| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2015 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: sergey.vfx@gmail.com (Sergey Sharybin) | 
 | //         mierle@gmail.com (Keir Mierle) | 
 | //         sameeragarwal@google.com (Sameer Agarwal) | 
 |  | 
 | #ifndef CERES_PUBLIC_AUTODIFF_LOCAL_PARAMETERIZATION_H_ | 
 | #define CERES_PUBLIC_AUTODIFF_LOCAL_PARAMETERIZATION_H_ | 
 |  | 
 | #include <memory> | 
 | #include "ceres/local_parameterization.h" | 
 | #include "ceres/internal/autodiff.h" | 
 |  | 
 | namespace ceres { | 
 |  | 
 | // Create local parameterization with Jacobians computed via automatic | 
 | // differentiation. For more information on local parameterizations, | 
 | // see include/ceres/local_parameterization.h | 
 | // | 
 | // To get an auto differentiated local parameterization, you must define | 
 | // a class with a templated operator() (a functor) that computes | 
 | // | 
 | //   x_plus_delta = Plus(x, delta); | 
 | // | 
 | // the template parameter T. The autodiff framework substitutes appropriate | 
 | // "Jet" objects for T in order to compute the derivative when necessary, but | 
 | // this is hidden, and you should write the function as if T were a scalar type | 
 | // (e.g. a double-precision floating point number). | 
 | // | 
 | // The function must write the computed value in the last argument (the only | 
 | // non-const one) and return true to indicate success. | 
 | // | 
 | // For example, Quaternions have a three dimensional local | 
 | // parameterization. It's plus operation can be implemented as (taken | 
 | // from internal/ceres/auto_diff_local_parameterization_test.cc) | 
 | // | 
 | //   struct QuaternionPlus { | 
 | //     template<typename T> | 
 | //     bool operator()(const T* x, const T* delta, T* x_plus_delta) const { | 
 | //       const T squared_norm_delta = | 
 | //           delta[0] * delta[0] + delta[1] * delta[1] + delta[2] * delta[2]; | 
 | // | 
 | //       T q_delta[4]; | 
 | //       if (squared_norm_delta > T(0.0)) { | 
 | //         T norm_delta = sqrt(squared_norm_delta); | 
 | //         const T sin_delta_by_delta = sin(norm_delta) / norm_delta; | 
 | //         q_delta[0] = cos(norm_delta); | 
 | //         q_delta[1] = sin_delta_by_delta * delta[0]; | 
 | //         q_delta[2] = sin_delta_by_delta * delta[1]; | 
 | //         q_delta[3] = sin_delta_by_delta * delta[2]; | 
 | //       } else { | 
 | //         // We do not just use q_delta = [1,0,0,0] here because that is a | 
 | //         // constant and when used for automatic differentiation will | 
 | //         // lead to a zero derivative. Instead we take a first order | 
 | //         // approximation and evaluate it at zero. | 
 | //         q_delta[0] = T(1.0); | 
 | //         q_delta[1] = delta[0]; | 
 | //         q_delta[2] = delta[1]; | 
 | //         q_delta[3] = delta[2]; | 
 | //       } | 
 | // | 
 | //       QuaternionProduct(q_delta, x, x_plus_delta); | 
 | //       return true; | 
 | //     } | 
 | //   }; | 
 | // | 
 | // Then given this struct, the auto differentiated local | 
 | // parameterization can now be constructed as | 
 | // | 
 | //   LocalParameterization* local_parameterization = | 
 | //     new AutoDiffLocalParameterization<QuaternionPlus, 4, 3>; | 
 | //                                                       |  | | 
 | //                            Global Size ---------------+  | | 
 | //                            Local Size -------------------+ | 
 | // | 
 | // WARNING: Since the functor will get instantiated with different types for | 
 | // T, you must to convert from other numeric types to T before mixing | 
 | // computations with other variables of type T. In the example above, this is | 
 | // seen where instead of using k_ directly, k_ is wrapped with T(k_). | 
 |  | 
 | template <typename Functor, int kGlobalSize, int kLocalSize> | 
 | class AutoDiffLocalParameterization : public LocalParameterization { | 
 |  public: | 
 |   AutoDiffLocalParameterization() : | 
 |       functor_(new Functor()) {} | 
 |  | 
 |   // Takes ownership of functor. | 
 |   explicit AutoDiffLocalParameterization(Functor* functor) : | 
 |       functor_(functor) {} | 
 |  | 
 |   virtual ~AutoDiffLocalParameterization() {} | 
 |   virtual bool Plus(const double* x, | 
 |                     const double* delta, | 
 |                     double* x_plus_delta) const { | 
 |     return (*functor_)(x, delta, x_plus_delta); | 
 |   } | 
 |  | 
 |   virtual bool ComputeJacobian(const double* x, double* jacobian) const { | 
 |     double zero_delta[kLocalSize]; | 
 |     for (int i = 0; i < kLocalSize; ++i) { | 
 |       zero_delta[i] = 0.0; | 
 |     } | 
 |  | 
 |     double x_plus_delta[kGlobalSize]; | 
 |     for (int i = 0; i < kGlobalSize; ++i) { | 
 |       x_plus_delta[i] = 0.0; | 
 |     } | 
 |  | 
 |     const double* parameter_ptrs[2] = {x, zero_delta}; | 
 |     double* jacobian_ptrs[2] = { NULL, jacobian }; | 
 |     return internal::AutoDiff<Functor, double, kGlobalSize, kLocalSize> | 
 |         ::Differentiate(*functor_, | 
 |                         parameter_ptrs, | 
 |                         kGlobalSize, | 
 |                         x_plus_delta, | 
 |                         jacobian_ptrs); | 
 |   } | 
 |  | 
 |   virtual int GlobalSize() const { return kGlobalSize; } | 
 |   virtual int LocalSize() const { return kLocalSize; } | 
 |  | 
 |  private: | 
 |   std::unique_ptr<Functor> functor_; | 
 | }; | 
 |  | 
 | }  // namespace ceres | 
 |  | 
 | #endif  // CERES_PUBLIC_AUTODIFF_LOCAL_PARAMETERIZATION_H_ |