| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2015 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Copyright (c) 2014 libmv authors. |
| // |
| // Permission is hereby granted, free of charge, to any person obtaining a copy |
| // of this software and associated documentation files (the "Software"), to |
| // deal in the Software without restriction, including without limitation the |
| // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or |
| // sell copies of the Software, and to permit persons to whom the Software is |
| // furnished to do so, subject to the following conditions: |
| // |
| // The above copyright notice and this permission notice shall be included in |
| // all copies or substantial portions of the Software. |
| // |
| // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| // IN THE SOFTWARE. |
| // |
| // Author: sergey.vfx@gmail.com (Sergey Sharybin) |
| // |
| // This file demonstrates solving for a homography between two sets of points. |
| // A homography describes a transformation between a sets of points on a plane, |
| // perspectively projected into two images. The first step is to solve a |
| // homogeneous system of equations via singular value decompposition, giving an |
| // algebraic solution for the homography, then solving for a final solution by |
| // minimizing the symmetric transfer error in image space with Ceres (called the |
| // Gold Standard Solution in "Multiple View Geometry"). The routines are based on |
| // the routines from the Libmv library. |
| // |
| // This example demonstrates custom exit criterion by having a callback check |
| // for image-space error. |
| |
| #include "ceres/ceres.h" |
| #include "glog/logging.h" |
| |
| typedef Eigen::NumTraits<double> EigenDouble; |
| |
| typedef Eigen::MatrixXd Mat; |
| typedef Eigen::VectorXd Vec; |
| typedef Eigen::Matrix<double, 3, 3> Mat3; |
| typedef Eigen::Matrix<double, 2, 1> Vec2; |
| typedef Eigen::Matrix<double, Eigen::Dynamic, 8> MatX8; |
| typedef Eigen::Vector3d Vec3; |
| |
| namespace { |
| |
| // This structure contains options that controls how the homography |
| // estimation operates. |
| // |
| // Defaults should be suitable for a wide range of use cases, but |
| // better performance and accuracy might require tweaking. |
| struct EstimateHomographyOptions { |
| // Default settings for homography estimation which should be suitable |
| // for a wide range of use cases. |
| EstimateHomographyOptions() |
| : max_num_iterations(50), |
| expected_average_symmetric_distance(1e-16) {} |
| |
| // Maximal number of iterations for the refinement step. |
| int max_num_iterations; |
| |
| // Expected average of symmetric geometric distance between |
| // actual destination points and original ones transformed by |
| // estimated homography matrix. |
| // |
| // Refinement will finish as soon as average of symmetric |
| // geometric distance is less or equal to this value. |
| // |
| // This distance is measured in the same units as input points are. |
| double expected_average_symmetric_distance; |
| }; |
| |
| // Calculate symmetric geometric cost terms: |
| // |
| // forward_error = D(H * x1, x2) |
| // backward_error = D(H^-1 * x2, x1) |
| // |
| // Templated to be used with autodifferenciation. |
| template <typename T> |
| void SymmetricGeometricDistanceTerms(const Eigen::Matrix<T, 3, 3> &H, |
| const Eigen::Matrix<T, 2, 1> &x1, |
| const Eigen::Matrix<T, 2, 1> &x2, |
| T forward_error[2], |
| T backward_error[2]) { |
| typedef Eigen::Matrix<T, 3, 1> Vec3; |
| Vec3 x(x1(0), x1(1), T(1.0)); |
| Vec3 y(x2(0), x2(1), T(1.0)); |
| |
| Vec3 H_x = H * x; |
| Vec3 Hinv_y = H.inverse() * y; |
| |
| H_x /= H_x(2); |
| Hinv_y /= Hinv_y(2); |
| |
| forward_error[0] = H_x(0) - y(0); |
| forward_error[1] = H_x(1) - y(1); |
| backward_error[0] = Hinv_y(0) - x(0); |
| backward_error[1] = Hinv_y(1) - x(1); |
| } |
| |
| // Calculate symmetric geometric cost: |
| // |
| // D(H * x1, x2)^2 + D(H^-1 * x2, x1)^2 |
| // |
| double SymmetricGeometricDistance(const Mat3 &H, |
| const Vec2 &x1, |
| const Vec2 &x2) { |
| Vec2 forward_error, backward_error; |
| SymmetricGeometricDistanceTerms<double>(H, |
| x1, |
| x2, |
| forward_error.data(), |
| backward_error.data()); |
| return forward_error.squaredNorm() + |
| backward_error.squaredNorm(); |
| } |
| |
| // A parameterization of the 2D homography matrix that uses 8 parameters so |
| // that the matrix is normalized (H(2,2) == 1). |
| // The homography matrix H is built from a list of 8 parameters (a, b,...g, h) |
| // as follows |
| // |
| // |a b c| |
| // H = |d e f| |
| // |g h 1| |
| // |
| template<typename T = double> |
| class Homography2DNormalizedParameterization { |
| public: |
| typedef Eigen::Matrix<T, 8, 1> Parameters; // a, b, ... g, h |
| typedef Eigen::Matrix<T, 3, 3> Parameterized; // H |
| |
| // Convert from the 8 parameters to a H matrix. |
| static void To(const Parameters &p, Parameterized *h) { |
| *h << p(0), p(1), p(2), |
| p(3), p(4), p(5), |
| p(6), p(7), 1.0; |
| } |
| |
| // Convert from a H matrix to the 8 parameters. |
| static void From(const Parameterized &h, Parameters *p) { |
| *p << h(0, 0), h(0, 1), h(0, 2), |
| h(1, 0), h(1, 1), h(1, 2), |
| h(2, 0), h(2, 1); |
| } |
| }; |
| |
| // 2D Homography transformation estimation in the case that points are in |
| // euclidean coordinates. |
| // |
| // x = H y |
| // |
| // x and y vector must have the same direction, we could write |
| // |
| // crossproduct(|x|, * H * |y| ) = |0| |
| // |
| // | 0 -1 x2| |a b c| |y1| |0| |
| // | 1 0 -x1| * |d e f| * |y2| = |0| |
| // |-x2 x1 0| |g h 1| |1 | |0| |
| // |
| // That gives: |
| // |
| // (-d+x2*g)*y1 + (-e+x2*h)*y2 + -f+x2 |0| |
| // (a-x1*g)*y1 + (b-x1*h)*y2 + c-x1 = |0| |
| // (-x2*a+x1*d)*y1 + (-x2*b+x1*e)*y2 + -x2*c+x1*f |0| |
| // |
| bool Homography2DFromCorrespondencesLinearEuc( |
| const Mat &x1, |
| const Mat &x2, |
| Mat3 *H, |
| double expected_precision) { |
| assert(2 == x1.rows()); |
| assert(4 <= x1.cols()); |
| assert(x1.rows() == x2.rows()); |
| assert(x1.cols() == x2.cols()); |
| |
| int n = x1.cols(); |
| MatX8 L = Mat::Zero(n * 3, 8); |
| Mat b = Mat::Zero(n * 3, 1); |
| for (int i = 0; i < n; ++i) { |
| int j = 3 * i; |
| L(j, 0) = x1(0, i); // a |
| L(j, 1) = x1(1, i); // b |
| L(j, 2) = 1.0; // c |
| L(j, 6) = -x2(0, i) * x1(0, i); // g |
| L(j, 7) = -x2(0, i) * x1(1, i); // h |
| b(j, 0) = x2(0, i); // i |
| |
| ++j; |
| L(j, 3) = x1(0, i); // d |
| L(j, 4) = x1(1, i); // e |
| L(j, 5) = 1.0; // f |
| L(j, 6) = -x2(1, i) * x1(0, i); // g |
| L(j, 7) = -x2(1, i) * x1(1, i); // h |
| b(j, 0) = x2(1, i); // i |
| |
| // This ensures better stability |
| // TODO(julien) make a lite version without this 3rd set |
| ++j; |
| L(j, 0) = x2(1, i) * x1(0, i); // a |
| L(j, 1) = x2(1, i) * x1(1, i); // b |
| L(j, 2) = x2(1, i); // c |
| L(j, 3) = -x2(0, i) * x1(0, i); // d |
| L(j, 4) = -x2(0, i) * x1(1, i); // e |
| L(j, 5) = -x2(0, i); // f |
| } |
| // Solve Lx=B |
| const Vec h = L.fullPivLu().solve(b); |
| Homography2DNormalizedParameterization<double>::To(h, H); |
| return (L * h).isApprox(b, expected_precision); |
| } |
| |
| // Cost functor which computes symmetric geometric distance |
| // used for homography matrix refinement. |
| class HomographySymmetricGeometricCostFunctor { |
| public: |
| HomographySymmetricGeometricCostFunctor(const Vec2 &x, |
| const Vec2 &y) |
| : x_(x), y_(y) { } |
| |
| template<typename T> |
| bool operator()(const T* homography_parameters, T* residuals) const { |
| typedef Eigen::Matrix<T, 3, 3> Mat3; |
| typedef Eigen::Matrix<T, 2, 1> Vec2; |
| |
| Mat3 H(homography_parameters); |
| Vec2 x(T(x_(0)), T(x_(1))); |
| Vec2 y(T(y_(0)), T(y_(1))); |
| |
| SymmetricGeometricDistanceTerms<T>(H, |
| x, |
| y, |
| &residuals[0], |
| &residuals[2]); |
| return true; |
| } |
| |
| const Vec2 x_; |
| const Vec2 y_; |
| }; |
| |
| // Termination checking callback. This is needed to finish the |
| // optimization when an absolute error threshold is met, as opposed |
| // to Ceres's function_tolerance, which provides for finishing when |
| // successful steps reduce the cost function by a fractional amount. |
| // In this case, the callback checks for the absolute average reprojection |
| // error and terminates when it's below a threshold (for example all |
| // points < 0.5px error). |
| class TerminationCheckingCallback : public ceres::IterationCallback { |
| public: |
| TerminationCheckingCallback(const Mat &x1, const Mat &x2, |
| const EstimateHomographyOptions &options, |
| Mat3 *H) |
| : options_(options), x1_(x1), x2_(x2), H_(H) {} |
| |
| virtual ceres::CallbackReturnType operator()( |
| const ceres::IterationSummary& summary) { |
| // If the step wasn't successful, there's nothing to do. |
| if (!summary.step_is_successful) { |
| return ceres::SOLVER_CONTINUE; |
| } |
| |
| // Calculate average of symmetric geometric distance. |
| double average_distance = 0.0; |
| for (int i = 0; i < x1_.cols(); i++) { |
| average_distance += SymmetricGeometricDistance(*H_, |
| x1_.col(i), |
| x2_.col(i)); |
| } |
| average_distance /= x1_.cols(); |
| |
| if (average_distance <= options_.expected_average_symmetric_distance) { |
| return ceres::SOLVER_TERMINATE_SUCCESSFULLY; |
| } |
| |
| return ceres::SOLVER_CONTINUE; |
| } |
| |
| private: |
| const EstimateHomographyOptions &options_; |
| const Mat &x1_; |
| const Mat &x2_; |
| Mat3 *H_; |
| }; |
| |
| bool EstimateHomography2DFromCorrespondences( |
| const Mat &x1, |
| const Mat &x2, |
| const EstimateHomographyOptions &options, |
| Mat3 *H) { |
| assert(2 == x1.rows()); |
| assert(4 <= x1.cols()); |
| assert(x1.rows() == x2.rows()); |
| assert(x1.cols() == x2.cols()); |
| |
| // Step 1: Algebraic homography estimation. |
| // Assume algebraic estimation always succeeds. |
| Homography2DFromCorrespondencesLinearEuc(x1, |
| x2, |
| H, |
| EigenDouble::dummy_precision()); |
| |
| LOG(INFO) << "Estimated matrix after algebraic estimation:\n" << *H; |
| |
| // Step 2: Refine matrix using Ceres minimizer. |
| ceres::Problem problem; |
| for (int i = 0; i < x1.cols(); i++) { |
| HomographySymmetricGeometricCostFunctor |
| *homography_symmetric_geometric_cost_function = |
| new HomographySymmetricGeometricCostFunctor(x1.col(i), |
| x2.col(i)); |
| |
| problem.AddResidualBlock( |
| new ceres::AutoDiffCostFunction< |
| HomographySymmetricGeometricCostFunctor, |
| 4, // num_residuals |
| 9>(homography_symmetric_geometric_cost_function), |
| NULL, |
| H->data()); |
| } |
| |
| // Configure the solve. |
| ceres::Solver::Options solver_options; |
| solver_options.linear_solver_type = ceres::DENSE_QR; |
| solver_options.max_num_iterations = options.max_num_iterations; |
| solver_options.update_state_every_iteration = true; |
| |
| // Terminate if the average symmetric distance is good enough. |
| TerminationCheckingCallback callback(x1, x2, options, H); |
| solver_options.callbacks.push_back(&callback); |
| |
| // Run the solve. |
| ceres::Solver::Summary summary; |
| ceres::Solve(solver_options, &problem, &summary); |
| |
| LOG(INFO) << "Summary:\n" << summary.FullReport(); |
| LOG(INFO) << "Final refined matrix:\n" << *H; |
| |
| return summary.IsSolutionUsable(); |
| } |
| |
| } // namespace libmv |
| |
| int main(int argc, char **argv) { |
| google::InitGoogleLogging(argv[0]); |
| |
| Mat x1(2, 100); |
| for (int i = 0; i < x1.cols(); ++i) { |
| x1(0, i) = rand() % 1024; |
| x1(1, i) = rand() % 1024; |
| } |
| |
| Mat3 homography_matrix; |
| // This matrix has been dumped from a Blender test file of plane tracking. |
| homography_matrix << 1.243715, -0.461057, -111.964454, |
| 0.0, 0.617589, -192.379252, |
| 0.0, -0.000983, 1.0; |
| |
| Mat x2 = x1; |
| for (int i = 0; i < x2.cols(); ++i) { |
| Vec3 homogenous_x1 = Vec3(x1(0, i), x1(1, i), 1.0); |
| Vec3 homogenous_x2 = homography_matrix * homogenous_x1; |
| x2(0, i) = homogenous_x2(0) / homogenous_x2(2); |
| x2(1, i) = homogenous_x2(1) / homogenous_x2(2); |
| |
| // Apply some noise so algebraic estimation is not good enough. |
| x2(0, i) += static_cast<double>(rand() % 1000) / 5000.0; |
| x2(1, i) += static_cast<double>(rand() % 1000) / 5000.0; |
| } |
| |
| Mat3 estimated_matrix; |
| |
| EstimateHomographyOptions options; |
| options.expected_average_symmetric_distance = 0.02; |
| EstimateHomography2DFromCorrespondences(x1, x2, options, &estimated_matrix); |
| |
| // Normalize the matrix for easier comparison. |
| estimated_matrix /= estimated_matrix(2 ,2); |
| |
| std::cout << "Original matrix:\n" << homography_matrix << "\n"; |
| std::cout << "Estimated matrix:\n" << estimated_matrix << "\n"; |
| |
| return EXIT_SUCCESS; |
| } |