blob: 6154ddf65bf145a24f087645fde55a834521063e [file] [log] [blame]
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
// http://code.google.com/p/ceres-solver/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: sameeragarwal@google.com (Sameer Agarwal)
// keir@google.com (Keir Mierle)
#include "ceres/problem_impl.h"
#include <algorithm>
#include <cstddef>
#include <set>
#include <string>
#include <utility>
#include <vector>
#include "ceres/cost_function.h"
#include "ceres/loss_function.h"
#include "ceres/map_util.h"
#include "ceres/parameter_block.h"
#include "ceres/program.h"
#include "ceres/residual_block.h"
#include "ceres/stl_util.h"
#include "ceres/stringprintf.h"
#include "glog/logging.h"
namespace ceres {
namespace internal {
typedef map<double*, internal::ParameterBlock*> ParameterMap;
// Returns true if two regions of memory, a and b, with sizes size_a and size_b
// respectively, overlap.
static bool RegionsAlias(const double* a, int size_a,
const double* b, int size_b) {
return (a < b) ? b < (a + size_a)
: a < (b + size_b);
}
static void CheckForNoAliasing(double* existing_block,
int existing_block_size,
double* new_block,
int new_block_size) {
CHECK(!RegionsAlias(existing_block, existing_block_size,
new_block, new_block_size))
<< "Aliasing detected between existing parameter block at memory "
<< "location " << existing_block
<< " and has size " << existing_block_size << " with new parameter "
<< "block that has memory adderss " << new_block << " and would have "
<< "size " << new_block_size << ".";
}
ParameterBlock* ProblemImpl::InternalAddParameterBlock(double* values,
int size) {
CHECK(values != NULL) << "Null pointer passed to AddParameterBlock "
<< "for a parameter with size " << size;
// Ignore the request if there is a block for the given pointer already.
ParameterMap::iterator it = parameter_block_map_.find(values);
if (it != parameter_block_map_.end()) {
if (!options_.disable_all_safety_checks) {
int existing_size = it->second->Size();
CHECK(size == existing_size)
<< "Tried adding a parameter block with the same double pointer, "
<< values << ", twice, but with different block sizes. Original "
<< "size was " << existing_size << " but new size is "
<< size;
}
return it->second;
}
if (!options_.disable_all_safety_checks) {
// Before adding the parameter block, also check that it doesn't alias any
// other parameter blocks.
if (!parameter_block_map_.empty()) {
ParameterMap::iterator lb = parameter_block_map_.lower_bound(values);
// If lb is not the first block, check the previous block for aliasing.
if (lb != parameter_block_map_.begin()) {
ParameterMap::iterator previous = lb;
--previous;
CheckForNoAliasing(previous->first,
previous->second->Size(),
values,
size);
}
// If lb is not off the end, check lb for aliasing.
if (lb != parameter_block_map_.end()) {
CheckForNoAliasing(lb->first,
lb->second->Size(),
values,
size);
}
}
}
// Pass the index of the new parameter block as well to keep the index in
// sync with the position of the parameter in the program's parameter vector.
ParameterBlock* new_parameter_block =
new ParameterBlock(values, size, program_->parameter_blocks_.size());
// For dynamic problems, add the list of dependent residual blocks, which is
// empty to start.
if (options_.enable_fast_parameter_block_removal) {
new_parameter_block->EnableResidualBlockDependencies();
}
parameter_block_map_[values] = new_parameter_block;
program_->parameter_blocks_.push_back(new_parameter_block);
return new_parameter_block;
}
// Deletes the residual block in question, assuming there are no other
// references to it inside the problem (e.g. by another parameter). Referenced
// cost and loss functions are tucked away for future deletion, since it is not
// possible to know whether other parts of the problem depend on them without
// doing a full scan.
void ProblemImpl::DeleteBlock(ResidualBlock* residual_block) {
// The const casts here are legit, since ResidualBlock holds these
// pointers as const pointers but we have ownership of them and
// have the right to destroy them when the destructor is called.
if (options_.cost_function_ownership == TAKE_OWNERSHIP &&
residual_block->cost_function() != NULL) {
cost_functions_to_delete_.push_back(
const_cast<CostFunction*>(residual_block->cost_function()));
}
if (options_.loss_function_ownership == TAKE_OWNERSHIP &&
residual_block->loss_function() != NULL) {
loss_functions_to_delete_.push_back(
const_cast<LossFunction*>(residual_block->loss_function()));
}
delete residual_block;
}
// Deletes the parameter block in question, assuming there are no other
// references to it inside the problem (e.g. by any residual blocks).
// Referenced parameterizations are tucked away for future deletion, since it
// is not possible to know whether other parts of the problem depend on them
// without doing a full scan.
void ProblemImpl::DeleteBlock(ParameterBlock* parameter_block) {
if (options_.local_parameterization_ownership == TAKE_OWNERSHIP &&
parameter_block->local_parameterization() != NULL) {
local_parameterizations_to_delete_.push_back(
parameter_block->mutable_local_parameterization());
}
parameter_block_map_.erase(parameter_block->mutable_user_state());
delete parameter_block;
}
ProblemImpl::ProblemImpl() : program_(new internal::Program) {}
ProblemImpl::ProblemImpl(const Problem::Options& options)
: options_(options),
program_(new internal::Program) {}
ProblemImpl::~ProblemImpl() {
// Collect the unique cost/loss functions and delete the residuals.
const int num_residual_blocks = program_->residual_blocks_.size();
cost_functions_to_delete_.reserve(num_residual_blocks);
loss_functions_to_delete_.reserve(num_residual_blocks);
for (int i = 0; i < program_->residual_blocks_.size(); ++i) {
DeleteBlock(program_->residual_blocks_[i]);
}
// Collect the unique parameterizations and delete the parameters.
for (int i = 0; i < program_->parameter_blocks_.size(); ++i) {
DeleteBlock(program_->parameter_blocks_[i]);
}
// Delete the owned cost/loss functions and parameterizations.
STLDeleteUniqueContainerPointers(local_parameterizations_to_delete_.begin(),
local_parameterizations_to_delete_.end());
STLDeleteUniqueContainerPointers(cost_functions_to_delete_.begin(),
cost_functions_to_delete_.end());
STLDeleteUniqueContainerPointers(loss_functions_to_delete_.begin(),
loss_functions_to_delete_.end());
}
ResidualBlock* ProblemImpl::AddResidualBlock(
CostFunction* cost_function,
LossFunction* loss_function,
const vector<double*>& parameter_blocks) {
CHECK_NOTNULL(cost_function);
CHECK_EQ(parameter_blocks.size(),
cost_function->parameter_block_sizes().size());
// Check the sizes match.
const vector<int16>& parameter_block_sizes =
cost_function->parameter_block_sizes();
if (!options_.disable_all_safety_checks) {
CHECK_EQ(parameter_block_sizes.size(), parameter_blocks.size())
<< "Number of blocks input is different than the number of blocks "
<< "that the cost function expects.";
// Check for duplicate parameter blocks.
vector<double*> sorted_parameter_blocks(parameter_blocks);
sort(sorted_parameter_blocks.begin(), sorted_parameter_blocks.end());
vector<double*>::const_iterator duplicate_items =
unique(sorted_parameter_blocks.begin(),
sorted_parameter_blocks.end());
if (duplicate_items != sorted_parameter_blocks.end()) {
string blocks;
for (int i = 0; i < parameter_blocks.size(); ++i) {
blocks += internal::StringPrintf(" %p ", parameter_blocks[i]);
}
LOG(FATAL) << "Duplicate parameter blocks in a residual parameter "
<< "are not allowed. Parameter block pointers: ["
<< blocks << "]";
}
}
// Add parameter blocks and convert the double*'s to parameter blocks.
vector<ParameterBlock*> parameter_block_ptrs(parameter_blocks.size());
for (int i = 0; i < parameter_blocks.size(); ++i) {
parameter_block_ptrs[i] =
InternalAddParameterBlock(parameter_blocks[i],
parameter_block_sizes[i]);
}
if (!options_.disable_all_safety_checks) {
// Check that the block sizes match the block sizes expected by the
// cost_function.
for (int i = 0; i < parameter_block_ptrs.size(); ++i) {
CHECK_EQ(cost_function->parameter_block_sizes()[i],
parameter_block_ptrs[i]->Size())
<< "The cost function expects parameter block " << i
<< " of size " << cost_function->parameter_block_sizes()[i]
<< " but was given a block of size "
<< parameter_block_ptrs[i]->Size();
}
}
ResidualBlock* new_residual_block =
new ResidualBlock(cost_function,
loss_function,
parameter_block_ptrs,
program_->residual_blocks_.size());
// Add dependencies on the residual to the parameter blocks.
if (options_.enable_fast_parameter_block_removal) {
for (int i = 0; i < parameter_blocks.size(); ++i) {
parameter_block_ptrs[i]->AddResidualBlock(new_residual_block);
}
}
program_->residual_blocks_.push_back(new_residual_block);
return new_residual_block;
}
// Unfortunately, macros don't help much to reduce this code, and var args don't
// work because of the ambiguous case that there is no loss function.
ResidualBlock* ProblemImpl::AddResidualBlock(
CostFunction* cost_function,
LossFunction* loss_function,
double* x0) {
vector<double*> residual_parameters;
residual_parameters.push_back(x0);
return AddResidualBlock(cost_function, loss_function, residual_parameters);
}
ResidualBlock* ProblemImpl::AddResidualBlock(
CostFunction* cost_function,
LossFunction* loss_function,
double* x0, double* x1) {
vector<double*> residual_parameters;
residual_parameters.push_back(x0);
residual_parameters.push_back(x1);
return AddResidualBlock(cost_function, loss_function, residual_parameters);
}
ResidualBlock* ProblemImpl::AddResidualBlock(
CostFunction* cost_function,
LossFunction* loss_function,
double* x0, double* x1, double* x2) {
vector<double*> residual_parameters;
residual_parameters.push_back(x0);
residual_parameters.push_back(x1);
residual_parameters.push_back(x2);
return AddResidualBlock(cost_function, loss_function, residual_parameters);
}
ResidualBlock* ProblemImpl::AddResidualBlock(
CostFunction* cost_function,
LossFunction* loss_function,
double* x0, double* x1, double* x2, double* x3) {
vector<double*> residual_parameters;
residual_parameters.push_back(x0);
residual_parameters.push_back(x1);
residual_parameters.push_back(x2);
residual_parameters.push_back(x3);
return AddResidualBlock(cost_function, loss_function, residual_parameters);
}
ResidualBlock* ProblemImpl::AddResidualBlock(
CostFunction* cost_function,
LossFunction* loss_function,
double* x0, double* x1, double* x2, double* x3, double* x4) {
vector<double*> residual_parameters;
residual_parameters.push_back(x0);
residual_parameters.push_back(x1);
residual_parameters.push_back(x2);
residual_parameters.push_back(x3);
residual_parameters.push_back(x4);
return AddResidualBlock(cost_function, loss_function, residual_parameters);
}
ResidualBlock* ProblemImpl::AddResidualBlock(
CostFunction* cost_function,
LossFunction* loss_function,
double* x0, double* x1, double* x2, double* x3, double* x4, double* x5) {
vector<double*> residual_parameters;
residual_parameters.push_back(x0);
residual_parameters.push_back(x1);
residual_parameters.push_back(x2);
residual_parameters.push_back(x3);
residual_parameters.push_back(x4);
residual_parameters.push_back(x5);
return AddResidualBlock(cost_function, loss_function, residual_parameters);
}
ResidualBlock* ProblemImpl::AddResidualBlock(
CostFunction* cost_function,
LossFunction* loss_function,
double* x0, double* x1, double* x2, double* x3, double* x4, double* x5,
double* x6) {
vector<double*> residual_parameters;
residual_parameters.push_back(x0);
residual_parameters.push_back(x1);
residual_parameters.push_back(x2);
residual_parameters.push_back(x3);
residual_parameters.push_back(x4);
residual_parameters.push_back(x5);
residual_parameters.push_back(x6);
return AddResidualBlock(cost_function, loss_function, residual_parameters);
}
ResidualBlock* ProblemImpl::AddResidualBlock(
CostFunction* cost_function,
LossFunction* loss_function,
double* x0, double* x1, double* x2, double* x3, double* x4, double* x5,
double* x6, double* x7) {
vector<double*> residual_parameters;
residual_parameters.push_back(x0);
residual_parameters.push_back(x1);
residual_parameters.push_back(x2);
residual_parameters.push_back(x3);
residual_parameters.push_back(x4);
residual_parameters.push_back(x5);
residual_parameters.push_back(x6);
residual_parameters.push_back(x7);
return AddResidualBlock(cost_function, loss_function, residual_parameters);
}
ResidualBlock* ProblemImpl::AddResidualBlock(
CostFunction* cost_function,
LossFunction* loss_function,
double* x0, double* x1, double* x2, double* x3, double* x4, double* x5,
double* x6, double* x7, double* x8) {
vector<double*> residual_parameters;
residual_parameters.push_back(x0);
residual_parameters.push_back(x1);
residual_parameters.push_back(x2);
residual_parameters.push_back(x3);
residual_parameters.push_back(x4);
residual_parameters.push_back(x5);
residual_parameters.push_back(x6);
residual_parameters.push_back(x7);
residual_parameters.push_back(x8);
return AddResidualBlock(cost_function, loss_function, residual_parameters);
}
ResidualBlock* ProblemImpl::AddResidualBlock(
CostFunction* cost_function,
LossFunction* loss_function,
double* x0, double* x1, double* x2, double* x3, double* x4, double* x5,
double* x6, double* x7, double* x8, double* x9) {
vector<double*> residual_parameters;
residual_parameters.push_back(x0);
residual_parameters.push_back(x1);
residual_parameters.push_back(x2);
residual_parameters.push_back(x3);
residual_parameters.push_back(x4);
residual_parameters.push_back(x5);
residual_parameters.push_back(x6);
residual_parameters.push_back(x7);
residual_parameters.push_back(x8);
residual_parameters.push_back(x9);
return AddResidualBlock(cost_function, loss_function, residual_parameters);
}
void ProblemImpl::AddParameterBlock(double* values, int size) {
InternalAddParameterBlock(values, size);
}
void ProblemImpl::AddParameterBlock(
double* values,
int size,
LocalParameterization* local_parameterization) {
ParameterBlock* parameter_block =
InternalAddParameterBlock(values, size);
if (local_parameterization != NULL) {
parameter_block->SetParameterization(local_parameterization);
}
}
// Delete a block from a vector of blocks, maintaining the indexing invariant.
// This is done in constant time by moving an element from the end of the
// vector over the element to remove, then popping the last element. It
// destroys the ordering in the interest of speed.
template<typename Block>
void ProblemImpl::DeleteBlockInVector(vector<Block*>* mutable_blocks,
Block* block_to_remove) {
CHECK_EQ((*mutable_blocks)[block_to_remove->index()], block_to_remove)
<< "You found a Ceres bug! Block: " << block_to_remove->ToString();
// Prepare the to-be-moved block for the new, lower-in-index position by
// setting the index to the blocks final location.
Block* tmp = mutable_blocks->back();
tmp->set_index(block_to_remove->index());
// Overwrite the to-be-deleted residual block with the one at the end.
(*mutable_blocks)[block_to_remove->index()] = tmp;
DeleteBlock(block_to_remove);
// The block is gone so shrink the vector of blocks accordingly.
mutable_blocks->pop_back();
}
void ProblemImpl::RemoveResidualBlock(ResidualBlock* residual_block) {
CHECK_NOTNULL(residual_block);
// If needed, remove the parameter dependencies on this residual block.
if (options_.enable_fast_parameter_block_removal) {
const int num_parameter_blocks_for_residual =
residual_block->NumParameterBlocks();
for (int i = 0; i < num_parameter_blocks_for_residual; ++i) {
residual_block->parameter_blocks()[i]
->RemoveResidualBlock(residual_block);
}
}
DeleteBlockInVector(program_->mutable_residual_blocks(), residual_block);
}
void ProblemImpl::RemoveParameterBlock(double* values) {
ParameterBlock* parameter_block = FindOrDie(parameter_block_map_, values);
if (options_.enable_fast_parameter_block_removal) {
// Copy the dependent residuals from the parameter block because the set of
// dependents will change after each call to RemoveResidualBlock().
vector<ResidualBlock*> residual_blocks_to_remove(
parameter_block->mutable_residual_blocks()->begin(),
parameter_block->mutable_residual_blocks()->end());
for (int i = 0; i < residual_blocks_to_remove.size(); ++i) {
RemoveResidualBlock(residual_blocks_to_remove[i]);
}
} else {
// Scan all the residual blocks to remove ones that depend on the parameter
// block. Do the scan backwards since the vector changes while iterating.
const int num_residual_blocks = NumResidualBlocks();
for (int i = num_residual_blocks - 1; i >= 0; --i) {
ResidualBlock* residual_block =
(*(program_->mutable_residual_blocks()))[i];
const int num_parameter_blocks = residual_block->NumParameterBlocks();
for (int i = 0; i < num_parameter_blocks; ++i) {
if (residual_block->parameter_blocks()[i] == parameter_block) {
RemoveResidualBlock(residual_block);
// The parameter blocks are guaranteed unique.
break;
}
}
}
}
DeleteBlockInVector(program_->mutable_parameter_blocks(), parameter_block);
}
void ProblemImpl::SetParameterBlockConstant(double* values) {
FindOrDie(parameter_block_map_, values)->SetConstant();
}
void ProblemImpl::SetParameterBlockVariable(double* values) {
FindOrDie(parameter_block_map_, values)->SetVarying();
}
void ProblemImpl::SetParameterization(
double* values,
LocalParameterization* local_parameterization) {
FindOrDie(parameter_block_map_, values)
->SetParameterization(local_parameterization);
}
int ProblemImpl::NumParameterBlocks() const {
return program_->NumParameterBlocks();
}
int ProblemImpl::NumParameters() const {
return program_->NumParameters();
}
int ProblemImpl::NumResidualBlocks() const {
return program_->NumResidualBlocks();
}
int ProblemImpl::NumResiduals() const {
return program_->NumResiduals();
}
} // namespace internal
} // namespace ceres