| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2015 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
 |  | 
 | #include "ceres/linear_least_squares_problems.h" | 
 |  | 
 | #include <cstdio> | 
 | #include <string> | 
 | #include <vector> | 
 | #include "ceres/block_sparse_matrix.h" | 
 | #include "ceres/block_structure.h" | 
 | #include "ceres/casts.h" | 
 | #include "ceres/file.h" | 
 | #include "ceres/internal/scoped_ptr.h" | 
 | #include "ceres/stringprintf.h" | 
 | #include "ceres/triplet_sparse_matrix.h" | 
 | #include "ceres/types.h" | 
 | #include "glog/logging.h" | 
 |  | 
 | namespace ceres { | 
 | namespace internal { | 
 |  | 
 | using std::string; | 
 |  | 
 | LinearLeastSquaresProblem* CreateLinearLeastSquaresProblemFromId(int id) { | 
 |   switch (id) { | 
 |     case 0: | 
 |       return LinearLeastSquaresProblem0(); | 
 |     case 1: | 
 |       return LinearLeastSquaresProblem1(); | 
 |     case 2: | 
 |       return LinearLeastSquaresProblem2(); | 
 |     case 3: | 
 |       return LinearLeastSquaresProblem3(); | 
 |     case 4: | 
 |       return LinearLeastSquaresProblem4(); | 
 |     default: | 
 |       LOG(FATAL) << "Unknown problem id requested " << id; | 
 |   } | 
 |   return NULL; | 
 | } | 
 |  | 
 | /* | 
 | A = [1   2] | 
 |     [3   4] | 
 |     [6 -10] | 
 |  | 
 | b = [  8 | 
 |       18 | 
 |      -18] | 
 |  | 
 | x = [2 | 
 |      3] | 
 |  | 
 | D = [1 | 
 |      2] | 
 |  | 
 | x_D = [1.78448275; | 
 |        2.82327586;] | 
 |  */ | 
 | LinearLeastSquaresProblem* LinearLeastSquaresProblem0() { | 
 |   LinearLeastSquaresProblem* problem = new LinearLeastSquaresProblem; | 
 |  | 
 |   TripletSparseMatrix* A = new TripletSparseMatrix(3, 2, 6); | 
 |   problem->b.reset(new double[3]); | 
 |   problem->D.reset(new double[2]); | 
 |  | 
 |   problem->x.reset(new double[2]); | 
 |   problem->x_D.reset(new double[2]); | 
 |  | 
 |   int* Ai = A->mutable_rows(); | 
 |   int* Aj = A->mutable_cols(); | 
 |   double* Ax = A->mutable_values(); | 
 |  | 
 |   int counter = 0; | 
 |   for (int i = 0; i < 3; ++i) { | 
 |     for (int j = 0; j< 2; ++j) { | 
 |       Ai[counter] = i; | 
 |       Aj[counter] = j; | 
 |       ++counter; | 
 |     } | 
 |   } | 
 |  | 
 |   Ax[0] = 1.; | 
 |   Ax[1] = 2.; | 
 |   Ax[2] = 3.; | 
 |   Ax[3] = 4.; | 
 |   Ax[4] = 6; | 
 |   Ax[5] = -10; | 
 |   A->set_num_nonzeros(6); | 
 |   problem->A.reset(A); | 
 |  | 
 |   problem->b[0] = 8; | 
 |   problem->b[1] = 18; | 
 |   problem->b[2] = -18; | 
 |  | 
 |   problem->x[0] = 2.0; | 
 |   problem->x[1] = 3.0; | 
 |  | 
 |   problem->D[0] = 1; | 
 |   problem->D[1] = 2; | 
 |  | 
 |   problem->x_D[0] = 1.78448275; | 
 |   problem->x_D[1] = 2.82327586; | 
 |   return problem; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |       A = [1 0  | 2 0 0 | 
 |            3 0  | 0 4 0 | 
 |            0 5  | 0 0 6 | 
 |            0 7  | 8 0 0 | 
 |            0 9  | 1 0 0 | 
 |            0 0  | 1 1 1] | 
 |  | 
 |       b = [0 | 
 |            1 | 
 |            2 | 
 |            3 | 
 |            4 | 
 |            5] | 
 |  | 
 |       c = A'* b = [ 3 | 
 |                    67 | 
 |                    33 | 
 |                     9 | 
 |                    17] | 
 |  | 
 |       A'A = [10    0    2   12   0 | 
 |               0  155   65    0  30 | 
 |               2   65   70    1   1 | 
 |              12    0    1   17   1 | 
 |               0   30    1    1  37] | 
 |  | 
 |       S = [ 42.3419  -1.4000  -11.5806 | 
 |             -1.4000   2.6000    1.0000 | 
 |             11.5806   1.0000   31.1935] | 
 |  | 
 |       r = [ 4.3032 | 
 |             5.4000 | 
 |             5.0323] | 
 |  | 
 |       S\r = [ 0.2102 | 
 |               2.1367 | 
 |               0.1388] | 
 |  | 
 |       A\b = [-2.3061 | 
 |               0.3172 | 
 |               0.2102 | 
 |               2.1367 | 
 |               0.1388] | 
 | */ | 
 | // The following two functions create a TripletSparseMatrix and a | 
 | // BlockSparseMatrix version of this problem. | 
 |  | 
 | // TripletSparseMatrix version. | 
 | LinearLeastSquaresProblem* LinearLeastSquaresProblem1() { | 
 |   int num_rows = 6; | 
 |   int num_cols = 5; | 
 |  | 
 |   LinearLeastSquaresProblem* problem = new LinearLeastSquaresProblem; | 
 |   TripletSparseMatrix* A = new TripletSparseMatrix(num_rows, | 
 |                                                    num_cols, | 
 |                                                    num_rows * num_cols); | 
 |   problem->b.reset(new double[num_rows]); | 
 |   problem->D.reset(new double[num_cols]); | 
 |   problem->num_eliminate_blocks = 2; | 
 |  | 
 |   int* rows = A->mutable_rows(); | 
 |   int* cols = A->mutable_cols(); | 
 |   double* values = A->mutable_values(); | 
 |  | 
 |   int nnz = 0; | 
 |  | 
 |   // Row 1 | 
 |   { | 
 |     rows[nnz] = 0; | 
 |     cols[nnz] = 0; | 
 |     values[nnz++] = 1; | 
 |  | 
 |     rows[nnz] = 0; | 
 |     cols[nnz] = 2; | 
 |     values[nnz++] = 2; | 
 |   } | 
 |  | 
 |   // Row 2 | 
 |   { | 
 |     rows[nnz] = 1; | 
 |     cols[nnz] = 0; | 
 |     values[nnz++] = 3; | 
 |  | 
 |     rows[nnz] = 1; | 
 |     cols[nnz] = 3; | 
 |     values[nnz++] = 4; | 
 |   } | 
 |  | 
 |   // Row 3 | 
 |   { | 
 |     rows[nnz] = 2; | 
 |     cols[nnz] = 1; | 
 |     values[nnz++] = 5; | 
 |  | 
 |     rows[nnz] = 2; | 
 |     cols[nnz] = 4; | 
 |     values[nnz++] = 6; | 
 |   } | 
 |  | 
 |   // Row 4 | 
 |   { | 
 |     rows[nnz] = 3; | 
 |     cols[nnz] = 1; | 
 |     values[nnz++] = 7; | 
 |  | 
 |     rows[nnz] = 3; | 
 |     cols[nnz] = 2; | 
 |     values[nnz++] = 8; | 
 |   } | 
 |  | 
 |   // Row 5 | 
 |   { | 
 |     rows[nnz] = 4; | 
 |     cols[nnz] = 1; | 
 |     values[nnz++] = 9; | 
 |  | 
 |     rows[nnz] = 4; | 
 |     cols[nnz] = 2; | 
 |     values[nnz++] = 1; | 
 |   } | 
 |  | 
 |   // Row 6 | 
 |   { | 
 |     rows[nnz] = 5; | 
 |     cols[nnz] = 2; | 
 |     values[nnz++] = 1; | 
 |  | 
 |     rows[nnz] = 5; | 
 |     cols[nnz] = 3; | 
 |     values[nnz++] = 1; | 
 |  | 
 |     rows[nnz] = 5; | 
 |     cols[nnz] = 4; | 
 |     values[nnz++] = 1; | 
 |   } | 
 |  | 
 |   A->set_num_nonzeros(nnz); | 
 |   CHECK(A->IsValid()); | 
 |  | 
 |   problem->A.reset(A); | 
 |  | 
 |   for (int i = 0; i < num_cols; ++i) { | 
 |     problem->D.get()[i] = 1; | 
 |   } | 
 |  | 
 |   for (int i = 0; i < num_rows; ++i) { | 
 |     problem->b.get()[i] = i; | 
 |   } | 
 |  | 
 |   return problem; | 
 | } | 
 |  | 
 | // BlockSparseMatrix version | 
 | LinearLeastSquaresProblem* LinearLeastSquaresProblem2() { | 
 |   int num_rows = 6; | 
 |   int num_cols = 5; | 
 |  | 
 |   LinearLeastSquaresProblem* problem = new LinearLeastSquaresProblem; | 
 |  | 
 |   problem->b.reset(new double[num_rows]); | 
 |   problem->D.reset(new double[num_cols]); | 
 |   problem->num_eliminate_blocks = 2; | 
 |  | 
 |   CompressedRowBlockStructure* bs = new CompressedRowBlockStructure; | 
 |   scoped_array<double> values(new double[num_rows * num_cols]); | 
 |  | 
 |   for (int c = 0; c < num_cols; ++c) { | 
 |     bs->cols.push_back(Block()); | 
 |     bs->cols.back().size = 1; | 
 |     bs->cols.back().position = c; | 
 |   } | 
 |  | 
 |   int nnz = 0; | 
 |  | 
 |   // Row 1 | 
 |   { | 
 |     values[nnz++] = 1; | 
 |     values[nnz++] = 2; | 
 |  | 
 |     bs->rows.push_back(CompressedRow()); | 
 |     CompressedRow& row = bs->rows.back(); | 
 |     row.block.size = 1; | 
 |     row.block.position = 0; | 
 |     row.cells.push_back(Cell(0, 0)); | 
 |     row.cells.push_back(Cell(2, 1)); | 
 |   } | 
 |  | 
 |   // Row 2 | 
 |   { | 
 |     values[nnz++] = 3; | 
 |     values[nnz++] = 4; | 
 |  | 
 |     bs->rows.push_back(CompressedRow()); | 
 |     CompressedRow& row = bs->rows.back(); | 
 |     row.block.size = 1; | 
 |     row.block.position = 1; | 
 |     row.cells.push_back(Cell(0, 2)); | 
 |     row.cells.push_back(Cell(3, 3)); | 
 |   } | 
 |  | 
 |   // Row 3 | 
 |   { | 
 |     values[nnz++] = 5; | 
 |     values[nnz++] = 6; | 
 |  | 
 |     bs->rows.push_back(CompressedRow()); | 
 |     CompressedRow& row = bs->rows.back(); | 
 |     row.block.size = 1; | 
 |     row.block.position = 2; | 
 |     row.cells.push_back(Cell(1, 4)); | 
 |     row.cells.push_back(Cell(4, 5)); | 
 |   } | 
 |  | 
 |   // Row 4 | 
 |   { | 
 |     values[nnz++] = 7; | 
 |     values[nnz++] = 8; | 
 |  | 
 |     bs->rows.push_back(CompressedRow()); | 
 |     CompressedRow& row = bs->rows.back(); | 
 |     row.block.size = 1; | 
 |     row.block.position = 3; | 
 |     row.cells.push_back(Cell(1, 6)); | 
 |     row.cells.push_back(Cell(2, 7)); | 
 |   } | 
 |  | 
 |   // Row 5 | 
 |   { | 
 |     values[nnz++] = 9; | 
 |     values[nnz++] = 1; | 
 |  | 
 |     bs->rows.push_back(CompressedRow()); | 
 |     CompressedRow& row = bs->rows.back(); | 
 |     row.block.size = 1; | 
 |     row.block.position = 4; | 
 |     row.cells.push_back(Cell(1, 8)); | 
 |     row.cells.push_back(Cell(2, 9)); | 
 |   } | 
 |  | 
 |   // Row 6 | 
 |   { | 
 |     values[nnz++] = 1; | 
 |     values[nnz++] = 1; | 
 |     values[nnz++] = 1; | 
 |  | 
 |     bs->rows.push_back(CompressedRow()); | 
 |     CompressedRow& row = bs->rows.back(); | 
 |     row.block.size = 1; | 
 |     row.block.position = 5; | 
 |     row.cells.push_back(Cell(2, 10)); | 
 |     row.cells.push_back(Cell(3, 11)); | 
 |     row.cells.push_back(Cell(4, 12)); | 
 |   } | 
 |  | 
 |   BlockSparseMatrix* A = new BlockSparseMatrix(bs); | 
 |   memcpy(A->mutable_values(), values.get(), nnz * sizeof(*A->values())); | 
 |  | 
 |   for (int i = 0; i < num_cols; ++i) { | 
 |     problem->D.get()[i] = 1; | 
 |   } | 
 |  | 
 |   for (int i = 0; i < num_rows; ++i) { | 
 |     problem->b.get()[i] = i; | 
 |   } | 
 |  | 
 |   problem->A.reset(A); | 
 |  | 
 |   return problem; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |       A = [1 0 | 
 |            3 0 | 
 |            0 5 | 
 |            0 7 | 
 |            0 9 | 
 |            0 0] | 
 |  | 
 |       b = [0 | 
 |            1 | 
 |            2 | 
 |            3 | 
 |            4 | 
 |            5] | 
 | */ | 
 | // BlockSparseMatrix version | 
 | LinearLeastSquaresProblem* LinearLeastSquaresProblem3() { | 
 |   int num_rows = 5; | 
 |   int num_cols = 2; | 
 |  | 
 |   LinearLeastSquaresProblem* problem = new LinearLeastSquaresProblem; | 
 |  | 
 |   problem->b.reset(new double[num_rows]); | 
 |   problem->D.reset(new double[num_cols]); | 
 |   problem->num_eliminate_blocks = 2; | 
 |  | 
 |   CompressedRowBlockStructure* bs = new CompressedRowBlockStructure; | 
 |   scoped_array<double> values(new double[num_rows * num_cols]); | 
 |  | 
 |   for (int c = 0; c < num_cols; ++c) { | 
 |     bs->cols.push_back(Block()); | 
 |     bs->cols.back().size = 1; | 
 |     bs->cols.back().position = c; | 
 |   } | 
 |  | 
 |   int nnz = 0; | 
 |  | 
 |   // Row 1 | 
 |   { | 
 |     values[nnz++] = 1; | 
 |     bs->rows.push_back(CompressedRow()); | 
 |     CompressedRow& row = bs->rows.back(); | 
 |     row.block.size = 1; | 
 |     row.block.position = 0; | 
 |     row.cells.push_back(Cell(0, 0)); | 
 |   } | 
 |  | 
 |   // Row 2 | 
 |   { | 
 |     values[nnz++] = 3; | 
 |     bs->rows.push_back(CompressedRow()); | 
 |     CompressedRow& row = bs->rows.back(); | 
 |     row.block.size = 1; | 
 |     row.block.position = 1; | 
 |     row.cells.push_back(Cell(0, 1)); | 
 |   } | 
 |  | 
 |   // Row 3 | 
 |   { | 
 |     values[nnz++] = 5; | 
 |     bs->rows.push_back(CompressedRow()); | 
 |     CompressedRow& row = bs->rows.back(); | 
 |     row.block.size = 1; | 
 |     row.block.position = 2; | 
 |     row.cells.push_back(Cell(1, 2)); | 
 |   } | 
 |  | 
 |   // Row 4 | 
 |   { | 
 |     values[nnz++] = 7; | 
 |     bs->rows.push_back(CompressedRow()); | 
 |     CompressedRow& row = bs->rows.back(); | 
 |     row.block.size = 1; | 
 |     row.block.position = 3; | 
 |     row.cells.push_back(Cell(1, 3)); | 
 |   } | 
 |  | 
 |   // Row 5 | 
 |   { | 
 |     values[nnz++] = 9; | 
 |     bs->rows.push_back(CompressedRow()); | 
 |     CompressedRow& row = bs->rows.back(); | 
 |     row.block.size = 1; | 
 |     row.block.position = 4; | 
 |     row.cells.push_back(Cell(1, 4)); | 
 |   } | 
 |  | 
 |   BlockSparseMatrix* A = new BlockSparseMatrix(bs); | 
 |   memcpy(A->mutable_values(), values.get(), nnz * sizeof(*A->values())); | 
 |  | 
 |   for (int i = 0; i < num_cols; ++i) { | 
 |     problem->D.get()[i] = 1; | 
 |   } | 
 |  | 
 |   for (int i = 0; i < num_rows; ++i) { | 
 |     problem->b.get()[i] = i; | 
 |   } | 
 |  | 
 |   problem->A.reset(A); | 
 |  | 
 |   return problem; | 
 | } | 
 |  | 
 | /* | 
 |       A = [1 2 0 0 0 1 1 | 
 |            1 4 0 0 0 5 6 | 
 |            0 0 9 0 0 3 1] | 
 |  | 
 |       b = [0 | 
 |            1 | 
 |            2] | 
 | */ | 
 | // BlockSparseMatrix version | 
 | // | 
 | // This problem has the unique property that it has two different | 
 | // sized f-blocks, but only one of them occurs in the rows involving | 
 | // the one e-block. So performing Schur elimination on this problem | 
 | // tests the Schur Eliminator's ability to handle non-e-block rows | 
 | // correctly when their structure does not conform to the static | 
 | // structure determined by DetectStructure. | 
 | // | 
 | // NOTE: This problem is too small and rank deficient to be solved without | 
 | // the diagonal regularization. | 
 | LinearLeastSquaresProblem* LinearLeastSquaresProblem4() { | 
 |   int num_rows = 3; | 
 |   int num_cols = 7; | 
 |  | 
 |   LinearLeastSquaresProblem* problem = new LinearLeastSquaresProblem; | 
 |  | 
 |   problem->b.reset(new double[num_rows]); | 
 |   problem->D.reset(new double[num_cols]); | 
 |   problem->num_eliminate_blocks = 1; | 
 |  | 
 |   CompressedRowBlockStructure* bs = new CompressedRowBlockStructure; | 
 |   scoped_array<double> values(new double[num_rows * num_cols]); | 
 |  | 
 |   // Column block structure | 
 |   bs->cols.push_back(Block()); | 
 |   bs->cols.back().size = 2; | 
 |   bs->cols.back().position = 0; | 
 |  | 
 |   bs->cols.push_back(Block()); | 
 |   bs->cols.back().size = 3; | 
 |   bs->cols.back().position = 2; | 
 |  | 
 |   bs->cols.push_back(Block()); | 
 |   bs->cols.back().size = 2; | 
 |   bs->cols.back().position = 5; | 
 |  | 
 |   int nnz = 0; | 
 |  | 
 |   // Row 1 & 2 | 
 |   { | 
 |     bs->rows.push_back(CompressedRow()); | 
 |     CompressedRow& row = bs->rows.back(); | 
 |     row.block.size = 2; | 
 |     row.block.position = 0; | 
 |  | 
 |     row.cells.push_back(Cell(0, nnz)); | 
 |     values[nnz++] = 1; | 
 |     values[nnz++] = 2; | 
 |     values[nnz++] = 1; | 
 |     values[nnz++] = 4; | 
 |  | 
 |     row.cells.push_back(Cell(2, nnz)); | 
 |     values[nnz++] = 1; | 
 |     values[nnz++] = 1; | 
 |     values[nnz++] = 5; | 
 |     values[nnz++] = 6; | 
 |   } | 
 |  | 
 |   // Row 3 | 
 |   { | 
 |     bs->rows.push_back(CompressedRow()); | 
 |     CompressedRow& row = bs->rows.back(); | 
 |     row.block.size = 1; | 
 |     row.block.position = 2; | 
 |  | 
 |     row.cells.push_back(Cell(1, nnz)); | 
 |     values[nnz++] = 9; | 
 |     values[nnz++] = 0; | 
 |     values[nnz++] = 0; | 
 |  | 
 |     row.cells.push_back(Cell(2, nnz)); | 
 |     values[nnz++] = 3; | 
 |     values[nnz++] = 1; | 
 |   } | 
 |  | 
 |   BlockSparseMatrix* A = new BlockSparseMatrix(bs); | 
 |   memcpy(A->mutable_values(), values.get(), nnz * sizeof(*A->values())); | 
 |  | 
 |   for (int i = 0; i < num_cols; ++i) { | 
 |     problem->D.get()[i] = (i + 1) * 100; | 
 |   } | 
 |  | 
 |   for (int i = 0; i < num_rows; ++i) { | 
 |     problem->b.get()[i] = i; | 
 |   } | 
 |  | 
 |   problem->A.reset(A); | 
 |   return problem; | 
 | } | 
 |  | 
 | namespace { | 
 | bool DumpLinearLeastSquaresProblemToConsole(const SparseMatrix* A, | 
 |                                             const double* D, | 
 |                                             const double* b, | 
 |                                             const double* x, | 
 |                                             int num_eliminate_blocks) { | 
 |   CHECK_NOTNULL(A); | 
 |   Matrix AA; | 
 |   A->ToDenseMatrix(&AA); | 
 |   LOG(INFO) << "A^T: \n" << AA.transpose(); | 
 |  | 
 |   if (D != NULL) { | 
 |     LOG(INFO) << "A's appended diagonal:\n" | 
 |               << ConstVectorRef(D, A->num_cols()); | 
 |   } | 
 |  | 
 |   if (b != NULL) { | 
 |     LOG(INFO) << "b: \n" << ConstVectorRef(b, A->num_rows()); | 
 |   } | 
 |  | 
 |   if (x != NULL) { | 
 |     LOG(INFO) << "x: \n" << ConstVectorRef(x, A->num_cols()); | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | void WriteArrayToFileOrDie(const string& filename, | 
 |                            const double* x, | 
 |                            const int size) { | 
 |   CHECK_NOTNULL(x); | 
 |   VLOG(2) << "Writing array to: " << filename; | 
 |   FILE* fptr = fopen(filename.c_str(), "w"); | 
 |   CHECK_NOTNULL(fptr); | 
 |   for (int i = 0; i < size; ++i) { | 
 |     fprintf(fptr, "%17f\n", x[i]); | 
 |   } | 
 |   fclose(fptr); | 
 | } | 
 |  | 
 | bool DumpLinearLeastSquaresProblemToTextFile(const string& filename_base, | 
 |                                              const SparseMatrix* A, | 
 |                                              const double* D, | 
 |                                              const double* b, | 
 |                                              const double* x, | 
 |                                              int num_eliminate_blocks) { | 
 |   CHECK_NOTNULL(A); | 
 |   LOG(INFO) << "writing to: " << filename_base << "*"; | 
 |  | 
 |   string matlab_script; | 
 |   StringAppendF(&matlab_script, | 
 |                 "function lsqp = load_trust_region_problem()\n"); | 
 |   StringAppendF(&matlab_script, | 
 |                 "lsqp.num_rows = %d;\n", A->num_rows()); | 
 |   StringAppendF(&matlab_script, | 
 |                 "lsqp.num_cols = %d;\n", A->num_cols()); | 
 |  | 
 |   { | 
 |     string filename = filename_base + "_A.txt"; | 
 |     FILE* fptr = fopen(filename.c_str(), "w"); | 
 |     CHECK_NOTNULL(fptr); | 
 |     A->ToTextFile(fptr); | 
 |     fclose(fptr); | 
 |     StringAppendF(&matlab_script, | 
 |                   "tmp = load('%s', '-ascii');\n", filename.c_str()); | 
 |     StringAppendF( | 
 |         &matlab_script, | 
 |         "lsqp.A = sparse(tmp(:, 1) + 1, tmp(:, 2) + 1, tmp(:, 3), %d, %d);\n", | 
 |         A->num_rows(), | 
 |         A->num_cols()); | 
 |   } | 
 |  | 
 |  | 
 |   if (D != NULL) { | 
 |     string filename = filename_base + "_D.txt"; | 
 |     WriteArrayToFileOrDie(filename, D, A->num_cols()); | 
 |     StringAppendF(&matlab_script, | 
 |                   "lsqp.D = load('%s', '-ascii');\n", filename.c_str()); | 
 |   } | 
 |  | 
 |   if (b != NULL) { | 
 |     string filename = filename_base + "_b.txt"; | 
 |     WriteArrayToFileOrDie(filename, b, A->num_rows()); | 
 |     StringAppendF(&matlab_script, | 
 |                   "lsqp.b = load('%s', '-ascii');\n", filename.c_str()); | 
 |   } | 
 |  | 
 |   if (x != NULL) { | 
 |     string filename = filename_base + "_x.txt"; | 
 |     WriteArrayToFileOrDie(filename, x, A->num_cols()); | 
 |     StringAppendF(&matlab_script, | 
 |                   "lsqp.x = load('%s', '-ascii');\n", filename.c_str()); | 
 |   } | 
 |  | 
 |   string matlab_filename = filename_base + ".m"; | 
 |   WriteStringToFileOrDie(matlab_script, matlab_filename); | 
 |   return true; | 
 | } | 
 | }  // namespace | 
 |  | 
 | bool DumpLinearLeastSquaresProblem(const string& filename_base, | 
 |                                    DumpFormatType dump_format_type, | 
 |                                    const SparseMatrix* A, | 
 |                                    const double* D, | 
 |                                    const double* b, | 
 |                                    const double* x, | 
 |                                    int num_eliminate_blocks) { | 
 |   switch (dump_format_type) { | 
 |     case CONSOLE: | 
 |       return DumpLinearLeastSquaresProblemToConsole(A, D, b, x, | 
 |                                                     num_eliminate_blocks); | 
 |     case TEXTFILE: | 
 |       return DumpLinearLeastSquaresProblemToTextFile(filename_base, | 
 |                                                      A, D, b, x, | 
 |                                                      num_eliminate_blocks); | 
 |     default: | 
 |       LOG(FATAL) << "Unknown DumpFormatType " << dump_format_type; | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | }  // namespace internal | 
 | }  // namespace ceres |