|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. | 
|  | // http://code.google.com/p/ceres-solver/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  | // | 
|  | // Purpose: See .h file. | 
|  |  | 
|  | #include "ceres/loss_function.h" | 
|  |  | 
|  | #include <cmath> | 
|  | #include <cstddef> | 
|  |  | 
|  | namespace ceres { | 
|  |  | 
|  | void TrivialLoss::Evaluate(double s, double rho[3]) const { | 
|  | rho[0] = s; | 
|  | rho[1] = 1; | 
|  | rho[2] = 0; | 
|  | } | 
|  |  | 
|  | void HuberLoss::Evaluate(double s, double rho[3]) const { | 
|  | if (s > b_) { | 
|  | // Outlier region. | 
|  | // 'r' is always positive. | 
|  | const double r = sqrt(s); | 
|  | rho[0] = 2 * a_ * r - b_; | 
|  | rho[1] = a_ / r; | 
|  | rho[2] = - rho[1] / (2 * s); | 
|  | } else { | 
|  | // Inlier region. | 
|  | rho[0] = s; | 
|  | rho[1] = 1; | 
|  | rho[2] = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | void SoftLOneLoss::Evaluate(double s, double rho[3]) const { | 
|  | const double sum = 1 + s * c_; | 
|  | const double tmp = sqrt(sum); | 
|  | // 'sum' and 'tmp' are always positive, assuming that 's' is. | 
|  | rho[0] = 2 * b_ * (tmp - 1); | 
|  | rho[1] = 1 / tmp; | 
|  | rho[2] = - (c_ * rho[1]) / (2 * sum); | 
|  | } | 
|  |  | 
|  | void CauchyLoss::Evaluate(double s, double rho[3]) const { | 
|  | const double sum = 1 + s * c_; | 
|  | const double inv = 1 / sum; | 
|  | // 'sum' and 'inv' are always positive, assuming that 's' is. | 
|  | rho[0] = b_ * log(sum); | 
|  | rho[1] = inv; | 
|  | rho[2] = - c_ * (inv * inv); | 
|  | } | 
|  |  | 
|  | void ArctanLoss::Evaluate(double s, double rho[3]) const { | 
|  | const double sum = 1 + s * s * b_; | 
|  | const double inv = 1 / sum; | 
|  | // 'sum' and 'inv' are always positive. | 
|  | rho[0] = a_ * atan2(s, a_); | 
|  | rho[1] = inv; | 
|  | rho[2] = -2 * s * b_ * (inv * inv); | 
|  | } | 
|  |  | 
|  | TolerantLoss::TolerantLoss(double a, double b) | 
|  | : a_(a), | 
|  | b_(b), | 
|  | c_(b * log(1.0 + exp(-a / b))) { | 
|  | CHECK_GE(a, 0.0); | 
|  | CHECK_GT(b, 0.0); | 
|  | } | 
|  |  | 
|  | void TolerantLoss::Evaluate(double s, double rho[3]) const { | 
|  | const double x = (s - a_) / b_; | 
|  | // The basic equation is rho[0] = b ln(1 + e^x).  However, if e^x is too | 
|  | // large, it will overflow.  Since numerically 1 + e^x == e^x when the | 
|  | // x is greater than about ln(2^53) for doubles, beyond this threshold | 
|  | // we substitute x for ln(1 + e^x) as a numerically equivalent approximation. | 
|  | static const double kLog2Pow53 = 36.7;  // ln(MathLimits<double>::kEpsilon). | 
|  | if (x > kLog2Pow53) { | 
|  | rho[0] = s - a_ - c_; | 
|  | rho[1] = 1.0; | 
|  | rho[2] = 0.0; | 
|  | } else { | 
|  | const double e_x = exp(x); | 
|  | rho[0] = b_ * log(1.0 + e_x) - c_; | 
|  | rho[1] = e_x / (1.0 + e_x); | 
|  | rho[2] = 0.5 / (b_ * (1.0 + cosh(x))); | 
|  | } | 
|  | } | 
|  |  | 
|  | ComposedLoss::ComposedLoss(const LossFunction* f, Ownership ownership_f, | 
|  | const LossFunction* g, Ownership ownership_g) | 
|  | : f_(CHECK_NOTNULL(f)), | 
|  | g_(CHECK_NOTNULL(g)), | 
|  | ownership_f_(ownership_f), | 
|  | ownership_g_(ownership_g) { | 
|  | } | 
|  |  | 
|  | ComposedLoss::~ComposedLoss() { | 
|  | if (ownership_f_ == DO_NOT_TAKE_OWNERSHIP) { | 
|  | f_.release(); | 
|  | } | 
|  | if (ownership_g_ == DO_NOT_TAKE_OWNERSHIP) { | 
|  | g_.release(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void ComposedLoss::Evaluate(double s, double rho[3]) const { | 
|  | double rho_f[3], rho_g[3]; | 
|  | g_->Evaluate(s, rho_g); | 
|  | f_->Evaluate(rho_g[0], rho_f); | 
|  | rho[0] = rho_f[0]; | 
|  | // f'(g(s)) * g'(s). | 
|  | rho[1] = rho_f[1] * rho_g[1]; | 
|  | // f''(g(s)) * g'(s) * g'(s) + f'(g(s)) * g''(s). | 
|  | rho[2] = rho_f[2] * rho_g[1] * rho_g[1] + rho_f[1] * rho_g[2]; | 
|  | } | 
|  |  | 
|  | void ScaledLoss::Evaluate(double s, double rho[3]) const { | 
|  | if (rho_.get() == NULL) { | 
|  | rho[0] = a_ * s; | 
|  | rho[1] = a_; | 
|  | rho[2] = 0.0; | 
|  | } else { | 
|  | rho_->Evaluate(s, rho); | 
|  | rho[0] *= a_; | 
|  | rho[1] *= a_; | 
|  | rho[2] *= a_; | 
|  | } | 
|  | } | 
|  |  | 
|  | }  // namespace ceres |