|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2019 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  |  | 
|  | #ifndef CERES_PUBLIC_GRADIENT_PROBLEM_H_ | 
|  | #define CERES_PUBLIC_GRADIENT_PROBLEM_H_ | 
|  |  | 
|  | #include <memory> | 
|  |  | 
|  | #include "ceres/first_order_function.h" | 
|  | #include "ceres/internal/disable_warnings.h" | 
|  | #include "ceres/internal/export.h" | 
|  | #include "ceres/manifold.h" | 
|  |  | 
|  | namespace ceres { | 
|  |  | 
|  | class FirstOrderFunction; | 
|  |  | 
|  | // Instances of GradientProblem represent general non-linear | 
|  | // optimization problems that must be solved using just the value of | 
|  | // the objective function and its gradient. | 
|  |  | 
|  | // Unlike the Problem class, which can only be used to model non-linear least | 
|  | // squares problems, instances of GradientProblem are not restricted in the form | 
|  | // of the objective function. | 
|  | // | 
|  | // Structurally GradientProblem is a composition of a FirstOrderFunction and | 
|  | // optionally a Manifold. | 
|  | // | 
|  | // The FirstOrderFunction is responsible for evaluating the cost and gradient of | 
|  | // the objective function. | 
|  | // | 
|  | // The Manifold is responsible for going back and forth between the ambient | 
|  | // space and the local tangent space. (See manifold.h for more details). When a | 
|  | // Manifold is not provided, then the tangent space is assumed to coincide with | 
|  | // the ambient Euclidean space that the gradient vector lives in. | 
|  | // | 
|  | // Example usage: | 
|  | // | 
|  | // The following demonstrate the problem construction for Rosenbrock's function | 
|  | // | 
|  | //   f(x,y) = (1-x)^2 + 100(y - x^2)^2; | 
|  | // | 
|  | // class Rosenbrock : public ceres::FirstOrderFunction { | 
|  | //  public: | 
|  | //   virtual ~Rosenbrock() {} | 
|  | // | 
|  | //   virtual bool Evaluate(const double* parameters, | 
|  | //                         double* cost, | 
|  | //                         double* gradient) const { | 
|  | //     const double x = parameters[0]; | 
|  | //     const double y = parameters[1]; | 
|  | // | 
|  | //     cost[0] = (1.0 - x) * (1.0 - x) + 100.0 * (y - x * x) * (y - x * x); | 
|  | //     if (gradient != nullptr) { | 
|  | //       gradient[0] = -2.0 * (1.0 - x) - 200.0 * (y - x * x) * 2.0 * x; | 
|  | //       gradient[1] = 200.0 * (y - x * x); | 
|  | //     } | 
|  | //     return true; | 
|  | //   }; | 
|  | // | 
|  | //   virtual int NumParameters() const { return 2; }; | 
|  | // }; | 
|  | // | 
|  | // ceres::GradientProblem problem(new Rosenbrock()); | 
|  | class CERES_EXPORT GradientProblem { | 
|  | public: | 
|  | // Takes ownership of the function. | 
|  | explicit GradientProblem(FirstOrderFunction* function); | 
|  |  | 
|  | // Takes ownership of the function and the manifold. | 
|  | GradientProblem(FirstOrderFunction* function, Manifold* manifold); | 
|  |  | 
|  | int NumParameters() const; | 
|  |  | 
|  | // Dimension of the manifold (and its tangent space). | 
|  | int NumTangentParameters() const; | 
|  |  | 
|  | // This call is not thread safe. | 
|  | bool Evaluate(const double* parameters, double* cost, double* gradient) const; | 
|  | bool Plus(const double* x, const double* delta, double* x_plus_delta) const; | 
|  |  | 
|  | const FirstOrderFunction* function() const { return function_.get(); } | 
|  | FirstOrderFunction* mutable_function() { return function_.get(); } | 
|  |  | 
|  | const Manifold* manifold() const { return manifold_.get(); } | 
|  | Manifold* mutable_manifold() { return manifold_.get(); } | 
|  |  | 
|  | private: | 
|  | std::unique_ptr<FirstOrderFunction> function_; | 
|  | std::unique_ptr<Manifold> manifold_; | 
|  | std::unique_ptr<double[]> scratch_; | 
|  | }; | 
|  |  | 
|  | }  // namespace ceres | 
|  |  | 
|  | #include "ceres/internal/reenable_warnings.h" | 
|  |  | 
|  | #endif  // CERES_PUBLIC_GRADIENT_PROBLEM_H_ |