| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2022 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: markshachkov@gmail.com (Mark Shachkov) | 
 |  | 
 | #include "ceres/power_series_expansion_preconditioner.h" | 
 |  | 
 | namespace ceres::internal { | 
 |  | 
 | PowerSeriesExpansionPreconditioner::PowerSeriesExpansionPreconditioner( | 
 |     const ImplicitSchurComplement* isc, | 
 |     const int max_num_spse_iterations, | 
 |     const double spse_tolerance) | 
 |     : isc_(isc), | 
 |       max_num_spse_iterations_(max_num_spse_iterations), | 
 |       spse_tolerance_(spse_tolerance) {} | 
 |  | 
 | PowerSeriesExpansionPreconditioner::~PowerSeriesExpansionPreconditioner() = | 
 |     default; | 
 |  | 
 | bool PowerSeriesExpansionPreconditioner::Update(const LinearOperator& /*A*/, | 
 |                                                 const double* /*D*/) { | 
 |   return true; | 
 | } | 
 |  | 
 | void PowerSeriesExpansionPreconditioner::RightMultiplyAndAccumulate( | 
 |     const double* x, double* y) const { | 
 |   VectorRef yref(y, num_rows()); | 
 |   Vector series_term(num_rows()); | 
 |   Vector previous_series_term(num_rows()); | 
 |   yref.setZero(); | 
 |   isc_->block_diagonal_FtF_inverse()->RightMultiplyAndAccumulate(x, y); | 
 |   previous_series_term = yref; | 
 |  | 
 |   const double norm_threshold = spse_tolerance_ * yref.norm(); | 
 |  | 
 |   for (int i = 1;; i++) { | 
 |     series_term.setZero(); | 
 |     isc_->InversePowerSeriesOperatorRightMultiplyAccumulate( | 
 |         previous_series_term.data(), series_term.data()); | 
 |     yref += series_term; | 
 |     if (i >= max_num_spse_iterations_ || series_term.norm() < norm_threshold) { | 
 |       break; | 
 |     } | 
 |     std::swap(previous_series_term, series_term); | 
 |   } | 
 | } | 
 |  | 
 | int PowerSeriesExpansionPreconditioner::num_rows() const { | 
 |   return isc_->num_rows(); | 
 | } | 
 |  | 
 | }  // namespace ceres::internal |