| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2015 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: keir@google.com (Keir Mierle) | 
 |  | 
 | #include "ceres/gradient_checking_cost_function.h" | 
 |  | 
 | #include <cmath> | 
 | #include <vector> | 
 | #include "ceres/cost_function.h" | 
 | #include "ceres/internal/scoped_ptr.h" | 
 | #include "ceres/local_parameterization.h" | 
 | #include "ceres/loss_function.h" | 
 | #include "ceres/parameter_block.h" | 
 | #include "ceres/problem_impl.h" | 
 | #include "ceres/program.h" | 
 | #include "ceres/random.h" | 
 | #include "ceres/residual_block.h" | 
 | #include "ceres/sized_cost_function.h" | 
 | #include "ceres/types.h" | 
 | #include "glog/logging.h" | 
 | #include "gmock/gmock.h" | 
 | #include "gtest/gtest.h" | 
 |  | 
 | namespace ceres { | 
 | namespace internal { | 
 |  | 
 | using std::vector; | 
 | using testing::AllOf; | 
 | using testing::AnyNumber; | 
 | using testing::HasSubstr; | 
 | using testing::_; | 
 |  | 
 | // Pick a (non-quadratic) function whose derivative are easy: | 
 | // | 
 | //    f = exp(- a' x). | 
 | //   df = - f a. | 
 | // | 
 | // where 'a' is a vector of the same size as 'x'. In the block | 
 | // version, they are both block vectors, of course. | 
 | template<int bad_block = 1, int bad_variable = 2> | 
 | class TestTerm : public CostFunction { | 
 |  public: | 
 |   // The constructor of this function needs to know the number | 
 |   // of blocks desired, and the size of each block. | 
 |   TestTerm(int arity, int const *dim) : arity_(arity) { | 
 |     // Make 'arity' random vectors. | 
 |     a_.resize(arity_); | 
 |     for (int j = 0; j < arity_; ++j) { | 
 |       a_[j].resize(dim[j]); | 
 |       for (int u = 0; u < dim[j]; ++u) { | 
 |         a_[j][u] = 2.0 * RandDouble() - 1.0; | 
 |       } | 
 |     } | 
 |  | 
 |     for (int i = 0; i < arity_; i++) { | 
 |       mutable_parameter_block_sizes()->push_back(dim[i]); | 
 |     } | 
 |     set_num_residuals(1); | 
 |   } | 
 |  | 
 |   bool Evaluate(double const* const* parameters, | 
 |                 double* residuals, | 
 |                 double** jacobians) const { | 
 |     // Compute a . x. | 
 |     double ax = 0; | 
 |     for (int j = 0; j < arity_; ++j) { | 
 |       for (int u = 0; u < parameter_block_sizes()[j]; ++u) { | 
 |         ax += a_[j][u] * parameters[j][u]; | 
 |       } | 
 |     } | 
 |  | 
 |     // This is the cost, but also appears as a factor | 
 |     // in the derivatives. | 
 |     double f = *residuals = exp(-ax); | 
 |  | 
 |     // Accumulate 1st order derivatives. | 
 |     if (jacobians) { | 
 |       for (int j = 0; j < arity_; ++j) { | 
 |         if (jacobians[j]) { | 
 |           for (int u = 0; u < parameter_block_sizes()[j]; ++u) { | 
 |             // See comments before class. | 
 |             jacobians[j][u] = - f * a_[j][u]; | 
 |  | 
 |             if (bad_block == j && bad_variable == u) { | 
 |               // Whoopsiedoopsie! Deliberately introduce a faulty jacobian entry | 
 |               // like what happens when users make an error in their jacobian | 
 |               // computations. This should get detected. | 
 |               LOG(INFO) << "Poisoning jacobian for parameter block " << j | 
 |                         << ", row 0, column " << u; | 
 |               jacobians[j][u] += 500; | 
 |             } | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     return true; | 
 |   } | 
 |  | 
 |  private: | 
 |   int arity_; | 
 |   vector<vector<double> > a_; | 
 | }; | 
 |  | 
 | TEST(GradientCheckingCostFunction, ResidualsAndJacobiansArePreservedTest) { | 
 |   srand(5); | 
 |  | 
 |   // Test with 3 blocks of size 2, 3 and 4. | 
 |   int const arity = 3; | 
 |   int const dim[arity] = { 2, 3, 4 }; | 
 |  | 
 |   // Make a random set of blocks. | 
 |   vector<double*> parameters(arity); | 
 |   for (int j = 0; j < arity; ++j) { | 
 |     parameters[j] = new double[dim[j]]; | 
 |     for (int u = 0; u < dim[j]; ++u) { | 
 |       parameters[j][u] = 2.0 * RandDouble() - 1.0; | 
 |     } | 
 |   } | 
 |  | 
 |   double original_residual; | 
 |   double residual; | 
 |   vector<double*> original_jacobians(arity); | 
 |   vector<double*> jacobians(arity); | 
 |  | 
 |   for (int j = 0; j < arity; ++j) { | 
 |     // Since residual is one dimensional the jacobians have the same | 
 |     // size as the parameter blocks. | 
 |     jacobians[j] = new double[dim[j]]; | 
 |     original_jacobians[j] = new double[dim[j]]; | 
 |   } | 
 |  | 
 |   const double kRelativeStepSize = 1e-6; | 
 |   const double kRelativePrecision = 1e-4; | 
 |  | 
 |   TestTerm<-1, -1> term(arity, dim); | 
 |   GradientCheckingIterationCallback callback; | 
 |   scoped_ptr<CostFunction> gradient_checking_cost_function( | 
 |       CreateGradientCheckingCostFunction(&term, NULL, | 
 |                                          kRelativeStepSize, | 
 |                                          kRelativePrecision, | 
 |                                          "Ignored.", &callback)); | 
 |   term.Evaluate(¶meters[0], | 
 |                 &original_residual, | 
 |                 &original_jacobians[0]); | 
 |  | 
 |   gradient_checking_cost_function->Evaluate(¶meters[0], | 
 |                                             &residual, | 
 |                                             &jacobians[0]); | 
 |   EXPECT_EQ(original_residual, residual); | 
 |  | 
 |   for (int j = 0; j < arity; j++) { | 
 |     for (int k = 0; k < dim[j]; ++k) { | 
 |       EXPECT_EQ(original_jacobians[j][k], jacobians[j][k]); | 
 |     } | 
 |  | 
 |     delete[] parameters[j]; | 
 |     delete[] jacobians[j]; | 
 |     delete[] original_jacobians[j]; | 
 |   } | 
 | } | 
 |  | 
 | TEST(GradientCheckingCostFunction, SmokeTest) { | 
 |   srand(5); | 
 |  | 
 |   // Test with 3 blocks of size 2, 3 and 4. | 
 |   int const arity = 3; | 
 |   int const dim[arity] = { 2, 3, 4 }; | 
 |  | 
 |   // Make a random set of blocks. | 
 |   vector<double*> parameters(arity); | 
 |   for (int j = 0; j < arity; ++j) { | 
 |     parameters[j] = new double[dim[j]]; | 
 |     for (int u = 0; u < dim[j]; ++u) { | 
 |       parameters[j][u] = 2.0 * RandDouble() - 1.0; | 
 |     } | 
 |   } | 
 |  | 
 |   double residual; | 
 |   vector<double*> jacobians(arity); | 
 |   for (int j = 0; j < arity; ++j) { | 
 |     // Since residual is one dimensional the jacobians have the same size as the | 
 |     // parameter blocks. | 
 |     jacobians[j] = new double[dim[j]]; | 
 |   } | 
 |  | 
 |   const double kRelativeStepSize = 1e-6; | 
 |   const double kRelativePrecision = 1e-4; | 
 |  | 
 |   // Should have one term that's bad, causing everything to get dumped. | 
 |   LOG(INFO) << "Bad gradient"; | 
 |   { | 
 |     TestTerm<1, 2> term(arity, dim); | 
 |     GradientCheckingIterationCallback callback; | 
 |     scoped_ptr<CostFunction> gradient_checking_cost_function( | 
 |         CreateGradientCheckingCostFunction(&term, NULL, | 
 |                                            kRelativeStepSize, | 
 |                                            kRelativePrecision, | 
 |                                            "Fuzzy banana", &callback)); | 
 |     EXPECT_TRUE( | 
 |         gradient_checking_cost_function->Evaluate(¶meters[0], &residual, | 
 |                                                   &jacobians[0])); | 
 |     EXPECT_TRUE(callback.gradient_error_detected()); | 
 |     EXPECT_TRUE(callback.error_log().find("Fuzzy banana") != std::string::npos); | 
 |     EXPECT_TRUE(callback.error_log().find("(1,0,2) Relative error worse than") | 
 |                 != std::string::npos); | 
 |   } | 
 |  | 
 |   // The gradient is correct, so no errors are reported. | 
 |   LOG(INFO) << "Good gradient"; | 
 |   { | 
 |     TestTerm<-1, -1> term(arity, dim); | 
 |     GradientCheckingIterationCallback callback; | 
 |     scoped_ptr<CostFunction> gradient_checking_cost_function( | 
 |         CreateGradientCheckingCostFunction(&term, NULL, | 
 |                                            kRelativeStepSize, | 
 |                                            kRelativePrecision, | 
 |                                            "Fuzzy banana", &callback)); | 
 |     EXPECT_TRUE( | 
 |         gradient_checking_cost_function->Evaluate(¶meters[0], &residual, | 
 |                                                   &jacobians[0])); | 
 |     EXPECT_FALSE(callback.gradient_error_detected()); | 
 |   } | 
 |  | 
 |   for (int j = 0; j < arity; j++) { | 
 |     delete[] parameters[j]; | 
 |     delete[] jacobians[j]; | 
 |   } | 
 | } | 
 |  | 
 | // The following three classes are for the purposes of defining | 
 | // function signatures. They have dummy Evaluate functions. | 
 |  | 
 | // Trivial cost function that accepts a single argument. | 
 | class UnaryCostFunction : public CostFunction { | 
 |  public: | 
 |   UnaryCostFunction(int num_residuals, int32 parameter_block_size) { | 
 |     set_num_residuals(num_residuals); | 
 |     mutable_parameter_block_sizes()->push_back(parameter_block_size); | 
 |   } | 
 |   virtual ~UnaryCostFunction() {} | 
 |  | 
 |   virtual bool Evaluate(double const* const* parameters, | 
 |                         double* residuals, | 
 |                         double** jacobians) const { | 
 |     for (int i = 0; i < num_residuals(); ++i) { | 
 |       residuals[i] = 1; | 
 |     } | 
 |     return true; | 
 |   } | 
 | }; | 
 |  | 
 | // Trivial cost function that accepts two arguments. | 
 | class BinaryCostFunction: public CostFunction { | 
 |  public: | 
 |   BinaryCostFunction(int num_residuals, | 
 |                      int32 parameter_block1_size, | 
 |                      int32 parameter_block2_size) { | 
 |     set_num_residuals(num_residuals); | 
 |     mutable_parameter_block_sizes()->push_back(parameter_block1_size); | 
 |     mutable_parameter_block_sizes()->push_back(parameter_block2_size); | 
 |   } | 
 |  | 
 |   virtual bool Evaluate(double const* const* parameters, | 
 |                         double* residuals, | 
 |                         double** jacobians) const { | 
 |     for (int i = 0; i < num_residuals(); ++i) { | 
 |       residuals[i] = 2; | 
 |     } | 
 |     return true; | 
 |   } | 
 | }; | 
 |  | 
 | // Trivial cost function that accepts three arguments. | 
 | class TernaryCostFunction: public CostFunction { | 
 |  public: | 
 |   TernaryCostFunction(int num_residuals, | 
 |                       int32 parameter_block1_size, | 
 |                       int32 parameter_block2_size, | 
 |                       int32 parameter_block3_size) { | 
 |     set_num_residuals(num_residuals); | 
 |     mutable_parameter_block_sizes()->push_back(parameter_block1_size); | 
 |     mutable_parameter_block_sizes()->push_back(parameter_block2_size); | 
 |     mutable_parameter_block_sizes()->push_back(parameter_block3_size); | 
 |   } | 
 |  | 
 |   virtual bool Evaluate(double const* const* parameters, | 
 |                         double* residuals, | 
 |                         double** jacobians) const { | 
 |     for (int i = 0; i < num_residuals(); ++i) { | 
 |       residuals[i] = 3; | 
 |     } | 
 |     return true; | 
 |   } | 
 | }; | 
 |  | 
 | // Verify that the two ParameterBlocks are formed from the same user | 
 | // array and have the same LocalParameterization object. | 
 | void ParameterBlocksAreEquivalent(const ParameterBlock*  left, | 
 |                                   const ParameterBlock* right) { | 
 |   CHECK_NOTNULL(left); | 
 |   CHECK_NOTNULL(right); | 
 |   EXPECT_EQ(left->user_state(), right->user_state()); | 
 |   EXPECT_EQ(left->Size(), right->Size()); | 
 |   EXPECT_EQ(left->Size(), right->Size()); | 
 |   EXPECT_EQ(left->LocalSize(), right->LocalSize()); | 
 |   EXPECT_EQ(left->local_parameterization(), right->local_parameterization()); | 
 |   EXPECT_EQ(left->IsConstant(), right->IsConstant()); | 
 | } | 
 |  | 
 | TEST(GradientCheckingProblemImpl, ProblemDimensionsMatch) { | 
 |   // Parameter blocks with arbitrarily chosen initial values. | 
 |   double x[] = {1.0, 2.0, 3.0}; | 
 |   double y[] = {4.0, 5.0, 6.0, 7.0}; | 
 |   double z[] = {8.0, 9.0, 10.0, 11.0, 12.0}; | 
 |   double w[] = {13.0, 14.0, 15.0, 16.0}; | 
 |  | 
 |   ProblemImpl problem_impl; | 
 |   problem_impl.AddParameterBlock(x, 3); | 
 |   problem_impl.AddParameterBlock(y, 4); | 
 |   problem_impl.SetParameterBlockConstant(y); | 
 |   problem_impl.AddParameterBlock(z, 5); | 
 |   problem_impl.AddParameterBlock(w, 4, new QuaternionParameterization); | 
 |   problem_impl.AddResidualBlock(new UnaryCostFunction(2, 3), NULL, x); | 
 |   problem_impl.AddResidualBlock(new BinaryCostFunction(6, 5, 4) , | 
 |                                 NULL, z, y); | 
 |   problem_impl.AddResidualBlock(new BinaryCostFunction(3, 3, 5), | 
 |                                 new TrivialLoss, x, z); | 
 |   problem_impl.AddResidualBlock(new BinaryCostFunction(7, 5, 3), | 
 |                                 NULL, z, x); | 
 |   problem_impl.AddResidualBlock(new TernaryCostFunction(1, 5, 3, 4), | 
 |                                 NULL, z, x, y); | 
 |  | 
 |   GradientCheckingIterationCallback callback; | 
 |   scoped_ptr<ProblemImpl> gradient_checking_problem_impl( | 
 |       CreateGradientCheckingProblemImpl(&problem_impl, 1.0, 1.0, &callback)); | 
 |  | 
 |   // The dimensions of the two problems match. | 
 |   EXPECT_EQ(problem_impl.NumParameterBlocks(), | 
 |             gradient_checking_problem_impl->NumParameterBlocks()); | 
 |   EXPECT_EQ(problem_impl.NumResidualBlocks(), | 
 |             gradient_checking_problem_impl->NumResidualBlocks()); | 
 |  | 
 |   EXPECT_EQ(problem_impl.NumParameters(), | 
 |             gradient_checking_problem_impl->NumParameters()); | 
 |   EXPECT_EQ(problem_impl.NumResiduals(), | 
 |             gradient_checking_problem_impl->NumResiduals()); | 
 |  | 
 |   const Program& program = problem_impl.program(); | 
 |   const Program& gradient_checking_program = | 
 |       gradient_checking_problem_impl->program(); | 
 |  | 
 |   // Since we added the ParameterBlocks and ResidualBlocks explicitly, | 
 |   // they should be in the same order in the two programs. It is | 
 |   // possible that may change due to implementation changes to | 
 |   // Program. This is not expected to be the case and writing code to | 
 |   // anticipate that possibility not worth the extra complexity in | 
 |   // this test. | 
 |   for (int i = 0; i < program.parameter_blocks().size(); ++i) { | 
 |     ParameterBlocksAreEquivalent( | 
 |         program.parameter_blocks()[i], | 
 |         gradient_checking_program.parameter_blocks()[i]); | 
 |   } | 
 |  | 
 |   for (int i = 0; i < program.residual_blocks().size(); ++i) { | 
 |     // Compare the sizes of the two ResidualBlocks. | 
 |     const ResidualBlock* original_residual_block = | 
 |         program.residual_blocks()[i]; | 
 |     const ResidualBlock* new_residual_block = | 
 |         gradient_checking_program.residual_blocks()[i]; | 
 |     EXPECT_EQ(original_residual_block->NumParameterBlocks(), | 
 |               new_residual_block->NumParameterBlocks()); | 
 |     EXPECT_EQ(original_residual_block->NumResiduals(), | 
 |               new_residual_block->NumResiduals()); | 
 |     EXPECT_EQ(original_residual_block->NumScratchDoublesForEvaluate(), | 
 |               new_residual_block->NumScratchDoublesForEvaluate()); | 
 |  | 
 |     // Verify that the ParameterBlocks for the two residuals are equivalent. | 
 |     for (int j = 0; j < original_residual_block->NumParameterBlocks(); ++j) { | 
 |       ParameterBlocksAreEquivalent( | 
 |           original_residual_block->parameter_blocks()[j], | 
 |           new_residual_block->parameter_blocks()[j]); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | }  // namespace internal | 
 | }  // namespace ceres |