| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2017 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
 |  | 
 | #include "ceres/compressed_row_sparse_matrix.h" | 
 |  | 
 | #include <algorithm> | 
 | #include <numeric> | 
 | #include <vector> | 
 | #include "ceres/crs_matrix.h" | 
 | #include "ceres/internal/port.h" | 
 | #include "ceres/random.h" | 
 | #include "ceres/triplet_sparse_matrix.h" | 
 | #include "glog/logging.h" | 
 |  | 
 | namespace ceres { | 
 | namespace internal { | 
 |  | 
 | using std::vector; | 
 |  | 
 | namespace { | 
 |  | 
 | // Helper functor used by the constructor for reordering the contents | 
 | // of a TripletSparseMatrix. This comparator assumes thay there are no | 
 | // duplicates in the pair of arrays rows and cols, i.e., there is no | 
 | // indices i and j (not equal to each other) s.t. | 
 | // | 
 | //  rows[i] == rows[j] && cols[i] == cols[j] | 
 | // | 
 | // If this is the case, this functor will not be a StrictWeakOrdering. | 
 | struct RowColLessThan { | 
 |   RowColLessThan(const int* rows, const int* cols) : rows(rows), cols(cols) {} | 
 |  | 
 |   bool operator()(const int x, const int y) const { | 
 |     if (rows[x] == rows[y]) { | 
 |       return (cols[x] < cols[y]); | 
 |     } | 
 |     return (rows[x] < rows[y]); | 
 |   } | 
 |  | 
 |   const int* rows; | 
 |   const int* cols; | 
 | }; | 
 |  | 
 | void TransposeForCompressedRowSparseStructure(const int num_rows, | 
 |                                               const int num_cols, | 
 |                                               const int num_nonzeros, | 
 |                                               const int* rows, | 
 |                                               const int* cols, | 
 |                                               const double* values, | 
 |                                               int* transpose_rows, | 
 |                                               int* transpose_cols, | 
 |                                               double* transpose_values) { | 
 |   // Explicitly zero out transpose_rows. | 
 |   std::fill(transpose_rows, transpose_rows + num_cols + 1, 0); | 
 |  | 
 |   // Count the number of entries in each column of the original matrix | 
 |   // and assign to transpose_rows[col + 1]. | 
 |   for (int idx = 0; idx < num_nonzeros; ++idx) { | 
 |     ++transpose_rows[cols[idx] + 1]; | 
 |   } | 
 |  | 
 |   // Compute the starting position for each row in the transpose by | 
 |   // computing the cumulative sum of the entries of transpose_rows. | 
 |   for (int i = 1; i < num_cols + 1; ++i) { | 
 |     transpose_rows[i] += transpose_rows[i - 1]; | 
 |   } | 
 |  | 
 |   // Populate transpose_cols and (optionally) transpose_values by | 
 |   // walking the entries of the source matrices. For each entry that | 
 |   // is added, the value of transpose_row is incremented allowing us | 
 |   // to keep track of where the next entry for that row should go. | 
 |   // | 
 |   // As a result transpose_row is shifted to the left by one entry. | 
 |   for (int r = 0; r < num_rows; ++r) { | 
 |     for (int idx = rows[r]; idx < rows[r + 1]; ++idx) { | 
 |       const int c = cols[idx]; | 
 |       const int transpose_idx = transpose_rows[c]++; | 
 |       transpose_cols[transpose_idx] = r; | 
 |       if (values != NULL && transpose_values != NULL) { | 
 |         transpose_values[transpose_idx] = values[idx]; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // This loop undoes the left shift to transpose_rows introduced by | 
 |   // the previous loop. | 
 |   for (int i = num_cols - 1; i > 0; --i) { | 
 |     transpose_rows[i] = transpose_rows[i - 1]; | 
 |   } | 
 |   transpose_rows[0] = 0; | 
 | } | 
 |  | 
 | void AddRandomBlock(const int num_rows, | 
 |                     const int num_cols, | 
 |                     const int row_block_begin, | 
 |                     const int col_block_begin, | 
 |                     std::vector<int>* rows, | 
 |                     std::vector<int>* cols, | 
 |                     std::vector<double>* values) { | 
 |   for (int r = 0; r < num_rows; ++r) { | 
 |     for (int c = 0; c < num_cols; ++c) { | 
 |       rows->push_back(row_block_begin + r); | 
 |       cols->push_back(col_block_begin + c); | 
 |       values->push_back(RandNormal()); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void AddRandomSymmetricBlock(const int num_rows, | 
 |                              const int row_block_begin, | 
 |                              std::vector<int>* rows, | 
 |                              std::vector<int>* cols, | 
 |                              std::vector<double>* values) { | 
 |   for (int r = 0; r < num_rows; ++r) { | 
 |     for (int c = r; c < num_rows; ++c) { | 
 |       const double v = RandNormal(); | 
 |       rows->push_back(row_block_begin + r); | 
 |       cols->push_back(row_block_begin + c); | 
 |       values->push_back(v); | 
 |       if (c != r) { | 
 |         cols->push_back(row_block_begin + r); | 
 |         rows->push_back(row_block_begin + c); | 
 |         values->push_back(v); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | }  // namespace | 
 |  | 
 | // This constructor gives you a semi-initialized CompressedRowSparseMatrix. | 
 | CompressedRowSparseMatrix::CompressedRowSparseMatrix(int num_rows, | 
 |                                                      int num_cols, | 
 |                                                      int max_num_nonzeros) { | 
 |   num_rows_ = num_rows; | 
 |   num_cols_ = num_cols; | 
 |   storage_type_ = UNSYMMETRIC; | 
 |   rows_.resize(num_rows + 1, 0); | 
 |   cols_.resize(max_num_nonzeros, 0); | 
 |   values_.resize(max_num_nonzeros, 0.0); | 
 |  | 
 |   VLOG(1) << "# of rows: " << num_rows_ << " # of columns: " << num_cols_ | 
 |           << " max_num_nonzeros: " << cols_.size() << ". Allocating " | 
 |           << (num_rows_ + 1) * sizeof(int) +     // NOLINT | 
 |                  cols_.size() * sizeof(int) +    // NOLINT | 
 |                  cols_.size() * sizeof(double);  // NOLINT | 
 | } | 
 |  | 
 | CompressedRowSparseMatrix* CompressedRowSparseMatrix::FromTripletSparseMatrix( | 
 |     const TripletSparseMatrix& input) { | 
 |   return CompressedRowSparseMatrix::FromTripletSparseMatrix(input, false); | 
 | } | 
 |  | 
 | CompressedRowSparseMatrix* | 
 | CompressedRowSparseMatrix::FromTripletSparseMatrixTransposed( | 
 |     const TripletSparseMatrix& input) { | 
 |   return CompressedRowSparseMatrix::FromTripletSparseMatrix(input, true); | 
 | } | 
 |  | 
 | CompressedRowSparseMatrix* CompressedRowSparseMatrix::FromTripletSparseMatrix( | 
 |     const TripletSparseMatrix& input, bool transpose) { | 
 |   int num_rows = input.num_rows(); | 
 |   int num_cols = input.num_cols(); | 
 |   const int* rows = input.rows(); | 
 |   const int* cols = input.cols(); | 
 |   const double* values = input.values(); | 
 |  | 
 |   if (transpose) { | 
 |     std::swap(num_rows, num_cols); | 
 |     std::swap(rows, cols); | 
 |   } | 
 |  | 
 |   // index is the list of indices into the TripletSparseMatrix input. | 
 |   vector<int> index(input.num_nonzeros(), 0); | 
 |   for (int i = 0; i < input.num_nonzeros(); ++i) { | 
 |     index[i] = i; | 
 |   } | 
 |  | 
 |   // Sort index such that the entries of m are ordered by row and ties | 
 |   // are broken by column. | 
 |   std::sort(index.begin(), index.end(), RowColLessThan(rows, cols)); | 
 |  | 
 |   VLOG(1) << "# of rows: " << num_rows << " # of columns: " << num_cols | 
 |           << " num_nonzeros: " << input.num_nonzeros() << ". Allocating " | 
 |           << ((num_rows + 1) * sizeof(int) +           // NOLINT | 
 |               input.num_nonzeros() * sizeof(int) +     // NOLINT | 
 |               input.num_nonzeros() * sizeof(double));  // NOLINT | 
 |  | 
 |   CompressedRowSparseMatrix* output = | 
 |       new CompressedRowSparseMatrix(num_rows, num_cols, input.num_nonzeros()); | 
 |  | 
 |   // Copy the contents of the cols and values array in the order given | 
 |   // by index and count the number of entries in each row. | 
 |   int* output_rows = output->mutable_rows(); | 
 |   int* output_cols = output->mutable_cols(); | 
 |   double* output_values = output->mutable_values(); | 
 |  | 
 |   output_rows[0] = 0; | 
 |   for (int i = 0; i < index.size(); ++i) { | 
 |     const int idx = index[i]; | 
 |     ++output_rows[rows[idx] + 1]; | 
 |     output_cols[i] = cols[idx]; | 
 |     output_values[i] = values[idx]; | 
 |   } | 
 |  | 
 |   // Find the cumulative sum of the row counts. | 
 |   for (int i = 1; i < num_rows + 1; ++i) { | 
 |     output_rows[i] += output_rows[i - 1]; | 
 |   } | 
 |  | 
 |   CHECK_EQ(output->num_nonzeros(), input.num_nonzeros()); | 
 |   return output; | 
 | } | 
 |  | 
 | CompressedRowSparseMatrix::CompressedRowSparseMatrix(const double* diagonal, | 
 |                                                      int num_rows) { | 
 |   CHECK_NOTNULL(diagonal); | 
 |  | 
 |   num_rows_ = num_rows; | 
 |   num_cols_ = num_rows; | 
 |   storage_type_ = UNSYMMETRIC; | 
 |   rows_.resize(num_rows + 1); | 
 |   cols_.resize(num_rows); | 
 |   values_.resize(num_rows); | 
 |  | 
 |   rows_[0] = 0; | 
 |   for (int i = 0; i < num_rows_; ++i) { | 
 |     cols_[i] = i; | 
 |     values_[i] = diagonal[i]; | 
 |     rows_[i + 1] = i + 1; | 
 |   } | 
 |  | 
 |   CHECK_EQ(num_nonzeros(), num_rows); | 
 | } | 
 |  | 
 | CompressedRowSparseMatrix::~CompressedRowSparseMatrix() {} | 
 |  | 
 | void CompressedRowSparseMatrix::SetZero() { | 
 |   std::fill(values_.begin(), values_.end(), 0); | 
 | } | 
 |  | 
 | void CompressedRowSparseMatrix::RightMultiply(const double* x, | 
 |                                               double* y) const { | 
 |   CHECK_NOTNULL(x); | 
 |   CHECK_NOTNULL(y); | 
 |  | 
 |   for (int r = 0; r < num_rows_; ++r) { | 
 |     for (int idx = rows_[r]; idx < rows_[r + 1]; ++idx) { | 
 |       y[r] += values_[idx] * x[cols_[idx]]; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void CompressedRowSparseMatrix::LeftMultiply(const double* x, double* y) const { | 
 |   CHECK_NOTNULL(x); | 
 |   CHECK_NOTNULL(y); | 
 |  | 
 |   for (int r = 0; r < num_rows_; ++r) { | 
 |     for (int idx = rows_[r]; idx < rows_[r + 1]; ++idx) { | 
 |       y[cols_[idx]] += values_[idx] * x[r]; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void CompressedRowSparseMatrix::SquaredColumnNorm(double* x) const { | 
 |   CHECK_NOTNULL(x); | 
 |  | 
 |   std::fill(x, x + num_cols_, 0.0); | 
 |   for (int idx = 0; idx < rows_[num_rows_]; ++idx) { | 
 |     x[cols_[idx]] += values_[idx] * values_[idx]; | 
 |   } | 
 | } | 
 |  | 
 | void CompressedRowSparseMatrix::ScaleColumns(const double* scale) { | 
 |   CHECK_NOTNULL(scale); | 
 |  | 
 |   for (int idx = 0; idx < rows_[num_rows_]; ++idx) { | 
 |     values_[idx] *= scale[cols_[idx]]; | 
 |   } | 
 | } | 
 |  | 
 | void CompressedRowSparseMatrix::ToDenseMatrix(Matrix* dense_matrix) const { | 
 |   CHECK_NOTNULL(dense_matrix); | 
 |   dense_matrix->resize(num_rows_, num_cols_); | 
 |   dense_matrix->setZero(); | 
 |  | 
 |   for (int r = 0; r < num_rows_; ++r) { | 
 |     for (int idx = rows_[r]; idx < rows_[r + 1]; ++idx) { | 
 |       (*dense_matrix)(r, cols_[idx]) = values_[idx]; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void CompressedRowSparseMatrix::DeleteRows(int delta_rows) { | 
 |   CHECK_GE(delta_rows, 0); | 
 |   CHECK_LE(delta_rows, num_rows_); | 
 |  | 
 |   num_rows_ -= delta_rows; | 
 |   rows_.resize(num_rows_ + 1); | 
 |  | 
 |   // The rest of the code updates the block information. Immediately | 
 |   // return in case of no block information. | 
 |   if (row_blocks_.empty()) { | 
 |     return; | 
 |   } | 
 |  | 
 |   // Sanity check for compressed row sparse block information | 
 |   CHECK_EQ(crsb_rows_.size(), row_blocks_.size() + 1); | 
 |   CHECK_EQ(crsb_rows_.back(), crsb_cols_.size()); | 
 |  | 
 |   // Walk the list of row blocks until we reach the new number of rows | 
 |   // and the drop the rest of the row blocks. | 
 |   int num_row_blocks = 0; | 
 |   int num_rows = 0; | 
 |   while (num_row_blocks < row_blocks_.size() && num_rows < num_rows_) { | 
 |     num_rows += row_blocks_[num_row_blocks]; | 
 |     ++num_row_blocks; | 
 |   } | 
 |  | 
 |   row_blocks_.resize(num_row_blocks); | 
 |  | 
 |   // Update compressed row sparse block (crsb) information. | 
 |   CHECK_EQ(num_rows, num_rows_); | 
 |   crsb_rows_.resize(num_row_blocks + 1); | 
 |   crsb_cols_.resize(crsb_rows_[num_row_blocks]); | 
 | } | 
 |  | 
 | void CompressedRowSparseMatrix::AppendRows(const CompressedRowSparseMatrix& m) { | 
 |   CHECK_EQ(m.num_cols(), num_cols_); | 
 |  | 
 |   CHECK((row_blocks_.empty() && m.row_blocks().empty()) || | 
 |         (!row_blocks_.empty() && !m.row_blocks().empty())) | 
 |       << "Cannot append a matrix with row blocks to one without and vice versa." | 
 |       << "This matrix has : " << row_blocks_.size() << " row blocks." | 
 |       << "The matrix being appended has: " << m.row_blocks().size() | 
 |       << " row blocks."; | 
 |  | 
 |   if (m.num_rows() == 0) { | 
 |     return; | 
 |   } | 
 |  | 
 |   if (cols_.size() < num_nonzeros() + m.num_nonzeros()) { | 
 |     cols_.resize(num_nonzeros() + m.num_nonzeros()); | 
 |     values_.resize(num_nonzeros() + m.num_nonzeros()); | 
 |   } | 
 |  | 
 |   // Copy the contents of m into this matrix. | 
 |   DCHECK_LT(num_nonzeros(), cols_.size()); | 
 |   if (m.num_nonzeros() > 0) { | 
 |     std::copy(m.cols(), m.cols() + m.num_nonzeros(), &cols_[num_nonzeros()]); | 
 |     std::copy( | 
 |         m.values(), m.values() + m.num_nonzeros(), &values_[num_nonzeros()]); | 
 |   } | 
 |  | 
 |   rows_.resize(num_rows_ + m.num_rows() + 1); | 
 |   // new_rows = [rows_, m.row() + rows_[num_rows_]] | 
 |   std::fill(rows_.begin() + num_rows_, | 
 |             rows_.begin() + num_rows_ + m.num_rows() + 1, | 
 |             rows_[num_rows_]); | 
 |  | 
 |   for (int r = 0; r < m.num_rows() + 1; ++r) { | 
 |     rows_[num_rows_ + r] += m.rows()[r]; | 
 |   } | 
 |  | 
 |   num_rows_ += m.num_rows(); | 
 |  | 
 |   // The rest of the code updates the block information. Immediately | 
 |   // return in case of no block information. | 
 |   if (row_blocks_.empty()) { | 
 |     return; | 
 |   } | 
 |  | 
 |   // Sanity check for compressed row sparse block information | 
 |   CHECK_EQ(crsb_rows_.size(), row_blocks_.size() + 1); | 
 |   CHECK_EQ(crsb_rows_.back(), crsb_cols_.size()); | 
 |  | 
 |   row_blocks_.insert( | 
 |       row_blocks_.end(), m.row_blocks().begin(), m.row_blocks().end()); | 
 |  | 
 |   // The rest of the code updates the compressed row sparse block | 
 |   // (crsb) information. | 
 |   const int num_crsb_nonzeros = crsb_cols_.size(); | 
 |   const int m_num_crsb_nonzeros = m.crsb_cols_.size(); | 
 |   crsb_cols_.resize(num_crsb_nonzeros + m_num_crsb_nonzeros); | 
 |   std::copy(&m.crsb_cols()[0], | 
 |             &m.crsb_cols()[0] + m_num_crsb_nonzeros, | 
 |             &crsb_cols_[num_crsb_nonzeros]); | 
 |  | 
 |   const int num_crsb_rows = crsb_rows_.size() - 1; | 
 |   const int m_num_crsb_rows = m.crsb_rows_.size() - 1; | 
 |   crsb_rows_.resize(num_crsb_rows + m_num_crsb_rows + 1); | 
 |   std::fill(crsb_rows_.begin() + num_crsb_rows, | 
 |             crsb_rows_.begin() + num_crsb_rows + m_num_crsb_rows + 1, | 
 |             crsb_rows_[num_crsb_rows]); | 
 |  | 
 |   for (int r = 0; r < m_num_crsb_rows + 1; ++r) { | 
 |     crsb_rows_[num_crsb_rows + r] += m.crsb_rows()[r]; | 
 |   } | 
 | } | 
 |  | 
 | void CompressedRowSparseMatrix::ToTextFile(FILE* file) const { | 
 |   CHECK_NOTNULL(file); | 
 |   for (int r = 0; r < num_rows_; ++r) { | 
 |     for (int idx = rows_[r]; idx < rows_[r + 1]; ++idx) { | 
 |       fprintf(file, "% 10d % 10d %17f\n", r, cols_[idx], values_[idx]); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void CompressedRowSparseMatrix::ToCRSMatrix(CRSMatrix* matrix) const { | 
 |   matrix->num_rows = num_rows_; | 
 |   matrix->num_cols = num_cols_; | 
 |   matrix->rows = rows_; | 
 |   matrix->cols = cols_; | 
 |   matrix->values = values_; | 
 |  | 
 |   // Trim. | 
 |   matrix->rows.resize(matrix->num_rows + 1); | 
 |   matrix->cols.resize(matrix->rows[matrix->num_rows]); | 
 |   matrix->values.resize(matrix->rows[matrix->num_rows]); | 
 | } | 
 |  | 
 | void CompressedRowSparseMatrix::SetMaxNumNonZeros(int num_nonzeros) { | 
 |   CHECK_GE(num_nonzeros, 0); | 
 |  | 
 |   cols_.resize(num_nonzeros); | 
 |   values_.resize(num_nonzeros); | 
 | } | 
 |  | 
 | CompressedRowSparseMatrix* CompressedRowSparseMatrix::CreateBlockDiagonalMatrix( | 
 |     const double* diagonal, const vector<int>& blocks) { | 
 |   int num_rows = 0; | 
 |   int num_nonzeros = 0; | 
 |   for (int i = 0; i < blocks.size(); ++i) { | 
 |     num_rows += blocks[i]; | 
 |     num_nonzeros += blocks[i] * blocks[i]; | 
 |   } | 
 |  | 
 |   CompressedRowSparseMatrix* matrix = | 
 |       new CompressedRowSparseMatrix(num_rows, num_rows, num_nonzeros); | 
 |  | 
 |   int* rows = matrix->mutable_rows(); | 
 |   int* cols = matrix->mutable_cols(); | 
 |   double* values = matrix->mutable_values(); | 
 |   std::fill(values, values + num_nonzeros, 0.0); | 
 |  | 
 |   int idx_cursor = 0; | 
 |   int col_cursor = 0; | 
 |   for (int i = 0; i < blocks.size(); ++i) { | 
 |     const int block_size = blocks[i]; | 
 |     for (int r = 0; r < block_size; ++r) { | 
 |       *(rows++) = idx_cursor; | 
 |       values[idx_cursor + r] = diagonal[col_cursor + r]; | 
 |       for (int c = 0; c < block_size; ++c, ++idx_cursor) { | 
 |         *(cols++) = col_cursor + c; | 
 |       } | 
 |     } | 
 |     col_cursor += block_size; | 
 |   } | 
 |   *rows = idx_cursor; | 
 |  | 
 |   *matrix->mutable_row_blocks() = blocks; | 
 |   *matrix->mutable_col_blocks() = blocks; | 
 |  | 
 |   // Fill compressed row sparse block (crsb) information. | 
 |   vector<int>& crsb_rows = *matrix->mutable_crsb_rows(); | 
 |   vector<int>& crsb_cols = *matrix->mutable_crsb_cols(); | 
 |   for (int i = 0; i < blocks.size(); ++i) { | 
 |     crsb_rows.push_back(i); | 
 |     crsb_cols.push_back(i); | 
 |   } | 
 |   crsb_rows.push_back(blocks.size()); | 
 |  | 
 |   CHECK_EQ(idx_cursor, num_nonzeros); | 
 |   CHECK_EQ(col_cursor, num_rows); | 
 |   return matrix; | 
 | } | 
 |  | 
 | CompressedRowSparseMatrix* CompressedRowSparseMatrix::Transpose() const { | 
 |   CompressedRowSparseMatrix* transpose = | 
 |       new CompressedRowSparseMatrix(num_cols_, num_rows_, num_nonzeros()); | 
 |  | 
 |   switch (storage_type_) { | 
 |     case UNSYMMETRIC: | 
 |       transpose->set_storage_type(UNSYMMETRIC); | 
 |       break; | 
 |     case LOWER_TRIANGULAR: | 
 |       transpose->set_storage_type(UPPER_TRIANGULAR); | 
 |       break; | 
 |     case UPPER_TRIANGULAR: | 
 |       transpose->set_storage_type(LOWER_TRIANGULAR); | 
 |       break; | 
 |     default: | 
 |       LOG(FATAL) << "Unknown storage type: " << storage_type_; | 
 |   }; | 
 |  | 
 |   TransposeForCompressedRowSparseStructure(num_rows(), | 
 |                                            num_cols(), | 
 |                                            num_nonzeros(), | 
 |                                            rows(), | 
 |                                            cols(), | 
 |                                            values(), | 
 |                                            transpose->mutable_rows(), | 
 |                                            transpose->mutable_cols(), | 
 |                                            transpose->mutable_values()); | 
 |  | 
 |   // The rest of the code updates the block information. Immediately | 
 |   // return in case of no block information. | 
 |   if (row_blocks_.empty()) { | 
 |     return transpose; | 
 |   } | 
 |  | 
 |   // Sanity check for compressed row sparse block information | 
 |   CHECK_EQ(crsb_rows_.size(), row_blocks_.size() + 1); | 
 |   CHECK_EQ(crsb_rows_.back(), crsb_cols_.size()); | 
 |  | 
 |   *(transpose->mutable_row_blocks()) = col_blocks_; | 
 |   *(transpose->mutable_col_blocks()) = row_blocks_; | 
 |  | 
 |   // The rest of the code updates the compressed row sparse block | 
 |   // (crsb) information. | 
 |   vector<int>& transpose_crsb_rows = *transpose->mutable_crsb_rows(); | 
 |   vector<int>& transpose_crsb_cols = *transpose->mutable_crsb_cols(); | 
 |  | 
 |   transpose_crsb_rows.resize(col_blocks_.size() + 1); | 
 |   transpose_crsb_cols.resize(crsb_cols_.size()); | 
 |   TransposeForCompressedRowSparseStructure(row_blocks().size(), | 
 |                                            col_blocks().size(), | 
 |                                            crsb_cols().size(), | 
 |                                            crsb_rows().data(), | 
 |                                            crsb_cols().data(), | 
 |                                            NULL, | 
 |                                            transpose_crsb_rows.data(), | 
 |                                            transpose_crsb_cols.data(), | 
 |                                            NULL); | 
 |  | 
 |   return transpose; | 
 | } | 
 |  | 
 | namespace { | 
 | // A ProductTerm is a term in the block outer product of a matrix with | 
 | // itself. | 
 | struct ProductTerm { | 
 |   ProductTerm(const int row, const int col, const int index) | 
 |       : row(row), col(col), index(index) {} | 
 |  | 
 |   bool operator<(const ProductTerm& right) const { | 
 |     if (row == right.row) { | 
 |       if (col == right.col) { | 
 |         return index < right.index; | 
 |       } | 
 |       return col < right.col; | 
 |     } | 
 |     return row < right.row; | 
 |   } | 
 |  | 
 |   int row; | 
 |   int col; | 
 |   int index; | 
 | }; | 
 |  | 
 | // Create outer product matrix based on the block product information. | 
 | // The input block product is already sorted. This function does not | 
 | // set the sparse rows/cols information. Instead, it only collects the | 
 | // nonzeros for each compressed row and puts in row_nnz. The caller of | 
 | // this function will traverse the block product in a second round to | 
 | // generate the sparse rows/cols information. This function also | 
 | // computes the block offset information for the outer product matrix, | 
 | // which is used in outer product computation. | 
 | CompressedRowSparseMatrix* CreateOuterProductMatrix( | 
 |     const int num_cols, | 
 |     const CompressedRowSparseMatrix::StorageType storage_type, | 
 |     const vector<int>& blocks, | 
 |     const vector<ProductTerm>& product, | 
 |     vector<int>* row_nnz) { | 
 |   // Count the number of unique product term, which in turn is the | 
 |   // number of non-zeros in the outer product. Also count the number | 
 |   // of non-zeros in each row. | 
 |   row_nnz->resize(blocks.size()); | 
 |   std::fill(row_nnz->begin(), row_nnz->end(), 0); | 
 |   (*row_nnz)[product[0].row] = blocks[product[0].col]; | 
 |   int num_nonzeros = blocks[product[0].row] * blocks[product[0].col]; | 
 |   for (int i = 1; i < product.size(); ++i) { | 
 |     // Each (row, col) block counts only once. | 
 |     // This check depends on product sorted on (row, col). | 
 |     if (product[i].row != product[i - 1].row || | 
 |         product[i].col != product[i - 1].col) { | 
 |       (*row_nnz)[product[i].row] += blocks[product[i].col]; | 
 |       num_nonzeros += blocks[product[i].row] * blocks[product[i].col]; | 
 |     } | 
 |   } | 
 |  | 
 |   CompressedRowSparseMatrix* matrix = | 
 |       new CompressedRowSparseMatrix(num_cols, num_cols, num_nonzeros); | 
 |   matrix->set_storage_type(storage_type); | 
 |  | 
 |   *(matrix->mutable_row_blocks()) = blocks; | 
 |   *(matrix->mutable_col_blocks()) = blocks; | 
 |  | 
 |   // Compute block offsets for outer product matrix, which is used in | 
 |   // ComputeOuterProduct. | 
 |   vector<int>* block_offsets = matrix->mutable_block_offsets(); | 
 |   block_offsets->resize(blocks.size() + 1); | 
 |   (*block_offsets)[0] = 0; | 
 |   for (int i = 0; i < blocks.size(); ++i) { | 
 |     (*block_offsets)[i + 1] = (*block_offsets)[i] + blocks[i]; | 
 |   } | 
 |  | 
 |   return matrix; | 
 | } | 
 |  | 
 | CompressedRowSparseMatrix* CompressAndFillProgram( | 
 |     const int num_cols, | 
 |     const CompressedRowSparseMatrix::StorageType storage_type, | 
 |     const vector<int>& blocks, | 
 |     const vector<ProductTerm>& product, | 
 |     vector<int>* program) { | 
 |   CHECK_GT(product.size(), 0); | 
 |  | 
 |   vector<int> row_nnz; | 
 |   CompressedRowSparseMatrix* matrix = CreateOuterProductMatrix( | 
 |       num_cols, storage_type, blocks, product, &row_nnz); | 
 |  | 
 |   const vector<int>& block_offsets = matrix->block_offsets(); | 
 |  | 
 |   int* crsm_rows = matrix->mutable_rows(); | 
 |   std::fill(crsm_rows, crsm_rows + num_cols + 1, 0); | 
 |   int* crsm_cols = matrix->mutable_cols(); | 
 |   std::fill(crsm_cols, crsm_cols + matrix->num_nonzeros(), 0); | 
 |  | 
 |   CHECK_NOTNULL(program)->clear(); | 
 |   program->resize(product.size()); | 
 |  | 
 |   // Non zero elements are not stored consecutively across rows in a block. | 
 |   // We seperate nonzero into three categories: | 
 |   //   nonzeros in all previous row blocks counted in nnz | 
 |   //   nonzeros in current row counted in row_nnz | 
 |   //   nonzeros in previous col blocks of current row counted in col_nnz | 
 |   // | 
 |   // Give an element (j, k) within a block such that j and k | 
 |   // represent the relative position to the starting row and starting col of | 
 |   // the block, the row and col for the element is | 
 |   //   block_offsets[current.row] + j | 
 |   //   block_offsets[current.col] + k | 
 |   // The total number of nonzero to the element is | 
 |   //   nnz + row_nnz[current.row] * j + col_nnz + k | 
 |   // | 
 |   // program keeps col_nnz for block product, which is used later for | 
 |   // outer product computation. | 
 |   // | 
 |   // There is no special handling for diagonal blocks as we generate | 
 |   // BLOCK triangular matrix (diagonal block is full block) instead of | 
 |   // standard triangular matrix. | 
 |   int nnz = 0; | 
 |   int col_nnz = 0; | 
 |  | 
 |   // Process first product term. | 
 |   for (int j = 0; j < blocks[product[0].row]; ++j) { | 
 |     crsm_rows[block_offsets[product[0].row] + j + 1] = row_nnz[product[0].row]; | 
 |     for (int k = 0; k < blocks[product[0].col]; ++k) { | 
 |       crsm_cols[row_nnz[product[0].row] * j + k] = | 
 |           block_offsets[product[0].col] + k; | 
 |     } | 
 |   } | 
 |  | 
 |   (*program)[product[0].index] = 0; | 
 |  | 
 |   // Process rest product terms. | 
 |   for (int i = 1; i < product.size(); ++i) { | 
 |     const ProductTerm& previous = product[i - 1]; | 
 |     const ProductTerm& current = product[i]; | 
 |  | 
 |     // Sparsity structure is updated only if the term is not a repeat. | 
 |     if (previous.row != current.row || previous.col != current.col) { | 
 |       col_nnz += blocks[previous.col]; | 
 |       if (previous.row != current.row) { | 
 |         nnz += col_nnz * blocks[previous.row]; | 
 |         col_nnz = 0; | 
 |  | 
 |         for (int j = 0; j < blocks[current.row]; ++j) { | 
 |           crsm_rows[block_offsets[current.row] + j + 1] = row_nnz[current.row]; | 
 |         } | 
 |       } | 
 |  | 
 |       for (int j = 0; j < blocks[current.row]; ++j) { | 
 |         for (int k = 0; k < blocks[current.col]; ++k) { | 
 |           crsm_cols[nnz + row_nnz[current.row] * j + col_nnz + k] = | 
 |               block_offsets[current.col] + k; | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     (*program)[current.index] = col_nnz; | 
 |   } | 
 |  | 
 |   for (int i = 1; i < num_cols + 1; ++i) { | 
 |     crsm_rows[i] += crsm_rows[i - 1]; | 
 |   } | 
 |  | 
 |   return matrix; | 
 | } | 
 |  | 
 | // input is a matrix of dimesion <row_block_size, input_cols> | 
 | // output is a matrix of dimension <col_block1_size, output_cols> | 
 | // | 
 | // Implement block multiplication O = I1' * I2. | 
 | // I1 is block(0, col_block1_begin, row_block_size, col_block1_size) of input | 
 | // I2 is block(0, col_block2_begin, row_block_size, col_block2_size) of input | 
 | // O is block(0, 0, col_block1_size, col_block2_size) of output | 
 | void ComputeBlockMultiplication(const int row_block_size, | 
 |                                 const int col_block1_size, | 
 |                                 const int col_block2_size, | 
 |                                 const int col_block1_begin, | 
 |                                 const int col_block2_begin, | 
 |                                 const int input_cols, | 
 |                                 const double* input, | 
 |                                 const int output_cols, | 
 |                                 double* output) { | 
 |   for (int r = 0; r < row_block_size; ++r) { | 
 |     for (int idx1 = 0; idx1 < col_block1_size; ++idx1) { | 
 |       for (int idx2 = 0; idx2 < col_block2_size; ++idx2) { | 
 |         output[output_cols * idx1 + idx2] += | 
 |             input[input_cols * r + col_block1_begin + idx1] * | 
 |             input[input_cols * r + col_block2_begin + idx2]; | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 | }  // namespace | 
 |  | 
 | CompressedRowSparseMatrix* | 
 | CompressedRowSparseMatrix::CreateOuterProductMatrixAndProgram( | 
 |     const CompressedRowSparseMatrix& m, | 
 |     const CompressedRowSparseMatrix::StorageType storage_type, | 
 |     vector<int>* program) { | 
 |   CHECK(storage_type == LOWER_TRIANGULAR || storage_type == UPPER_TRIANGULAR); | 
 |   CHECK_NOTNULL(program)->clear(); | 
 |   CHECK_GT(m.num_nonzeros(), 0) | 
 |       << "Congratulations, you found a bug in Ceres. Please report it."; | 
 |  | 
 |   vector<ProductTerm> product; | 
 |   const vector<int>& col_blocks = m.col_blocks(); | 
 |   const vector<int>& crsb_rows = m.crsb_rows(); | 
 |   const vector<int>& crsb_cols = m.crsb_cols(); | 
 |  | 
 |   // Give input matrix m in Compressed Row Sparse Block format | 
 |   //     (row_block, col_block) | 
 |   // represent each block multiplication | 
 |   //     (row_block, col_block1)' X (row_block, col_block2) | 
 |   // by its product term index and sort the product terms | 
 |   //     (col_block1, col_block2, index) | 
 |   // | 
 |   // Due to the compression on rows, col_block is accessed through idx to | 
 |   // crsb_cols.  So col_block is accessed as crsb_cols[idx] in the code. | 
 |   for (int row_block = 1; row_block < crsb_rows.size(); ++row_block) { | 
 |     for (int idx1 = crsb_rows[row_block - 1]; idx1 < crsb_rows[row_block]; | 
 |          ++idx1) { | 
 |       if (storage_type == LOWER_TRIANGULAR) { | 
 |         for (int idx2 = crsb_rows[row_block - 1]; idx2 <= idx1; ++idx2) { | 
 |           product.push_back( | 
 |               ProductTerm(crsb_cols[idx1], crsb_cols[idx2], product.size())); | 
 |         } | 
 |       } else {  // Upper triangular matrix. | 
 |         for (int idx2 = idx1; idx2 < crsb_rows[row_block]; ++idx2) { | 
 |           product.push_back( | 
 |               ProductTerm(crsb_cols[idx1], crsb_cols[idx2], product.size())); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   sort(product.begin(), product.end()); | 
 |   return CompressAndFillProgram( | 
 |       m.num_cols(), storage_type, col_blocks, product, program); | 
 | } | 
 |  | 
 | // Give input matrix m in Compressed Row Sparse Block format | 
 | //     (row_block, col_block) | 
 | // compute outer product m' * m as sum of block multiplications | 
 | //     (row_block, col_block1)' X (row_block, col_block2) | 
 | // | 
 | // Given row_block of the input matrix m, we use m_row_begin to represent | 
 | // the starting row of the row block and m_row_nnz to represent number of | 
 | // nonzero in each row of the row block, then the rows belonging to | 
 | // the row block can be represented as a dense matrix starting at | 
 | //     m.values() + m.rows()[m_row_begin] | 
 | // with dimension | 
 | //     <m.row_blocks()[row_block], m_row_nnz> | 
 | // | 
 | // Then each input matrix block (row_block, col_block) can be represented as | 
 | // a block of above dense matrix starting at position | 
 | //     (0, m_col_nnz) | 
 | // with size | 
 | //     <m.row_blocks()[row_block], m.col_blocks()[col_block]> | 
 | // where m_col_nnz is the number of nonzero before col_block in each row. | 
 | // | 
 | // The outer product block is represented similarly with m_row_begin, | 
 | // m_row_nnz, m_col_nnz, etc. replaced by row_begin, row_nnz, col_nnz, | 
 | // etc. The difference is, m_row_begin and m_col_nnz is counted | 
 | // during the traverse of block multiplication, while row_begin and | 
 | // col_nnz are got from pre-computed block_offsets and program. | 
 | // | 
 | // Due to the compression on rows, col_block is accessed through | 
 | // idx to crsb_col vector. So col_block is accessed as crsb_col[idx] | 
 | // in the code. | 
 | // | 
 | // Note this function produces a triangular matrix in block unit (i.e. | 
 | // diagonal block is a normal block) instead of standard triangular matrix. | 
 | // So there is no special handling for diagonal blocks. | 
 | void CompressedRowSparseMatrix::ComputeOuterProduct( | 
 |     const CompressedRowSparseMatrix& m, | 
 |     const vector<int>& program, | 
 |     CompressedRowSparseMatrix* result) { | 
 |   CHECK(result->storage_type() == LOWER_TRIANGULAR || | 
 |         result->storage_type() == UPPER_TRIANGULAR); | 
 |   result->SetZero(); | 
 |   double* values = result->mutable_values(); | 
 |   const int* rows = result->rows(); | 
 |   const vector<int>& block_offsets = result->block_offsets(); | 
 |  | 
 |   int cursor = 0; | 
 |   const double* m_values = m.values(); | 
 |   const int* m_rows = m.rows(); | 
 |   const vector<int>& row_blocks = m.row_blocks(); | 
 |   const vector<int>& col_blocks = m.col_blocks(); | 
 |   const vector<int>& crsb_rows = m.crsb_rows(); | 
 |   const vector<int>& crsb_cols = m.crsb_cols(); | 
 |   const StorageType storage_type = result->storage_type(); | 
 | #define COL_BLOCK1 (crsb_cols[idx1]) | 
 | #define COL_BLOCK2 (crsb_cols[idx2]) | 
 |  | 
 |   // Iterate row blocks. | 
 |   for (int row_block = 0, m_row_begin = 0; row_block < row_blocks.size(); | 
 |        m_row_begin += row_blocks[row_block++]) { | 
 |     // Non zeros are not stored consecutively across rows in a block. | 
 |     // The gaps between rows is the number of nonzeros of the | 
 |     // input matrix compressed row. | 
 |     const int m_row_nnz = m_rows[m_row_begin + 1] - m_rows[m_row_begin]; | 
 |  | 
 |     // Iterate (col_block1 x col_block2). | 
 |     for (int idx1 = crsb_rows[row_block], m_col_nnz1 = 0; | 
 |          idx1 < crsb_rows[row_block + 1]; | 
 |          m_col_nnz1 += col_blocks[COL_BLOCK1], ++idx1) { | 
 |       // Non zeros are not stored consecutively across rows in a | 
 |       // block. The gaps between rows is the number of nonzeros of the | 
 |       // outer product matrix compressed row. | 
 |       const int row_begin = block_offsets[COL_BLOCK1]; | 
 |       const int row_nnz = rows[row_begin + 1] - rows[row_begin]; | 
 |       if (storage_type == LOWER_TRIANGULAR) { | 
 |         for (int idx2 = crsb_rows[row_block], m_col_nnz2 = 0; idx2 <= idx1; | 
 |              m_col_nnz2 += col_blocks[COL_BLOCK2], ++idx2, ++cursor) { | 
 |           int col_nnz = program[cursor]; | 
 |           ComputeBlockMultiplication(row_blocks[row_block], | 
 |                                      col_blocks[COL_BLOCK1], | 
 |                                      col_blocks[COL_BLOCK2], | 
 |                                      m_col_nnz1, | 
 |                                      m_col_nnz2, | 
 |                                      m_row_nnz, | 
 |                                      m_values + m_rows[m_row_begin], | 
 |                                      row_nnz, | 
 |                                      values + rows[row_begin] + col_nnz); | 
 |         } | 
 |       } else { | 
 |         for (int idx2 = idx1, m_col_nnz2 = m_col_nnz1; | 
 |              idx2 < crsb_rows[row_block + 1]; | 
 |              m_col_nnz2 += col_blocks[COL_BLOCK2], ++idx2, ++cursor) { | 
 |           int col_nnz = program[cursor]; | 
 |           ComputeBlockMultiplication(row_blocks[row_block], | 
 |                                      col_blocks[COL_BLOCK1], | 
 |                                      col_blocks[COL_BLOCK2], | 
 |                                      m_col_nnz1, | 
 |                                      m_col_nnz2, | 
 |                                      m_row_nnz, | 
 |                                      m_values + m_rows[m_row_begin], | 
 |                                      row_nnz, | 
 |                                      values + rows[row_begin] + col_nnz); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 | #undef COL_BLOCK1 | 
 | #undef COL_BLOCK2 | 
 |  | 
 |   CHECK_EQ(cursor, program.size()); | 
 | } | 
 |  | 
 | CompressedRowSparseMatrix* CompressedRowSparseMatrix::CreateRandomMatrix( | 
 |     const CompressedRowSparseMatrix::RandomMatrixOptions& options) { | 
 |   CHECK_GT(options.num_row_blocks, 0); | 
 |   CHECK_GT(options.min_row_block_size, 0); | 
 |   CHECK_GT(options.max_row_block_size, 0); | 
 |   CHECK_LE(options.min_row_block_size, options.max_row_block_size); | 
 |   CHECK_GT(options.num_col_blocks, 0); | 
 |   CHECK_GT(options.min_col_block_size, 0); | 
 |   CHECK_GT(options.max_col_block_size, 0); | 
 |   CHECK_LE(options.min_col_block_size, options.max_col_block_size); | 
 |   CHECK_GT(options.block_density, 0.0); | 
 |   CHECK_LE(options.block_density, 1.0); | 
 |  | 
 |   vector<int> row_blocks; | 
 |   vector<int> col_blocks; | 
 |  | 
 |   // Generate the row block structure. | 
 |   for (int i = 0; i < options.num_row_blocks; ++i) { | 
 |     // Generate a random integer in [min_row_block_size, max_row_block_size] | 
 |     const int delta_block_size = | 
 |         Uniform(options.max_row_block_size - options.min_row_block_size); | 
 |     row_blocks.push_back(options.min_row_block_size + delta_block_size); | 
 |   } | 
 |  | 
 |   // Generate the col block structure. | 
 |   for (int i = 0; i < options.num_col_blocks; ++i) { | 
 |     // Generate a random integer in [min_col_block_size, max_col_block_size] | 
 |     const int delta_block_size = | 
 |         Uniform(options.max_col_block_size - options.min_col_block_size); | 
 |     col_blocks.push_back(options.min_col_block_size + delta_block_size); | 
 |   } | 
 |  | 
 |   vector<int> crsb_rows; | 
 |   vector<int> crsb_cols; | 
 |   vector<int> tsm_rows; | 
 |   vector<int> tsm_cols; | 
 |   vector<double> tsm_values; | 
 |  | 
 |   // For ease of construction, we are going to generate the | 
 |   // CompressedRowSparseMatrix by generating it as a | 
 |   // TripletSparseMatrix and then converting it to a | 
 |   // CompressedRowSparseMatrix. | 
 |  | 
 |   // It is possible that the random matrix is empty which is likely | 
 |   // not what the user wants, so do the matrix generation till we have | 
 |   // at least one non-zero entry. | 
 |   while (tsm_values.empty()) { | 
 |     crsb_rows.clear(); | 
 |     crsb_cols.clear(); | 
 |     tsm_rows.clear(); | 
 |     tsm_cols.clear(); | 
 |     tsm_values.clear(); | 
 |  | 
 |     int row_block_begin = 0; | 
 |     for (int r = 0; r < options.num_row_blocks; ++r) { | 
 |       int col_block_begin = 0; | 
 |       crsb_rows.push_back(crsb_cols.size()); | 
 |       for (int c = 0; c < options.num_col_blocks; ++c) { | 
 |         // Randomly determine if this block is present or not. | 
 |         if (RandDouble() <= options.block_density) { | 
 |           AddRandomBlock(row_blocks[r], | 
 |                          col_blocks[c], | 
 |                          row_block_begin, | 
 |                          col_block_begin, | 
 |                          &tsm_rows, | 
 |                          &tsm_cols, | 
 |                          &tsm_values); | 
 |           // Add the block to the block sparse structure. | 
 |           crsb_cols.push_back(c); | 
 |         } | 
 |         col_block_begin += col_blocks[c]; | 
 |       } | 
 |       row_block_begin += row_blocks[r]; | 
 |     } | 
 |     crsb_rows.push_back(crsb_cols.size()); | 
 |   } | 
 |  | 
 |   const int num_rows = std::accumulate(row_blocks.begin(), row_blocks.end(), 0); | 
 |   const int num_cols = std::accumulate(col_blocks.begin(), col_blocks.end(), 0); | 
 |   const bool kDoNotTranspose = false; | 
 |   CompressedRowSparseMatrix* matrix = | 
 |       CompressedRowSparseMatrix::FromTripletSparseMatrix( | 
 |           TripletSparseMatrix( | 
 |               num_rows, num_cols, tsm_rows, tsm_cols, tsm_values), | 
 |           kDoNotTranspose); | 
 |   (*matrix->mutable_row_blocks()) = row_blocks; | 
 |   (*matrix->mutable_col_blocks()) = col_blocks; | 
 |   (*matrix->mutable_crsb_rows()) = crsb_rows; | 
 |   (*matrix->mutable_crsb_cols()) = crsb_cols; | 
 |   matrix->set_storage_type(CompressedRowSparseMatrix::UNSYMMETRIC); | 
 |   return matrix; | 
 | } | 
 |  | 
 | }  // namespace internal | 
 | }  // namespace ceres |