. | 
 |   scoped_ptr<ProblemImpl> gradient_checking_problem_impl; | 
 |   if (options.check_gradients) { | 
 |     VLOG(1) << "Checking Gradients"; | 
 |     gradient_checking_problem_impl.reset( | 
 |         CreateGradientCheckingProblemImpl( | 
 |             problem_impl, | 
 |             options.numeric_derivative_relative_step_size, | 
 |             options.gradient_check_relative_precision)); | 
 |  | 
 |     // From here on, problem_impl will point to the gradient checking | 
 |     // version. | 
 |     problem_impl = gradient_checking_problem_impl.get(); | 
 |   } | 
 |  | 
 |   if (original_options.linear_solver_ordering != NULL) { | 
 |     if (!IsOrderingValid(original_options, problem_impl, &summary->error)) { | 
 |       LOG(ERROR) << summary->error; | 
 |       return; | 
 |     } | 
 |     event_logger.AddEvent("CheckOrdering"); | 
 |     options.linear_solver_ordering = | 
 |         new ParameterBlockOrdering(*original_options.linear_solver_ordering); | 
 |     event_logger.AddEvent("CopyOrdering"); | 
 |   } else { | 
 |     options.linear_solver_ordering = new ParameterBlockOrdering; | 
 |     const ProblemImpl::ParameterMap& parameter_map = | 
 |         problem_impl->parameter_map(); | 
 |     for (ProblemImpl::ParameterMap::const_iterator it = parameter_map.begin(); | 
 |          it != parameter_map.end(); | 
 |          ++it) { | 
 |       options.linear_solver_ordering->AddElementToGroup(it->first, 0); | 
 |     } | 
 |     event_logger.AddEvent("ConstructOrdering"); | 
 |   } | 
 |  | 
 |   // Create the three objects needed to minimize: the transformed program, the | 
 |   // evaluator, and the linear solver. | 
 |   scoped_ptr<Program> reduced_program(CreateReducedProgram(&options, | 
 |                                                            problem_impl, | 
 |                                                            &summary->fixed_cost, | 
 |                                                            &summary->error)); | 
 |  | 
 |   event_logger.AddEvent("CreateReducedProgram"); | 
 |   if (reduced_program == NULL) { | 
 |     return; | 
 |   } | 
 |  | 
 |   SummarizeOrdering(options.linear_solver_ordering, | 
 |                     &(summary->linear_solver_ordering_used)); | 
 |  | 
 |   summary->num_parameter_blocks_reduced = reduced_program->NumParameterBlocks(); | 
 |   summary->num_parameters_reduced = reduced_program->NumParameters(); | 
 |   summary->num_effective_parameters_reduced = | 
 |       reduced_program->NumEffectiveParameters(); | 
 |   summary->num_residual_blocks_reduced = reduced_program->NumResidualBlocks(); | 
 |   summary->num_residuals_reduced = reduced_program->NumResiduals(); | 
 |  | 
 |   if (summary->num_parameter_blocks_reduced == 0) { | 
 |     summary->preprocessor_time_in_seconds = | 
 |         WallTimeInSeconds() - solver_start_time; | 
 |  | 
 |     double post_process_start_time = WallTimeInSeconds(); | 
 |     LOG(INFO) << "Terminating: FUNCTION_TOLERANCE reached. " | 
 |               << "No non-constant parameter blocks found."; | 
 |  | 
 |     summary->initial_cost = summary->fixed_cost; | 
 |     summary->final_cost = summary->fixed_cost; | 
 |  | 
 |     // FUNCTION_TOLERANCE is the right convergence here, as we know | 
 |     // that the objective function is constant and cannot be changed | 
 |     // any further. | 
 |     summary->termination_type = FUNCTION_TOLERANCE; | 
 |  | 
 |     // Ensure the program state is set to the user parameters on the way out. | 
 |     original_program->SetParameterBlockStatePtrsToUserStatePtrs(); | 
 |     original_program->SetParameterOffsetsAndIndex(); | 
 |  | 
 |     summary->postprocessor_time_in_seconds = | 
 |         WallTimeInSeconds() - post_process_start_time; | 
 |     return; | 
 |   } | 
 |  | 
 |   scoped_ptr<LinearSolver> | 
 |       linear_solver(CreateLinearSolver(&options, &summary->error)); | 
 |   event_logger.AddEvent("CreateLinearSolver"); | 
 |   if (linear_solver == NULL) { | 
 |     return; | 
 |   } | 
 |  | 
 |   summary->linear_solver_type_given = original_options.linear_solver_type; | 
 |   summary->linear_solver_type_used = options.linear_solver_type; | 
 |  | 
 |   summary->preconditioner_type = options.preconditioner_type; | 
 |  | 
 |   summary->num_linear_solver_threads_given = | 
 |       original_options.num_linear_solver_threads; | 
 |   summary->num_linear_solver_threads_used = options.num_linear_solver_threads; | 
 |  | 
 |   summary->dense_linear_algebra_library_type = | 
 |       options.dense_linear_algebra_library_type; | 
 |   summary->sparse_linear_algebra_library_type = | 
 |       options.sparse_linear_algebra_library_type; | 
 |  | 
 |   summary->trust_region_strategy_type = options.trust_region_strategy_type; | 
 |   summary->dogleg_type = options.dogleg_type; | 
 |  | 
 |   scoped_ptr<Evaluator> evaluator(CreateEvaluator(options, | 
 |                                                   problem_impl->parameter_map(), | 
 |                                                   reduced_program.get(), | 
 |                                                   &summary->error)); | 
 |  | 
 |   event_logger.AddEvent("CreateEvaluator"); | 
 |  | 
 |   if (evaluator == NULL) { | 
 |     return; | 
 |   } | 
 |  | 
 |   scoped_ptr<CoordinateDescentMinimizer> inner_iteration_minimizer; | 
 |   if (options.use_inner_iterations) { | 
 |     if (reduced_program->parameter_blocks().size() < 2) { | 
 |       LOG(WARNING) << "Reduced problem only contains one parameter block." | 
 |                    << "Disabling inner iterations."; | 
 |     } else { | 
 |       inner_iteration_minimizer.reset( | 
 |           CreateInnerIterationMinimizer(original_options, | 
 |                                         *reduced_program, | 
 |                                         problem_impl->parameter_map(), | 
 |                                         summary)); | 
 |       if (inner_iteration_minimizer == NULL) { | 
 |         LOG(ERROR) << summary->error; | 
 |         return; | 
 |       } | 
 |     } | 
 |   } | 
 |   event_logger.AddEvent("CreateInnerIterationMinimizer"); | 
 |  | 
 |   // The optimizer works on contiguous parameter vectors; allocate some. | 
 |   Vector parameters(reduced_program->NumParameters()); | 
 |  | 
 |   // Collect the discontiguous parameters into a contiguous state vector. | 
 |   reduced_program->ParameterBlocksToStateVector(parameters.data()); | 
 |  | 
 |   Vector original_parameters = parameters; | 
 |  | 
 |   double minimizer_start_time = WallTimeInSeconds(); | 
 |   summary->preprocessor_time_in_seconds = | 
 |       minimizer_start_time - solver_start_time; | 
 |  | 
 |   // Run the optimization. | 
 |   TrustRegionMinimize(options, | 
 |                       reduced_program.get(), | 
 |                       inner_iteration_minimizer.get(), | 
 |                       evaluator.get(), | 
 |                       linear_solver.get(), | 
 |                       parameters.data(), | 
 |                       summary); | 
 |   event_logger.AddEvent("Minimize"); | 
 |  | 
 |   SetSummaryFinalCost(summary); | 
 |  | 
 |   // If the user aborted mid-optimization or the optimization | 
 |   // terminated because of a numerical failure, then return without | 
 |   // updating user state. | 
 |   if (summary->termination_type == USER_ABORT || | 
 |       summary->termination_type == NUMERICAL_FAILURE) { | 
 |     return; | 
 |   } | 
 |  | 
 |   double post_process_start_time = WallTimeInSeconds(); | 
 |  | 
 |   // Push the contiguous optimized parameters back to the user's | 
 |   // parameters. | 
 |   reduced_program->StateVectorToParameterBlocks(parameters.data()); | 
 |   reduced_program->CopyParameterBlockStateToUserState(); | 
 |  | 
 |   // Ensure the program state is set to the user parameters on the way | 
 |   // out. | 
 |   original_program->SetParameterBlockStatePtrsToUserStatePtrs(); | 
 |   original_program->SetParameterOffsetsAndIndex(); | 
 |  | 
 |   const map<string, double>& linear_solver_time_statistics = | 
 |       linear_solver->TimeStatistics(); | 
 |   summary->linear_solver_time_in_seconds = | 
 |       FindWithDefault(linear_solver_time_statistics, | 
 |                       "LinearSolver::Solve", | 
 |                       0.0); | 
 |  | 
 |   const map<string, double>& evaluator_time_statistics = | 
 |       evaluator->TimeStatistics(); | 
 |  | 
 |   summary->residual_evaluation_time_in_seconds = | 
 |       FindWithDefault(evaluator_time_statistics, "Evaluator::Residual", 0.0); | 
 |   summary->jacobian_evaluation_time_in_seconds = | 
 |       FindWithDefault(evaluator_time_statistics, "Evaluator::Jacobian", 0.0); | 
 |  | 
 |   // Stick a fork in it, we're done. | 
 |   summary->postprocessor_time_in_seconds = | 
 |       WallTimeInSeconds() - post_process_start_time; | 
 |   event_logger.AddEvent("PostProcess"); | 
 | } | 
 |  | 
 |  | 
 | #ifndef CERES_NO_LINE_SEARCH_MINIMIZER | 
 | void SolverImpl::LineSearchSolve(const Solver::Options& original_options, | 
 |                                  ProblemImpl* original_problem_impl, | 
 |                                  Solver::Summary* summary) { | 
 |   double solver_start_time = WallTimeInSeconds(); | 
 |  | 
 |   Program* original_program = original_problem_impl->mutable_program(); | 
 |   ProblemImpl* problem_impl = original_problem_impl; | 
 |  | 
 |   // Reset the summary object to its default values. | 
 |   *CHECK_NOTNULL(summary) = Solver::Summary(); | 
 |  | 
 |   summary->minimizer_type = LINE_SEARCH; | 
 |   summary->line_search_direction_type = | 
 |       original_options.line_search_direction_type; | 
 |   summary->max_lbfgs_rank = original_options.max_lbfgs_rank; | 
 |   summary->line_search_type = original_options.line_search_type; | 
 |   summary->line_search_interpolation_type = | 
 |       original_options.line_search_interpolation_type; | 
 |   summary->nonlinear_conjugate_gradient_type = | 
 |       original_options.nonlinear_conjugate_gradient_type; | 
 |  | 
 |   summary->num_parameter_blocks = original_program->NumParameterBlocks(); | 
 |   summary->num_parameters = original_program->NumParameters(); | 
 |   summary->num_residual_blocks = original_program->NumResidualBlocks(); | 
 |   summary->num_residuals = original_program->NumResiduals(); | 
 |   summary->num_effective_parameters = | 
 |       original_program->NumEffectiveParameters(); | 
 |  | 
 |   // Validate values for configuration parameters supplied by user. | 
 |   if ((original_options.line_search_direction_type == ceres::BFGS || | 
 |        original_options.line_search_direction_type == ceres::LBFGS) && | 
 |       original_options.line_search_type != ceres::WOLFE) { | 
 |     summary->error = | 
 |         string("Invalid configuration: require line_search_type == " | 
 |                "ceres::WOLFE when using (L)BFGS to ensure that underlying " | 
 |                "assumptions are guaranteed to be satisfied."); | 
 |     LOG(ERROR) << summary->error; | 
 |     return; | 
 |   } | 
 |   if (original_options.max_lbfgs_rank <= 0) { | 
 |     summary->error = | 
 |         string("Invalid configuration: require max_lbfgs_rank > 0"); | 
 |     LOG(ERROR) << summary->error; | 
 |     return; | 
 |   } | 
 |   if (original_options.min_line_search_step_size <= 0.0) { | 
 |     summary->error = "Invalid configuration: min_line_search_step_size <= 0.0."; | 
 |     LOG(ERROR) << summary->error; | 
 |     return; | 
 |   } | 
 |   if (original_options.line_search_sufficient_function_decrease <= 0.0) { | 
 |     summary->error = | 
 |         string("Invalid configuration: require ") + | 
 |         string("line_search_sufficient_function_decrease <= 0.0."); | 
 |     LOG(ERROR) << summary->error; | 
 |     return; | 
 |   } | 
 |   if (original_options.max_line_search_step_contraction <= 0.0 || | 
 |       original_options.max_line_search_step_contraction >= 1.0) { | 
 |     summary->error = string("Invalid configuration: require ") + | 
 |         string("0.0 < max_line_search_step_contraction < 1.0."); | 
 |     LOG(ERROR) << summary->error; | 
 |     return; | 
 |   } | 
 |   if (original_options.min_line_search_step_contraction <= | 
 |       original_options.max_line_search_step_contraction || | 
 |       original_options.min_line_search_step_contraction > 1.0) { | 
 |     summary->error = string("Invalid configuration: require ") + | 
 |         string("max_line_search_step_contraction < ") + | 
 |         string("min_line_search_step_contraction <= 1.0."); | 
 |     LOG(ERROR) << summary->error; | 
 |     return; | 
 |   } | 
 |   // Warn user if they have requested BISECTION interpolation, but constraints | 
 |   // on max/min step size change during line search prevent bisection scaling | 
 |   // from occurring. Warn only, as this is likely a user mistake, but one which | 
 |   // does not prevent us from continuing. | 
 |   LOG_IF(WARNING, | 
 |          (original_options.line_search_interpolation_type == ceres::BISECTION && | 
 |           (original_options.max_line_search_step_contraction > 0.5 || | 
 |            original_options.min_line_search_step_contraction < 0.5))) | 
 |       << "Line search interpolation type is BISECTION, but specified " | 
 |       << "max_line_search_step_contraction: " | 
 |       << original_options.max_line_search_step_contraction << ", and " | 
 |       << "min_line_search_step_contraction: " | 
 |       << original_options.min_line_search_step_contraction | 
 |       << ", prevent bisection (0.5) scaling, continuing with solve regardless."; | 
 |   if (original_options.max_num_line_search_step_size_iterations <= 0) { | 
 |     summary->error = string("Invalid configuration: require ") + | 
 |         string("max_num_line_search_step_size_iterations > 0."); | 
 |     LOG(ERROR) << summary->error; | 
 |     return; | 
 |   } | 
 |   if (original_options.line_search_sufficient_curvature_decrease <= | 
 |       original_options.line_search_sufficient_function_decrease || | 
 |       original_options.line_search_sufficient_curvature_decrease > 1.0) { | 
 |     summary->error = string("Invalid configuration: require ") + | 
 |         string("line_search_sufficient_function_decrease < ") + | 
 |         string("line_search_sufficient_curvature_decrease < 1.0."); | 
 |     LOG(ERROR) << summary->error; | 
 |     return; | 
 |   } | 
 |   if (original_options.max_line_search_step_expansion <= 1.0) { | 
 |     summary->error = string("Invalid configuration: require ") + | 
 |         string("max_line_search_step_expansion > 1.0."); | 
 |     LOG(ERROR) << summary->error; | 
 |     return; | 
 |   } | 
 |  | 
 |   // Empty programs are usually a user error. | 
 |   if (summary->num_parameter_blocks == 0) { | 
 |     summary->error = "Problem contains no parameter blocks."; | 
 |     LOG(ERROR) << summary->error; | 
 |     return; | 
 |   } | 
 |  | 
 |   if (summary->num_residual_blocks == 0) { | 
 |     summary->error = "Problem contains no residual blocks."; | 
 |     LOG(ERROR) << summary->error; | 
 |     return; | 
 |   } | 
 |  | 
 |   Solver::Options options(original_options); | 
 |  | 
 |   // This ensures that we get a Block Jacobian Evaluator along with | 
 |   // none of the Schur nonsense. This file will have to be extensively | 
 |   // refactored to deal with the various bits of cleanups related to | 
 |   // line search. | 
 |   options.linear_solver_type = CGNR; | 
 |  | 
 |   options.linear_solver_ordering = NULL; | 
 |   options.inner_iteration_ordering = NULL; | 
 |  | 
 | #ifndef CERES_USE_OPENMP | 
 |   if (options.num_threads > 1) { | 
 |     LOG(WARNING) | 
 |         << "OpenMP support is not compiled into this binary; " | 
 |         << "only options.num_threads=1 is supported. Switching " | 
 |         << "to single threaded mode."; | 
 |     options.num_threads = 1; | 
 |   } | 
 | #endif  // CERES_USE_OPENMP | 
 |  | 
 |   summary->num_threads_given = original_options.num_threads; | 
 |   summary->num_threads_used = options.num_threads; | 
 |  | 
 |   if (original_options.linear_solver_ordering != NULL) { | 
 |     if (!IsOrderingValid(original_options, problem_impl, &summary->error)) { | 
 |       LOG(ERROR) << summary->error; | 
 |       return; | 
 |     } | 
 |     options.linear_solver_ordering = | 
 |         new ParameterBlockOrdering(*original_options.linear_solver_ordering); | 
 |   } else { | 
 |     options.linear_solver_ordering = new ParameterBlockOrdering; | 
 |     const ProblemImpl::ParameterMap& parameter_map = | 
 |         problem_impl->parameter_map(); | 
 |     for (ProblemImpl::ParameterMap::const_iterator it = parameter_map.begin(); | 
 |          it != parameter_map.end(); | 
 |          ++it) { | 
 |       options.linear_solver_ordering->AddElementToGroup(it->first, 0); | 
 |     } | 
 |   } | 
 |  | 
 |   original_program->SetParameterBlockStatePtrsToUserStatePtrs(); | 
 |  | 
 |   // If the user requests gradient checking, construct a new | 
 |   // ProblemImpl by wrapping the CostFunctions of problem_impl inside | 
 |   // GradientCheckingCostFunction and replacing problem_impl with | 
 |   // gradient_checking_problem_impl. | 
 |   scoped_ptr<ProblemImpl> gradient_checking_problem_impl; | 
 |   if (options.check_gradients) { | 
 |     VLOG(1) << "Checking Gradients"; | 
 |     gradient_checking_problem_impl.reset( | 
 |         CreateGradientCheckingProblemImpl( | 
 |             problem_impl, | 
 |             options.numeric_derivative_relative_step_size, | 
 |             options.gradient_check_relative_precision)); | 
 |  | 
 |     // From here on, problem_impl will point to the gradient checking | 
 |     // version. | 
 |     problem_impl = gradient_checking_problem_impl.get(); | 
 |   } | 
 |  | 
 |   // Create the three objects needed to minimize: the transformed program, the | 
 |   // evaluator, and the linear solver. | 
 |   scoped_ptr<Program> reduced_program(CreateReducedProgram(&options, | 
 |                                                            problem_impl, | 
 |                                                            &summary->fixed_cost, | 
 |                                                            &summary->error)); | 
 |   if (reduced_program == NULL) { | 
 |     return; | 
 |   } | 
 |  | 
 |   summary->num_parameter_blocks_reduced = reduced_program->NumParameterBlocks(); | 
 |   summary->num_parameters_reduced = reduced_program->NumParameters(); | 
 |   summary->num_residual_blocks_reduced = reduced_program->NumResidualBlocks(); | 
 |   summary->num_effective_parameters_reduced = | 
 |       reduced_program->NumEffectiveParameters(); | 
 |   summary->num_residuals_reduced = reduced_program->NumResiduals(); | 
 |  | 
 |   if (summary->num_parameter_blocks_reduced == 0) { | 
 |     summary->preprocessor_time_in_seconds = | 
 |         WallTimeInSeconds() - solver_start_time; | 
 |  | 
 |     LOG(INFO) << "Terminating: FUNCTION_TOLERANCE reached. " | 
 |               << "No non-constant parameter blocks found."; | 
 |  | 
 |     // FUNCTION_TOLERANCE is the right convergence here, as we know | 
 |     // that the objective function is constant and cannot be changed | 
 |     // any further. | 
 |     summary->termination_type = FUNCTION_TOLERANCE; | 
 |  | 
 |     const double post_process_start_time = WallTimeInSeconds(); | 
 |  | 
 |     SetSummaryFinalCost(summary); | 
 |  | 
 |     // Ensure the program state is set to the user parameters on the way out. | 
 |     original_program->SetParameterBlockStatePtrsToUserStatePtrs(); | 
 |     original_program->SetParameterOffsetsAndIndex(); | 
 |  | 
 |     summary->postprocessor_time_in_seconds = | 
 |         WallTimeInSeconds() - post_process_start_time; | 
 |     return; | 
 |   } | 
 |  | 
 |   scoped_ptr<Evaluator> evaluator(CreateEvaluator(options, | 
 |                                                   problem_impl->parameter_map(), | 
 |                                                   reduced_program.get(), | 
 |                                                   &summary->error)); | 
 |   if (evaluator == NULL) { | 
 |     return; | 
 |   } | 
 |  | 
 |   // The optimizer works on contiguous parameter vectors; allocate some. | 
 |   Vector parameters(reduced_program->NumParameters()); | 
 |  | 
 |   // Collect the discontiguous parameters into a contiguous state vector. | 
 |   reduced_program->ParameterBlocksToStateVector(parameters.data()); | 
 |  | 
 |   Vector original_parameters = parameters; | 
 |  | 
 |   const double minimizer_start_time = WallTimeInSeconds(); | 
 |   summary->preprocessor_time_in_seconds = | 
 |       minimizer_start_time - solver_start_time; | 
 |  | 
 |   // Run the optimization. | 
 |   LineSearchMinimize(options, | 
 |                      reduced_program.get(), | 
 |                      evaluator.get(), | 
 |                      parameters.data(), | 
 |                      summary); | 
 |  | 
 |   // If the user aborted mid-optimization or the optimization | 
 |   // terminated because of a numerical failure, then return without | 
 |   // updating user state. | 
 |   if (summary->termination_type == USER_ABORT || | 
 |       summary->termination_type == NUMERICAL_FAILURE) { | 
 |     return; | 
 |   } | 
 |  | 
 |   const double post_process_start_time = WallTimeInSeconds(); | 
 |  | 
 |   // Push the contiguous optimized parameters back to the user's parameters. | 
 |   reduced_program->StateVectorToParameterBlocks(parameters.data()); | 
 |   reduced_program->CopyParameterBlockStateToUserState(); | 
 |  | 
 |   SetSummaryFinalCost(summary); | 
 |  | 
 |   // Ensure the program state is set to the user parameters on the way out. | 
 |   original_program->SetParameterBlockStatePtrsToUserStatePtrs(); | 
 |   original_program->SetParameterOffsetsAndIndex(); | 
 |  | 
 |   const map<string, double>& evaluator_time_statistics = | 
 |       evaluator->TimeStatistics(); | 
 |  | 
 |   summary->residual_evaluation_time_in_seconds = | 
 |       FindWithDefault(evaluator_time_statistics, "Evaluator::Residual", 0.0); | 
 |   summary->jacobian_evaluation_time_in_seconds = | 
 |       FindWithDefault(evaluator_time_statistics, "Evaluator::Jacobian", 0.0); | 
 |  | 
 |   // Stick a fork in it, we're done. | 
 |   summary->postprocessor_time_in_seconds = | 
 |       WallTimeInSeconds() - post_process_start_time; | 
 | } | 
 | #endif  // CERES_NO_LINE_SEARCH_MINIMIZER | 
 |  | 
 | bool SolverImpl::IsOrderingValid(const Solver::Options& options, | 
 |                                  const ProblemImpl* problem_impl, | 
 |                                  string* error) { | 
 |   if (options.linear_solver_ordering->NumElements() != | 
 |       problem_impl->NumParameterBlocks()) { | 
 |       *error = "Number of parameter blocks in user supplied ordering " | 
 |           "does not match the number of parameter blocks in the problem"; | 
 |     return false; | 
 |   } | 
 |  | 
 |   const Program& program = problem_impl->program(); | 
 |   const vector<ParameterBlock*>& parameter_blocks = program.parameter_blocks(); | 
 |   for (vector<ParameterBlock*>::const_iterator it = parameter_blocks.begin(); | 
 |        it != parameter_blocks.end(); | 
 |        ++it) { | 
 |     if (!options.linear_solver_ordering | 
 |         ->IsMember(const_cast<double*>((*it)->user_state()))) { | 
 |       *error = "Problem contains a parameter block that is not in " | 
 |           "the user specified ordering."; | 
 |       return false; | 
 |     } | 
 |   } | 
 |  | 
 |   if (IsSchurType(options.linear_solver_type) && | 
 |       options.linear_solver_ordering->NumGroups() > 1) { | 
 |     const vector<ResidualBlock*>& residual_blocks = program.residual_blocks(); | 
 |     const set<double*>& e_blocks  = | 
 |         options.linear_solver_ordering->group_to_elements().begin()->second; | 
 |     if (!IsParameterBlockSetIndependent(e_blocks, residual_blocks)) { | 
 |       *error = "The user requested the use of a Schur type solver. " | 
 |           "But the first elimination group in the ordering is not an " | 
 |           "independent set."; | 
 |       return false; | 
 |     } | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | bool SolverImpl::IsParameterBlockSetIndependent( | 
 |     const set<double*>& parameter_block_ptrs, | 
 |     const vector<ResidualBlock*>& residual_blocks) { | 
 |   // Loop over each residual block and ensure that no two parameter | 
 |   // blocks in the same residual block are part of | 
 |   // parameter_block_ptrs as that would violate the assumption that it | 
 |   // is an independent set in the Hessian matrix. | 
 |   for (vector<ResidualBlock*>::const_iterator it = residual_blocks.begin(); | 
 |        it != residual_blocks.end(); | 
 |        ++it) { | 
 |     ParameterBlock* const* parameter_blocks = (*it)->parameter_blocks(); | 
 |     const int num_parameter_blocks = (*it)->NumParameterBlocks(); | 
 |     int count = 0; | 
 |     for (int i = 0; i < num_parameter_blocks; ++i) { | 
 |       count += parameter_block_ptrs.count( | 
 |           parameter_blocks[i]->mutable_user_state()); | 
 |     } | 
 |     if (count > 1) { | 
 |       return false; | 
 |     } | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 |  | 
 | // Strips varying parameters and residuals, maintaining order, and updating | 
 | // num_eliminate_blocks. | 
 | bool SolverImpl::RemoveFixedBlocksFromProgram(Program* program, | 
 |                                               ParameterBlockOrdering* ordering, | 
 |                                               double* fixed_cost, | 
 |                                               string* error) { | 
 |   vector<ParameterBlock*>* parameter_blocks = | 
 |       program->mutable_parameter_blocks(); | 
 |  | 
 |   scoped_array<double> residual_block_evaluate_scratch; | 
 |   if (fixed_cost != NULL) { | 
 |     residual_block_evaluate_scratch.reset( | 
 |         new double[program->MaxScratchDoublesNeededForEvaluate()]); | 
 |     *fixed_cost = 0.0; | 
 |   } | 
 |  | 
 |   // Mark all the parameters as unused. Abuse the index member of the parameter | 
 |   // blocks for the marking. | 
 |   for (int i = 0; i < parameter_blocks->size(); ++i) { | 
 |     (*parameter_blocks)[i]->set_index(-1); | 
 |   } | 
 |  | 
 |   // Filter out residual that have all-constant parameters, and mark all the | 
 |   // parameter blocks that appear in residuals. | 
 |   { | 
 |     vector<ResidualBlock*>* residual_blocks = | 
 |         program->mutable_residual_blocks(); | 
 |     int j = 0; | 
 |     for (int i = 0; i < residual_blocks->size(); ++i) { | 
 |       ResidualBlock* residual_block = (*residual_blocks)[i]; | 
 |       int num_parameter_blocks = residual_block->NumParameterBlocks(); | 
 |  | 
 |       // Determine if the residual block is fixed, and also mark varying | 
 |       // parameters that appear in the residual block. | 
 |       bool all_constant = true; | 
 |       for (int k = 0; k < num_parameter_blocks; k++) { | 
 |         ParameterBlock* parameter_block = residual_block->parameter_blocks()[k]; | 
 |         if (!parameter_block->IsConstant()) { | 
 |           all_constant = false; | 
 |           parameter_block->set_index(1); | 
 |         } | 
 |       } | 
 |  | 
 |       if (!all_constant) { | 
 |         (*residual_blocks)[j++] = (*residual_blocks)[i]; | 
 |       } else if (fixed_cost != NULL) { | 
 |         // The residual is constant and will be removed, so its cost is | 
 |         // added to the variable fixed_cost. | 
 |         double cost = 0.0; | 
 |         if (!residual_block->Evaluate(true, | 
 |                                       &cost, | 
 |                                       NULL, | 
 |                                       NULL, | 
 |                                       residual_block_evaluate_scratch.get())) { | 
 |           *error = StringPrintf("Evaluation of the residual %d failed during " | 
 |                                 "removal of fixed residual blocks.", i); | 
 |           return false; | 
 |         } | 
 |         *fixed_cost += cost; | 
 |       } | 
 |     } | 
 |     residual_blocks->resize(j); | 
 |   } | 
 |  | 
 |   // Filter out unused or fixed parameter blocks, and update | 
 |   // the ordering. | 
 |   { | 
 |     vector<ParameterBlock*>* parameter_blocks = | 
 |         program->mutable_parameter_blocks(); | 
 |     int j = 0; | 
 |     for (int i = 0; i < parameter_blocks->size(); ++i) { | 
 |       ParameterBlock* parameter_block = (*parameter_blocks)[i]; | 
 |       if (parameter_block->index() == 1) { | 
 |         (*parameter_blocks)[j++] = parameter_block; | 
 |       } else { | 
 |         ordering->Remove(parameter_block->mutable_user_state()); | 
 |       } | 
 |     } | 
 |     parameter_blocks->resize(j); | 
 |   } | 
 |  | 
 |   if (!(((program->NumResidualBlocks() == 0) && | 
 |          (program->NumParameterBlocks() == 0)) || | 
 |         ((program->NumResidualBlocks() != 0) && | 
 |          (program->NumParameterBlocks() != 0)))) { | 
 |     *error =  "Congratulations, you found a bug in Ceres. Please report it."; | 
 |     return false; | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | Program* SolverImpl::CreateReducedProgram(Solver::Options* options, | 
 |                                           ProblemImpl* problem_impl, | 
 |                                           double* fixed_cost, | 
 |                                           string* error) { | 
 |   CHECK_NOTNULL(options->linear_solver_ordering); | 
 |   Program* original_program = problem_impl->mutable_program(); | 
 |   scoped_ptr<Program> transformed_program(new Program(*original_program)); | 
 |  | 
 |   ParameterBlockOrdering* linear_solver_ordering = | 
 |       options->linear_solver_ordering; | 
 |   const int min_group_id = | 
 |       linear_solver_ordering->group_to_elements().begin()->first; | 
 |  | 
 |   if (!RemoveFixedBlocksFromProgram(transformed_program.get(), | 
 |                                     linear_solver_ordering, | 
 |                                     fixed_cost, | 
 |                                     error)) { | 
 |     return NULL; | 
 |   } | 
 |  | 
 |   VLOG(2) << "Reduced problem: " | 
 |           << transformed_program->NumParameterBlocks() | 
 |           << " parameter blocks, " | 
 |           << transformed_program->NumParameters() | 
 |           << " parameters,  " | 
 |           << transformed_program->NumResidualBlocks() | 
 |           << " residual blocks, " | 
 |           << transformed_program->NumResiduals() | 
 |           << " residuals."; | 
 |  | 
 |   if (transformed_program->NumParameterBlocks() == 0) { | 
 |     LOG(WARNING) << "No varying parameter blocks to optimize; " | 
 |                  << "bailing early."; | 
 |     return transformed_program.release(); | 
 |   } | 
 |  | 
 |   if (IsSchurType(options->linear_solver_type) && | 
 |       linear_solver_ordering->GroupSize(min_group_id) == 0) { | 
 |     // If the user requested the use of a Schur type solver, and | 
 |     // supplied a non-NULL linear_solver_ordering object with more than | 
 |     // one elimination group, then it can happen that after all the | 
 |     // parameter blocks which are fixed or unused have been removed from | 
 |     // the program and the ordering, there are no more parameter blocks | 
 |     // in the first elimination group. | 
 |     // | 
 |     // In such a case, the use of a Schur type solver is not possible, | 
 |     // as they assume there is at least one e_block. Thus, we | 
 |     // automatically switch to the closest solver to the one indicated | 
 |     // by the user. | 
 |     AlternateLinearSolverForSchurTypeLinearSolver(options); | 
 |   } | 
 |  | 
 |   if (IsSchurType(options->linear_solver_type)) { | 
 |     if (!ReorderProgramForSchurTypeLinearSolver( | 
 |             options->linear_solver_type, | 
 |             options->sparse_linear_algebra_library_type, | 
 |             problem_impl->parameter_map(), | 
 |             linear_solver_ordering, | 
 |             transformed_program.get(), | 
 |             error)) { | 
 |       return NULL; | 
 |     } | 
 |     return transformed_program.release(); | 
 |   } | 
 |  | 
 |   if (options->linear_solver_type == SPARSE_NORMAL_CHOLESKY) { | 
 |     if (!ReorderProgramForSparseNormalCholesky( | 
 |             options->sparse_linear_algebra_library_type, | 
 |             linear_solver_ordering, | 
 |             transformed_program.get(), | 
 |             error)) { | 
 |       return NULL; | 
 |     } | 
 |  | 
 |     return transformed_program.release(); | 
 |   } | 
 |  | 
 |   transformed_program->SetParameterOffsetsAndIndex(); | 
 |   return transformed_program.release(); | 
 | } | 
 |  | 
 | LinearSolver* SolverImpl::CreateLinearSolver(Solver::Options* options, | 
 |                                              string* error) { | 
 |   CHECK_NOTNULL(options); | 
 |   CHECK_NOTNULL(options->linear_solver_ordering); | 
 |   CHECK_NOTNULL(error); | 
 |  | 
 |   if (options->trust_region_strategy_type == DOGLEG) { | 
 |     if (options->linear_solver_type == ITERATIVE_SCHUR || | 
 |         options->linear_solver_type == CGNR) { | 
 |       *error = "DOGLEG only supports exact factorization based linear " | 
 |                "solvers. If you want to use an iterative solver please " | 
 |                "use LEVENBERG_MARQUARDT as the trust_region_strategy_type"; | 
 |       return NULL; | 
 |     } | 
 |   } | 
 |  | 
 | #ifdef CERES_NO_LAPACK | 
 |   if (options->linear_solver_type == DENSE_NORMAL_CHOLESKY && | 
 |       options->dense_linear_algebra_library_type == LAPACK) { | 
 |     *error = "Can't use DENSE_NORMAL_CHOLESKY with LAPACK because " | 
 |         "LAPACK was not enabled when Ceres was built."; | 
 |     return NULL; | 
 |   } | 
 |  | 
 |   if (options->linear_solver_type == DENSE_QR && | 
 |       options->dense_linear_algebra_library_type == LAPACK) { | 
 |     *error = "Can't use DENSE_QR with LAPACK because " | 
 |         "LAPACK was not enabled when Ceres was built."; | 
 |     return NULL; | 
 |   } | 
 |  | 
 |   if (options->linear_solver_type == DENSE_SCHUR && | 
 |       options->dense_linear_algebra_library_type == LAPACK) { | 
 |     *error = "Can't use DENSE_SCHUR with LAPACK because " | 
 |         "LAPACK was not enabled when Ceres was built."; | 
 |     return NULL; | 
 |   } | 
 | #endif | 
 |  | 
 | #ifdef CERES_NO_SUITESPARSE | 
 |   if (options->linear_solver_type == SPARSE_NORMAL_CHOLESKY && | 
 |       options->sparse_linear_algebra_library_type == SUITE_SPARSE) { | 
 |     *error = "Can't use SPARSE_NORMAL_CHOLESKY with SUITESPARSE because " | 
 |              "SuiteSparse was not enabled when Ceres was built."; | 
 |     return NULL; | 
 |   } | 
 |  | 
 |   if (options->preconditioner_type == CLUSTER_JACOBI) { | 
 |     *error =  "CLUSTER_JACOBI preconditioner not suppored. Please build Ceres " | 
 |         "with SuiteSparse support."; | 
 |     return NULL; | 
 |   } | 
 |  | 
 |   if (options->preconditioner_type == CLUSTER_TRIDIAGONAL) { | 
 |     *error =  "CLUSTER_TRIDIAGONAL preconditioner not suppored. Please build " | 
 |         "Ceres with SuiteSparse support."; | 
 |     return NULL; | 
 |   } | 
 | #endif | 
 |  | 
 | #ifdef CERES_NO_CXSPARSE | 
 |   if (options->linear_solver_type == SPARSE_NORMAL_CHOLESKY && | 
 |       options->sparse_linear_algebra_library_type == CX_SPARSE) { | 
 |     *error = "Can't use SPARSE_NORMAL_CHOLESKY with CXSPARSE because " | 
 |              "CXSparse was not enabled when Ceres was built."; | 
 |     return NULL; | 
 |   } | 
 | #endif | 
 |  | 
 | #if defined(CERES_NO_SUITESPARSE) && defined(CERES_NO_CXSPARSE) | 
 |   if (options->linear_solver_type == SPARSE_SCHUR) { | 
 |     *error = "Can't use SPARSE_SCHUR because neither SuiteSparse nor" | 
 |         "CXSparse was enabled when Ceres was compiled."; | 
 |     return NULL; | 
 |   } | 
 | #endif | 
 |  | 
 |   if (options->max_linear_solver_iterations <= 0) { | 
 |     *error = "Solver::Options::max_linear_solver_iterations is not positive."; | 
 |     return NULL; | 
 |   } | 
 |   if (options->min_linear_solver_iterations <= 0) { | 
 |     *error = "Solver::Options::min_linear_solver_iterations is not positive."; | 
 |     return NULL; | 
 |   } | 
 |   if (options->min_linear_solver_iterations > | 
 |       options->max_linear_solver_iterations) { | 
 |     *error = "Solver::Options::min_linear_solver_iterations > " | 
 |         "Solver::Options::max_linear_solver_iterations."; | 
 |     return NULL; | 
 |   } | 
 |  | 
 |   LinearSolver::Options linear_solver_options; | 
 |   linear_solver_options.min_num_iterations = | 
 |         options->min_linear_solver_iterations; | 
 |   linear_solver_options.max_num_iterations = | 
 |       options->max_linear_solver_iterations; | 
 |   linear_solver_options.type = options->linear_solver_type; | 
 |   linear_solver_options.preconditioner_type = options->preconditioner_type; | 
 |   linear_solver_options.sparse_linear_algebra_library_type = | 
 |       options->sparse_linear_algebra_library_type; | 
 |   linear_solver_options.dense_linear_algebra_library_type = | 
 |       options->dense_linear_algebra_library_type; | 
 |   linear_solver_options.use_postordering = options->use_postordering; | 
 |  | 
 |   // Ignore user's postordering preferences and force it to be true if | 
 |   // cholmod_camd is not available. This ensures that the linear | 
 |   // solver does not assume that a fill-reducing pre-ordering has been | 
 |   // done. | 
 | #if !defined(CERES_NO_SUITESPARSE) && defined(CERES_NO_CAMD) | 
 |   if (IsSchurType(linear_solver_options.type) && | 
 |       options->sparse_linear_algebra_library_type == SUITE_SPARSE) { | 
 |     linear_solver_options.use_postordering = true; | 
 |   } | 
 | #endif | 
 |  | 
 |   linear_solver_options.num_threads = options->num_linear_solver_threads; | 
 |   options->num_linear_solver_threads = linear_solver_options.num_threads; | 
 |  | 
 |   const map<int, set<double*> >& groups = | 
 |       options->linear_solver_ordering->group_to_elements(); | 
 |   for (map<int, set<double*> >::const_iterator it = groups.begin(); | 
 |        it != groups.end(); | 
 |        ++it) { | 
 |     linear_solver_options.elimination_groups.push_back(it->second.size()); | 
 |   } | 
 |   // Schur type solvers, expect at least two elimination groups. If | 
 |   // there is only one elimination group, then CreateReducedProgram | 
 |   // guarantees that this group only contains e_blocks. Thus we add a | 
 |   // dummy elimination group with zero blocks in it. | 
 |   if (IsSchurType(linear_solver_options.type) && | 
 |       linear_solver_options.elimination_groups.size() == 1) { | 
 |     linear_solver_options.elimination_groups.push_back(0); | 
 |   } | 
 |  | 
 |   return LinearSolver::Create(linear_solver_options); | 
 | } | 
 |  | 
 |  | 
 | // Find the minimum index of any parameter block to the given residual. | 
 | // Parameter blocks that have indices greater than num_eliminate_blocks are | 
 | // considered to have an index equal to num_eliminate_blocks. | 
 | static int MinParameterBlock(const ResidualBlock* residual_block, | 
 |                              int num_eliminate_blocks) { | 
 |   int min_parameter_block_position = num_eliminate_blocks; | 
 |   for (int i = 0; i < residual_block->NumParameterBlocks(); ++i) { | 
 |     ParameterBlock* parameter_block = residual_block->parameter_blocks()[i]; | 
 |     if (!parameter_block->IsConstant()) { | 
 |       CHECK_NE(parameter_block->index(), -1) | 
 |           << "Did you forget to call Program::SetParameterOffsetsAndIndex()? " | 
 |           << "This is a Ceres bug; please contact the developers!"; | 
 |       min_parameter_block_position = std::min(parameter_block->index(), | 
 |                                               min_parameter_block_position); | 
 |     } | 
 |   } | 
 |   return min_parameter_block_position; | 
 | } | 
 |  | 
 | // Reorder the residuals for program, if necessary, so that the residuals | 
 | // involving each E block occur together. This is a necessary condition for the | 
 | // Schur eliminator, which works on these "row blocks" in the jacobian. | 
 | bool SolverImpl::LexicographicallyOrderResidualBlocks( | 
 |     const int num_eliminate_blocks, | 
 |     Program* program, | 
 |     string* error) { | 
 |   CHECK_GE(num_eliminate_blocks, 1) | 
 |       << "Congratulations, you found a Ceres bug! Please report this error " | 
 |       << "to the developers."; | 
 |  | 
 |   // Create a histogram of the number of residuals for each E block. There is an | 
 |   // extra bucket at the end to catch all non-eliminated F blocks. | 
 |   vector<int> residual_blocks_per_e_block(num_eliminate_blocks + 1); | 
 |   vector<ResidualBlock*>* residual_blocks = program->mutable_residual_blocks(); | 
 |   vector<int> min_position_per_residual(residual_blocks->size()); | 
 |   for (int i = 0; i < residual_blocks->size(); ++i) { | 
 |     ResidualBlock* residual_block = (*residual_blocks)[i]; | 
 |     int position = MinParameterBlock(residual_block, num_eliminate_blocks); | 
 |     min_position_per_residual[i] = position; | 
 |     DCHECK_LE(position, num_eliminate_blocks); | 
 |     residual_blocks_per_e_block[position]++; | 
 |   } | 
 |  | 
 |   // Run a cumulative sum on the histogram, to obtain offsets to the start of | 
 |   // each histogram bucket (where each bucket is for the residuals for that | 
 |   // E-block). | 
 |   vector<int> offsets(num_eliminate_blocks + 1); | 
 |   std::partial_sum(residual_blocks_per_e_block.begin(), | 
 |                    residual_blocks_per_e_block.end(), | 
 |                    offsets.begin()); | 
 |   CHECK_EQ(offsets.back(), residual_blocks->size()) | 
 |       << "Congratulations, you found a Ceres bug! Please report this error " | 
 |       << "to the developers."; | 
 |  | 
 |   CHECK(find(residual_blocks_per_e_block.begin(), | 
 |              residual_blocks_per_e_block.end() - 1, 0) != | 
 |         residual_blocks_per_e_block.end()) | 
 |       << "Congratulations, you found a Ceres bug! Please report this error " | 
 |       << "to the developers."; | 
 |  | 
 |   // Fill in each bucket with the residual blocks for its corresponding E block. | 
 |   // Each bucket is individually filled from the back of the bucket to the front | 
 |   // of the bucket. The filling order among the buckets is dictated by the | 
 |   // residual blocks. This loop uses the offsets as counters; subtracting one | 
 |   // from each offset as a residual block is placed in the bucket. When the | 
 |   // filling is finished, the offset pointerts should have shifted down one | 
 |   // entry (this is verified below). | 
 |   vector<ResidualBlock*> reordered_residual_blocks( | 
 |       (*residual_blocks).size(), static_cast<ResidualBlock*>(NULL)); | 
 |   for (int i = 0; i < residual_blocks->size(); ++i) { | 
 |     int bucket = min_position_per_residual[i]; | 
 |  | 
 |     // Decrement the cursor, which should now point at the next empty position. | 
 |     offsets[bucket]--; | 
 |  | 
 |     // Sanity. | 
 |     CHECK(reordered_residual_blocks[offsets[bucket]] == NULL) | 
 |         << "Congratulations, you found a Ceres bug! Please report this error " | 
 |         << "to the developers."; | 
 |  | 
 |     reordered_residual_blocks[offsets[bucket]] = (*residual_blocks)[i]; | 
 |   } | 
 |  | 
 |   // Sanity check #1: The difference in bucket offsets should match the | 
 |   // histogram sizes. | 
 |   for (int i = 0; i < num_eliminate_blocks; ++i) { | 
 |     CHECK_EQ(residual_blocks_per_e_block[i], offsets[i + 1] - offsets[i]) | 
 |         << "Congratulations, you found a Ceres bug! Please report this error " | 
 |         << "to the developers."; | 
 |   } | 
 |   // Sanity check #2: No NULL's left behind. | 
 |   for (int i = 0; i < reordered_residual_blocks.size(); ++i) { | 
 |     CHECK(reordered_residual_blocks[i] != NULL) | 
 |         << "Congratulations, you found a Ceres bug! Please report this error " | 
 |         << "to the developers."; | 
 |   } | 
 |  | 
 |   // Now that the residuals are collected by E block, swap them in place. | 
 |   swap(*program->mutable_residual_blocks(), reordered_residual_blocks); | 
 |   return true; | 
 | } | 
 |  | 
 | Evaluator* SolverImpl::CreateEvaluator( | 
 |     const Solver::Options& options, | 
 |     const ProblemImpl::ParameterMap& parameter_map, | 
 |     Program* program, | 
 |     string* error) { | 
 |   Evaluator::Options evaluator_options; | 
 |   evaluator_options.linear_solver_type = options.linear_solver_type; | 
 |   evaluator_options.num_eliminate_blocks = | 
 |       (options.linear_solver_ordering->NumGroups() > 0 && | 
 |        IsSchurType(options.linear_solver_type)) | 
 |       ? (options.linear_solver_ordering | 
 |          ->group_to_elements().begin() | 
 |          ->second.size()) | 
 |       : 0; | 
 |   evaluator_options.num_threads = options.num_threads; | 
 |   return Evaluator::Create(evaluator_options, program, error); | 
 | } | 
 |  | 
 | CoordinateDescentMinimizer* SolverImpl::CreateInnerIterationMinimizer( | 
 |     const Solver::Options& options, | 
 |     const Program& program, | 
 |     const ProblemImpl::ParameterMap& parameter_map, | 
 |     Solver::Summary* summary) { | 
 |   summary->inner_iterations_given = true; | 
 |  | 
 |   scoped_ptr<CoordinateDescentMinimizer> inner_iteration_minimizer( | 
 |       new CoordinateDescentMinimizer); | 
 |   scoped_ptr<ParameterBlockOrdering> inner_iteration_ordering; | 
 |   ParameterBlockOrdering* ordering_ptr  = NULL; | 
 |  | 
 |   if (options.inner_iteration_ordering == NULL) { | 
 |     // Find a recursive decomposition of the Hessian matrix as a set | 
 |     // of independent sets of decreasing size and invert it. This | 
 |     // seems to work better in practice, i.e., Cameras before | 
 |     // points. | 
 |     inner_iteration_ordering.reset(new ParameterBlockOrdering); | 
 |     ComputeRecursiveIndependentSetOrdering(program, | 
 |                                            inner_iteration_ordering.get()); | 
 |     inner_iteration_ordering->Reverse(); | 
 |     ordering_ptr = inner_iteration_ordering.get(); | 
 |   } else { | 
 |     const map<int, set<double*> >& group_to_elements = | 
 |         options.inner_iteration_ordering->group_to_elements(); | 
 |  | 
 |     // Iterate over each group and verify that it is an independent | 
 |     // set. | 
 |     map<int, set<double*> >::const_iterator it = group_to_elements.begin(); | 
 |     for ( ; it != group_to_elements.end(); ++it) { | 
 |       if (!IsParameterBlockSetIndependent(it->second, | 
 |                                           program.residual_blocks())) { | 
 |         summary->error = | 
 |             StringPrintf("The user-provided " | 
 |                          "parameter_blocks_for_inner_iterations does not " | 
 |                          "form an independent set. Group Id: %d", it->first); | 
 |         return NULL; | 
 |       } | 
 |     } | 
 |     ordering_ptr = options.inner_iteration_ordering; | 
 |   } | 
 |  | 
 |   if (!inner_iteration_minimizer->Init(program, | 
 |                                        parameter_map, | 
 |                                        *ordering_ptr, | 
 |                                        &summary->error)) { | 
 |     return NULL; | 
 |   } | 
 |  | 
 |   summary->inner_iterations_used = true; | 
 |   summary->inner_iteration_time_in_seconds = 0.0; | 
 |   SummarizeOrdering(ordering_ptr, &(summary->inner_iteration_ordering_used)); | 
 |   return inner_iteration_minimizer.release(); | 
 | } | 
 |  | 
 | void SolverImpl::AlternateLinearSolverForSchurTypeLinearSolver( | 
 |     Solver::Options* options) { | 
 |   if (!IsSchurType(options->linear_solver_type)) { | 
 |     return; | 
 |   } | 
 |  | 
 |   string msg = "No e_blocks remaining. Switching from "; | 
 |   if (options->linear_solver_type == SPARSE_SCHUR) { | 
 |     options->linear_solver_type = SPARSE_NORMAL_CHOLESKY; | 
 |     msg += "SPARSE_SCHUR to SPARSE_NORMAL_CHOLESKY."; | 
 |   } else if (options->linear_solver_type == DENSE_SCHUR) { | 
 |     // TODO(sameeragarwal): This is probably not a great choice. | 
 |     // Ideally, we should have a DENSE_NORMAL_CHOLESKY, that can | 
 |     // take a BlockSparseMatrix as input. | 
 |     options->linear_solver_type = DENSE_QR; | 
 |     msg += "DENSE_SCHUR to DENSE_QR."; | 
 |   } else if (options->linear_solver_type == ITERATIVE_SCHUR) { | 
 |     options->linear_solver_type = CGNR; | 
 |     if (options->preconditioner_type != IDENTITY) { | 
 |       msg += StringPrintf("ITERATIVE_SCHUR with %s preconditioner " | 
 |                           "to CGNR with JACOBI preconditioner.", | 
 |                           PreconditionerTypeToString( | 
 |                             options->preconditioner_type)); | 
 |       // CGNR currently only supports the JACOBI preconditioner. | 
 |       options->preconditioner_type = JACOBI; | 
 |     } else { | 
 |       msg += "ITERATIVE_SCHUR with IDENTITY preconditioner" | 
 |           "to CGNR with IDENTITY preconditioner."; | 
 |     } | 
 |   } | 
 |   LOG(WARNING) << msg; | 
 | } | 
 |  | 
 | bool SolverImpl::ApplyUserOrdering( | 
 |     const ProblemImpl::ParameterMap& parameter_map, | 
 |     const ParameterBlockOrdering* parameter_block_ordering, | 
 |     Program* program, | 
 |     string* error) { | 
 |   const int num_parameter_blocks =  program->NumParameterBlocks(); | 
 |   if (parameter_block_ordering->NumElements() != num_parameter_blocks) { | 
 |     *error = StringPrintf("User specified ordering does not have the same " | 
 |                           "number of parameters as the problem. The problem" | 
 |                           "has %d blocks while the ordering has %d blocks.", | 
 |                           num_parameter_blocks, | 
 |                           parameter_block_ordering->NumElements()); | 
 |     return false; | 
 |   } | 
 |  | 
 |   vector<ParameterBlock*>* parameter_blocks = | 
 |       program->mutable_parameter_blocks(); | 
 |   parameter_blocks->clear(); | 
 |  | 
 |   const map<int, set<double*> >& groups = | 
 |       parameter_block_ordering->group_to_elements(); | 
 |  | 
 |   for (map<int, set<double*> >::const_iterator group_it = groups.begin(); | 
 |        group_it != groups.end(); | 
 |        ++group_it) { | 
 |     const set<double*>& group = group_it->second; | 
 |     for (set<double*>::const_iterator parameter_block_ptr_it = group.begin(); | 
 |          parameter_block_ptr_it != group.end(); | 
 |          ++parameter_block_ptr_it) { | 
 |       ProblemImpl::ParameterMap::const_iterator parameter_block_it = | 
 |           parameter_map.find(*parameter_block_ptr_it); | 
 |       if (parameter_block_it == parameter_map.end()) { | 
 |         *error = StringPrintf("User specified ordering contains a pointer " | 
 |                               "to a double that is not a parameter block in " | 
 |                               "the problem. The invalid double is in group: %d", | 
 |                               group_it->first); | 
 |         return false; | 
 |       } | 
 |       parameter_blocks->push_back(parameter_block_it->second); | 
 |     } | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 |  | 
 | TripletSparseMatrix* SolverImpl::CreateJacobianBlockSparsityTranspose( | 
 |     const Program* program) { | 
 |  | 
 |   // Matrix to store the block sparsity structure of the Jacobian. | 
 |   TripletSparseMatrix* tsm = | 
 |       new TripletSparseMatrix(program->NumParameterBlocks(), | 
 |                               program->NumResidualBlocks(), | 
 |                               10 * program->NumResidualBlocks()); | 
 |   int num_nonzeros = 0; | 
 |   int* rows = tsm->mutable_rows(); | 
 |   int* cols = tsm->mutable_cols(); | 
 |   double* values = tsm->mutable_values(); | 
 |  | 
 |   const vector<ResidualBlock*>& residual_blocks = program->residual_blocks(); | 
 |   for (int c = 0; c < residual_blocks.size(); ++c) { | 
 |     const ResidualBlock* residual_block = residual_blocks[c]; | 
 |     const int num_parameter_blocks = residual_block->NumParameterBlocks(); | 
 |     ParameterBlock* const* parameter_blocks = | 
 |         residual_block->parameter_blocks(); | 
 |  | 
 |     for (int j = 0; j < num_parameter_blocks; ++j) { | 
 |       if (parameter_blocks[j]->IsConstant()) { | 
 |         continue; | 
 |       } | 
 |  | 
 |       // Re-size the matrix if needed. | 
 |       if (num_nonzeros >= tsm->max_num_nonzeros()) { | 
 |         tsm->set_num_nonzeros(num_nonzeros); | 
 |         tsm->Reserve(2 * num_nonzeros); | 
 |         rows = tsm->mutable_rows(); | 
 |         cols = tsm->mutable_cols(); | 
 |         values = tsm->mutable_values(); | 
 |       } | 
 |       CHECK_LT(num_nonzeros,  tsm->max_num_nonzeros()); | 
 |  | 
 |       const int r = parameter_blocks[j]->index(); | 
 |       rows[num_nonzeros] = r; | 
 |       cols[num_nonzeros] = c; | 
 |       values[num_nonzeros] = 1.0; | 
 |       ++num_nonzeros; | 
 |     } | 
 |   } | 
 |  | 
 |   tsm->set_num_nonzeros(num_nonzeros); | 
 |   return tsm; | 
 | } | 
 |  | 
 | bool SolverImpl::ReorderProgramForSchurTypeLinearSolver( | 
 |     const LinearSolverType linear_solver_type, | 
 |     const SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type, | 
 |     const ProblemImpl::ParameterMap& parameter_map, | 
 |     ParameterBlockOrdering* parameter_block_ordering, | 
 |     Program* program, | 
 |     string* error) { | 
 |   if (parameter_block_ordering->NumGroups() == 1) { | 
 |     // If the user supplied an parameter_block_ordering with just one | 
 |     // group, it is equivalent to the user supplying NULL as an | 
 |     // parameter_block_ordering. Ceres is completely free to choose the | 
 |     // parameter block ordering as it sees fit. For Schur type solvers, | 
 |     // this means that the user wishes for Ceres to identify the | 
 |     // e_blocks, which we do by computing a maximal independent set. | 
 |     vector<ParameterBlock*> schur_ordering; | 
 |     const int num_eliminate_blocks = | 
 |         ComputeStableSchurOrdering(*program, &schur_ordering); | 
 |  | 
 |     CHECK_EQ(schur_ordering.size(), program->NumParameterBlocks()) | 
 |         << "Congratulations, you found a Ceres bug! Please report this error " | 
 |         << "to the developers."; | 
 |  | 
 |     // Update the parameter_block_ordering object. | 
 |     for (int i = 0; i < schur_ordering.size(); ++i) { | 
 |       double* parameter_block = schur_ordering[i]->mutable_user_state(); | 
 |       const int group_id = (i < num_eliminate_blocks) ? 0 : 1; | 
 |       parameter_block_ordering->AddElementToGroup(parameter_block, group_id); | 
 |     } | 
 |  | 
 |     // We could call ApplyUserOrdering but this is cheaper and | 
 |     // simpler. | 
 |     swap(*program->mutable_parameter_blocks(), schur_ordering); | 
 |   } else { | 
 |     // The user provided an ordering with more than one elimination | 
 |     // group. Trust the user and apply the ordering. | 
 |     if (!ApplyUserOrdering(parameter_map, | 
 |                            parameter_block_ordering, | 
 |                            program, | 
 |                            error)) { | 
 |       return false; | 
 |     } | 
 |   } | 
 |  | 
 |   // Pre-order the columns corresponding to the schur complement if | 
 |   // possible. | 
 | #if !defined(CERES_NO_SUITESPARSE) && !defined(CERES_NO_CAMD) | 
 |   if (linear_solver_type == SPARSE_SCHUR && | 
 |       sparse_linear_algebra_library_type == SUITE_SPARSE) { | 
 |     vector<int> constraints; | 
 |     vector<ParameterBlock*>& parameter_blocks = | 
 |         *(program->mutable_parameter_blocks()); | 
 |  | 
 |     for (int i = 0; i < parameter_blocks.size(); ++i) { | 
 |       constraints.push_back( | 
 |           parameter_block_ordering->GroupId( | 
 |               parameter_blocks[i]->mutable_user_state())); | 
 |     } | 
 |  | 
 |     // Renumber the entries of constraints to be contiguous integers | 
 |     // as camd requires that the group ids be in the range [0, | 
 |     // parameter_blocks.size() - 1]. | 
 |     SolverImpl::CompactifyArray(&constraints); | 
 |  | 
 |     // Set the offsets and index for CreateJacobianSparsityTranspose. | 
 |     program->SetParameterOffsetsAndIndex(); | 
 |     // Compute a block sparse presentation of J'. | 
 |     scoped_ptr<TripletSparseMatrix> tsm_block_jacobian_transpose( | 
 |         SolverImpl::CreateJacobianBlockSparsityTranspose(program)); | 
 |  | 
 |     SuiteSparse ss; | 
 |     cholmod_sparse* block_jacobian_transpose = | 
 |         ss.CreateSparseMatrix(tsm_block_jacobian_transpose.get()); | 
 |  | 
 |     vector<int> ordering(parameter_blocks.size(), 0); | 
 |     ss.ConstrainedApproximateMinimumDegreeOrdering(block_jacobian_transpose, | 
 |                                                    &constraints[0], | 
 |                                                    &ordering[0]); | 
 |     ss.Free(block_jacobian_transpose); | 
 |  | 
 |     const vector<ParameterBlock*> parameter_blocks_copy(parameter_blocks); | 
 |     for (int i = 0; i < program->NumParameterBlocks(); ++i) { | 
 |       parameter_blocks[i] = parameter_blocks_copy[ordering[i]]; | 
 |     } | 
 |   } | 
 | #endif | 
 |  | 
 |   program->SetParameterOffsetsAndIndex(); | 
 |   // Schur type solvers also require that their residual blocks be | 
 |   // lexicographically ordered. | 
 |   const int num_eliminate_blocks = | 
 |       parameter_block_ordering->group_to_elements().begin()->second.size(); | 
 |   return LexicographicallyOrderResidualBlocks(num_eliminate_blocks, | 
 |                                               program, | 
 |                                               error); | 
 | } | 
 |  | 
 | bool SolverImpl::ReorderProgramForSparseNormalCholesky( | 
 |     const SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type, | 
 |     const ParameterBlockOrdering* parameter_block_ordering, | 
 |     Program* program, | 
 |     string* error) { | 
 |   // Set the offsets and index for CreateJacobianSparsityTranspose. | 
 |   program->SetParameterOffsetsAndIndex(); | 
 |   // Compute a block sparse presentation of J'. | 
 |   scoped_ptr<TripletSparseMatrix> tsm_block_jacobian_transpose( | 
 |       SolverImpl::CreateJacobianBlockSparsityTranspose(program)); | 
 |  | 
 |   vector<int> ordering(program->NumParameterBlocks(), 0); | 
 |   vector<ParameterBlock*>& parameter_blocks = | 
 |       *(program->mutable_parameter_blocks()); | 
 |  | 
 |   if (sparse_linear_algebra_library_type == SUITE_SPARSE) { | 
 | #ifdef CERES_NO_SUITESPARSE | 
 |     *error = "Can't use SPARSE_NORMAL_CHOLESKY with SUITE_SPARSE because " | 
 |         "SuiteSparse was not enabled when Ceres was built."; | 
 |     return false; | 
 | #else | 
 |     SuiteSparse ss; | 
 |     cholmod_sparse* block_jacobian_transpose = | 
 |         ss.CreateSparseMatrix(tsm_block_jacobian_transpose.get()); | 
 |  | 
 | #  ifdef CERES_NO_CAMD | 
 |     // No cholmod_camd, so ignore user's parameter_block_ordering and | 
 |     // use plain old AMD. | 
 |     ss.ApproximateMinimumDegreeOrdering(block_jacobian_transpose, &ordering[0]); | 
 | #  else | 
 |     if (parameter_block_ordering->NumGroups() > 1) { | 
 |       // If the user specified more than one elimination groups use them | 
 |       // to constrain the ordering. | 
 |       vector<int> constraints; | 
 |       for (int i = 0; i < parameter_blocks.size(); ++i) { | 
 |         constraints.push_back( | 
 |             parameter_block_ordering->GroupId( | 
 |                 parameter_blocks[i]->mutable_user_state())); | 
 |       } | 
 |       ss.ConstrainedApproximateMinimumDegreeOrdering( | 
 |           block_jacobian_transpose, | 
 |           &constraints[0], | 
 |           &ordering[0]); | 
 |     } else { | 
 |       ss.ApproximateMinimumDegreeOrdering(block_jacobian_transpose, | 
 |                                           &ordering[0]); | 
 |     } | 
 | #  endif  // CERES_NO_CAMD | 
 |  | 
 |     ss.Free(block_jacobian_transpose); | 
 | #endif  // CERES_NO_SUITESPARSE | 
 |  | 
 |   } else if (sparse_linear_algebra_library_type == CX_SPARSE) { | 
 | #ifndef CERES_NO_CXSPARSE | 
 |  | 
 |     // CXSparse works with J'J instead of J'. So compute the block | 
 |     // sparsity for J'J and compute an approximate minimum degree | 
 |     // ordering. | 
 |     CXSparse cxsparse; | 
 |     cs_di* block_jacobian_transpose; | 
 |     block_jacobian_transpose = | 
 |         cxsparse.CreateSparseMatrix(tsm_block_jacobian_transpose.get()); | 
 |     cs_di* block_jacobian = cxsparse.TransposeMatrix(block_jacobian_transpose); | 
 |     cs_di* block_hessian = | 
 |         cxsparse.MatrixMatrixMultiply(block_jacobian_transpose, block_jacobian); | 
 |     cxsparse.Free(block_jacobian); | 
 |     cxsparse.Free(block_jacobian_transpose); | 
 |  | 
 |     cxsparse.ApproximateMinimumDegreeOrdering(block_hessian, &ordering[0]); | 
 |     cxsparse.Free(block_hessian); | 
 | #else  // CERES_NO_CXSPARSE | 
 |     *error = "Can't use SPARSE_NORMAL_CHOLESKY with CX_SPARSE because " | 
 |         "CXSparse was not enabled when Ceres was built."; | 
 |     return false; | 
 | #endif  // CERES_NO_CXSPARSE | 
 |   } else { | 
 |     *error = "Unknown sparse linear algebra library."; | 
 |     return false; | 
 |   } | 
 |  | 
 |   // Apply ordering. | 
 |   const vector<ParameterBlock*> parameter_blocks_copy(parameter_blocks); | 
 |   for (int i = 0; i < program->NumParameterBlocks(); ++i) { | 
 |     parameter_blocks[i] = parameter_blocks_copy[ordering[i]]; | 
 |   } | 
 |  | 
 |   program->SetParameterOffsetsAndIndex(); | 
 |   return true; | 
 | } | 
 |  | 
 | void SolverImpl::CompactifyArray(vector<int>* array_ptr) { | 
 |   vector<int>& array = *array_ptr; | 
 |   const set<int> unique_group_ids(array.begin(), array.end()); | 
 |   map<int, int> group_id_map; | 
 |   for (set<int>::const_iterator it = unique_group_ids.begin(); | 
 |        it != unique_group_ids.end(); | 
 |        ++it) { | 
 |     InsertOrDie(&group_id_map, *it, group_id_map.size()); | 
 |   } | 
 |  | 
 |   for (int i = 0; i < array.size(); ++i) { | 
 |     array[i] = group_id_map[array[i]]; | 
 |   } | 
 | } | 
 |  | 
 | }  // namespace internal | 
 | }  // namespace ceres |