| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2022 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Authors: joydeepb@cs.utexas.edu (Joydeep Biswas) | 
 |  | 
 | #include "ceres/fake_bundle_adjustment_jacobian.h" | 
 |  | 
 | #include <memory> | 
 | #include <random> | 
 | #include <string> | 
 | #include <utility> | 
 |  | 
 | #include "Eigen/Dense" | 
 | #include "ceres/block_sparse_matrix.h" | 
 | #include "ceres/internal/eigen.h" | 
 |  | 
 | namespace ceres::internal { | 
 |  | 
 | std::unique_ptr<BlockSparseMatrix> CreateFakeBundleAdjustmentJacobian( | 
 |     int num_cameras, | 
 |     int num_points, | 
 |     int camera_size, | 
 |     int point_size, | 
 |     double visibility, | 
 |     std::mt19937& prng) { | 
 |   constexpr int kResidualSize = 2; | 
 |  | 
 |   CompressedRowBlockStructure* bs = new CompressedRowBlockStructure; | 
 |   int c = 0; | 
 |   // Add column blocks for each point | 
 |   for (int i = 0; i < num_points; ++i) { | 
 |     bs->cols.push_back(Block(point_size, c)); | 
 |     c += point_size; | 
 |   } | 
 |  | 
 |   // Add column blocks for each camera. | 
 |   for (int i = 0; i < num_cameras; ++i) { | 
 |     bs->cols.push_back(Block(camera_size, c)); | 
 |     c += camera_size; | 
 |   } | 
 |  | 
 |   std::bernoulli_distribution visibility_distribution(visibility); | 
 |   int row_pos = 0; | 
 |   int cell_pos = 0; | 
 |   for (int i = 0; i < num_points; ++i) { | 
 |     for (int j = 0; j < num_cameras; ++j) { | 
 |       if (!visibility_distribution(prng)) { | 
 |         continue; | 
 |       } | 
 |       bs->rows.emplace_back(); | 
 |       auto& row = bs->rows.back(); | 
 |       row.block.position = row_pos; | 
 |       row.block.size = kResidualSize; | 
 |       auto& cells = row.cells; | 
 |       cells.resize(2); | 
 |  | 
 |       cells[0].block_id = i; | 
 |       cells[0].position = cell_pos; | 
 |       cell_pos += kResidualSize * point_size; | 
 |  | 
 |       cells[1].block_id = num_points + j; | 
 |       cells[1].position = cell_pos; | 
 |       cell_pos += kResidualSize * camera_size; | 
 |  | 
 |       row_pos += kResidualSize; | 
 |     } | 
 |   } | 
 |  | 
 |   auto jacobian = std::make_unique<BlockSparseMatrix>(bs); | 
 |   VectorRef(jacobian->mutable_values(), jacobian->num_nonzeros()).setRandom(); | 
 |   return jacobian; | 
 | } | 
 |  | 
 | std::pair< | 
 |     std::unique_ptr<PartitionedMatrixView<2, Eigen::Dynamic, Eigen::Dynamic>>, | 
 |     std::unique_ptr<BlockSparseMatrix>> | 
 | CreateFakeBundleAdjustmentPartitionedJacobian(int num_cameras, | 
 |                                               int num_points, | 
 |                                               int camera_size, | 
 |                                               int landmark_size, | 
 |                                               double visibility, | 
 |                                               std::mt19937& rng) { | 
 |   using PartitionedView = | 
 |       PartitionedMatrixView<2, Eigen::Dynamic, Eigen::Dynamic>; | 
 |   auto block_sparse_matrix = CreateFakeBundleAdjustmentJacobian( | 
 |       num_cameras, num_points, camera_size, landmark_size, visibility, rng); | 
 |   LinearSolver::Options options; | 
 |   options.elimination_groups.push_back(num_points); | 
 |   auto partitioned_view = | 
 |       std::make_unique<PartitionedView>(options, *block_sparse_matrix); | 
 |   return std::make_pair(std::move(partitioned_view), | 
 |                         std::move(block_sparse_matrix)); | 
 | } | 
 |  | 
 | }  // namespace ceres::internal |