|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. | 
|  | // http://code.google.com/p/ceres-solver/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  |  | 
|  | #include <cmath> | 
|  | #include "ceres/fpclassify.h" | 
|  | #include "ceres/internal/autodiff.h" | 
|  | #include "ceres/internal/eigen.h" | 
|  | #include "ceres/local_parameterization.h" | 
|  | #include "ceres/rotation.h" | 
|  | #include "gtest/gtest.h" | 
|  |  | 
|  | namespace ceres { | 
|  | namespace internal { | 
|  |  | 
|  | TEST(IdentityParameterization, EverythingTest) { | 
|  | IdentityParameterization parameterization(3); | 
|  | EXPECT_EQ(parameterization.GlobalSize(), 3); | 
|  | EXPECT_EQ(parameterization.LocalSize(), 3); | 
|  |  | 
|  | double x[3] = {1.0, 2.0, 3.0}; | 
|  | double delta[3] = {0.0, 1.0, 2.0}; | 
|  | double x_plus_delta[3] = {0.0, 0.0, 0.0}; | 
|  | parameterization.Plus(x, delta, x_plus_delta); | 
|  | EXPECT_EQ(x_plus_delta[0], 1.0); | 
|  | EXPECT_EQ(x_plus_delta[1], 3.0); | 
|  | EXPECT_EQ(x_plus_delta[2], 5.0); | 
|  |  | 
|  | double jacobian[9]; | 
|  | parameterization.ComputeJacobian(x, jacobian); | 
|  | int k = 0; | 
|  | for (int i = 0; i < 3; ++i) { | 
|  | for (int j = 0; j < 3; ++j, ++k) { | 
|  | EXPECT_EQ(jacobian[k], (i == j) ? 1.0 : 0.0); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(SubsetParameterization, DeathTests) { | 
|  | vector<int> constant_parameters; | 
|  | EXPECT_DEATH_IF_SUPPORTED( | 
|  | SubsetParameterization parameterization(1, constant_parameters), | 
|  | "at least"); | 
|  |  | 
|  | constant_parameters.push_back(0); | 
|  | EXPECT_DEATH_IF_SUPPORTED( | 
|  | SubsetParameterization parameterization(1, constant_parameters), | 
|  | "Number of parameters"); | 
|  |  | 
|  | constant_parameters.push_back(1); | 
|  | EXPECT_DEATH_IF_SUPPORTED( | 
|  | SubsetParameterization parameterization(2, constant_parameters), | 
|  | "Number of parameters"); | 
|  |  | 
|  | constant_parameters.push_back(1); | 
|  | EXPECT_DEATH_IF_SUPPORTED( | 
|  | SubsetParameterization parameterization(2, constant_parameters), | 
|  | "duplicates"); | 
|  | } | 
|  |  | 
|  | TEST(SubsetParameterization, NormalFunctionTest) { | 
|  | double x[4] = {1.0, 2.0, 3.0, 4.0}; | 
|  | for (int i = 0; i < 4; ++i) { | 
|  | vector<int> constant_parameters; | 
|  | constant_parameters.push_back(i); | 
|  | SubsetParameterization parameterization(4, constant_parameters); | 
|  | double delta[3] = {1.0, 2.0, 3.0}; | 
|  | double x_plus_delta[4] = {0.0, 0.0, 0.0}; | 
|  |  | 
|  | parameterization.Plus(x, delta, x_plus_delta); | 
|  | int k = 0; | 
|  | for (int j = 0; j < 4; ++j) { | 
|  | if (j == i)  { | 
|  | EXPECT_EQ(x_plus_delta[j], x[j]); | 
|  | } else { | 
|  | EXPECT_EQ(x_plus_delta[j], x[j] + delta[k++]); | 
|  | } | 
|  | } | 
|  |  | 
|  | double jacobian[4 * 3]; | 
|  | parameterization.ComputeJacobian(x, jacobian); | 
|  | int delta_cursor = 0; | 
|  | int jacobian_cursor = 0; | 
|  | for (int j = 0; j < 4; ++j) { | 
|  | if (j != i) { | 
|  | for (int k = 0; k < 3; ++k, jacobian_cursor++) { | 
|  | EXPECT_EQ(jacobian[jacobian_cursor], delta_cursor == k ? 1.0 : 0.0); | 
|  | } | 
|  | ++delta_cursor; | 
|  | } else { | 
|  | for (int k = 0; k < 3; ++k, jacobian_cursor++) { | 
|  | EXPECT_EQ(jacobian[jacobian_cursor], 0.0); | 
|  | } | 
|  | } | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | // Functor needed to implement automatically differentiated Plus for | 
|  | // quaternions. | 
|  | struct QuaternionPlus { | 
|  | template<typename T> | 
|  | bool operator()(const T* x, const T* delta, T* x_plus_delta) const { | 
|  | const T squared_norm_delta = | 
|  | delta[0] * delta[0] + delta[1] * delta[1] + delta[2] * delta[2]; | 
|  |  | 
|  | T q_delta[4]; | 
|  | if (squared_norm_delta > T(0.0)) { | 
|  | T norm_delta = sqrt(squared_norm_delta); | 
|  | const T sin_delta_by_delta = sin(norm_delta) / norm_delta; | 
|  | q_delta[0] = cos(norm_delta); | 
|  | q_delta[1] = sin_delta_by_delta * delta[0]; | 
|  | q_delta[2] = sin_delta_by_delta * delta[1]; | 
|  | q_delta[3] = sin_delta_by_delta * delta[2]; | 
|  | } else { | 
|  | // We do not just use q_delta = [1,0,0,0] here because that is a | 
|  | // constant and when used for automatic differentiation will | 
|  | // lead to a zero derivative. Instead we take a first order | 
|  | // approximation and evaluate it at zero. | 
|  | q_delta[0] = T(1.0); | 
|  | q_delta[1] = delta[0]; | 
|  | q_delta[2] = delta[1]; | 
|  | q_delta[3] = delta[2]; | 
|  | } | 
|  |  | 
|  | QuaternionProduct(q_delta, x, x_plus_delta); | 
|  | return true; | 
|  | } | 
|  | }; | 
|  |  | 
|  | void QuaternionParameterizationTestHelper(const double* x, | 
|  | const double* delta, | 
|  | const double* q_delta) { | 
|  | const double kTolerance = 1e-14; | 
|  | double x_plus_delta_ref[4] = {0.0, 0.0, 0.0, 0.0}; | 
|  | QuaternionProduct(q_delta, x, x_plus_delta_ref); | 
|  |  | 
|  | double x_plus_delta[4] = {0.0, 0.0, 0.0, 0.0}; | 
|  | QuaternionParameterization param; | 
|  | param.Plus(x, delta, x_plus_delta); | 
|  | for (int i = 0; i < 4; ++i) { | 
|  | EXPECT_NEAR(x_plus_delta[i], x_plus_delta_ref[i], kTolerance); | 
|  | } | 
|  |  | 
|  | const double x_plus_delta_norm = | 
|  | sqrt(x_plus_delta[0] * x_plus_delta[0] + | 
|  | x_plus_delta[1] * x_plus_delta[1] + | 
|  | x_plus_delta[2] * x_plus_delta[2] + | 
|  | x_plus_delta[3] * x_plus_delta[3]); | 
|  |  | 
|  | EXPECT_NEAR(x_plus_delta_norm, 1.0, kTolerance); | 
|  |  | 
|  | double jacobian_ref[12]; | 
|  | double zero_delta[3] = {0.0, 0.0, 0.0}; | 
|  | const double* parameters[2] = {x, zero_delta}; | 
|  | double* jacobian_array[2] = { NULL, jacobian_ref }; | 
|  |  | 
|  | // Autodiff jacobian at delta_x = 0. | 
|  | internal::AutoDiff<QuaternionPlus, double, 4, 3>::Differentiate( | 
|  | QuaternionPlus(), parameters, 4, x_plus_delta, jacobian_array); | 
|  |  | 
|  | double jacobian[12]; | 
|  | param.ComputeJacobian(x, jacobian); | 
|  | for (int i = 0; i < 12; ++i) { | 
|  | EXPECT_TRUE(IsFinite(jacobian[i])); | 
|  | EXPECT_NEAR(jacobian[i], jacobian_ref[i], kTolerance) | 
|  | << "Jacobian mismatch: i = " << i | 
|  | << "\n Expected \n" << ConstMatrixRef(jacobian_ref, 4, 3) | 
|  | << "\n Actual \n" << ConstMatrixRef(jacobian, 4, 3); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(QuaternionParameterization, ZeroTest) { | 
|  | double x[4] = {0.5, 0.5, 0.5, 0.5}; | 
|  | double delta[3] = {0.0, 0.0, 0.0}; | 
|  | double q_delta[4] = {1.0, 0.0, 0.0, 0.0}; | 
|  | QuaternionParameterizationTestHelper(x, delta, q_delta); | 
|  | } | 
|  |  | 
|  |  | 
|  | TEST(QuaternionParameterization, NearZeroTest) { | 
|  | double x[4] = {0.52, 0.25, 0.15, 0.45}; | 
|  | double norm_x = sqrt(x[0] * x[0] + | 
|  | x[1] * x[1] + | 
|  | x[2] * x[2] + | 
|  | x[3] * x[3]); | 
|  | for (int i = 0; i < 4; ++i) { | 
|  | x[i] = x[i] / norm_x; | 
|  | } | 
|  |  | 
|  | double delta[3] = {0.24, 0.15, 0.10}; | 
|  | for (int i = 0; i < 3; ++i) { | 
|  | delta[i] = delta[i] * 1e-14; | 
|  | } | 
|  |  | 
|  | double q_delta[4]; | 
|  | q_delta[0] = 1.0; | 
|  | q_delta[1] = delta[0]; | 
|  | q_delta[2] = delta[1]; | 
|  | q_delta[3] = delta[2]; | 
|  |  | 
|  | QuaternionParameterizationTestHelper(x, delta, q_delta); | 
|  | } | 
|  |  | 
|  | TEST(QuaternionParameterization, AwayFromZeroTest) { | 
|  | double x[4] = {0.52, 0.25, 0.15, 0.45}; | 
|  | double norm_x = sqrt(x[0] * x[0] + | 
|  | x[1] * x[1] + | 
|  | x[2] * x[2] + | 
|  | x[3] * x[3]); | 
|  |  | 
|  | for (int i = 0; i < 4; ++i) { | 
|  | x[i] = x[i] / norm_x; | 
|  | } | 
|  |  | 
|  | double delta[3] = {0.24, 0.15, 0.10}; | 
|  | const double delta_norm = sqrt(delta[0] * delta[0] + | 
|  | delta[1] * delta[1] + | 
|  | delta[2] * delta[2]); | 
|  | double q_delta[4]; | 
|  | q_delta[0] = cos(delta_norm); | 
|  | q_delta[1] = sin(delta_norm) / delta_norm * delta[0]; | 
|  | q_delta[2] = sin(delta_norm) / delta_norm * delta[1]; | 
|  | q_delta[3] = sin(delta_norm) / delta_norm * delta[2]; | 
|  |  | 
|  | QuaternionParameterizationTestHelper(x, delta, q_delta); | 
|  | } | 
|  |  | 
|  |  | 
|  | }  // namespace internal | 
|  | }  // namespace ceres |