| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2015 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: keir@google.com (Keir Mierle) |
| |
| #include "ceres/small_blas.h" |
| |
| #include <limits> |
| #include "gtest/gtest.h" |
| #include "ceres/internal/eigen.h" |
| |
| namespace ceres { |
| namespace internal { |
| |
| const double kTolerance = 3.0 * std::numeric_limits<double>::epsilon(); |
| |
| TEST(BLAS, MatrixMatrixMultiply) { |
| const int kRowA = 3; |
| const int kColA = 5; |
| Matrix A(kRowA, kColA); |
| A.setOnes(); |
| |
| const int kRowB = 5; |
| const int kColB = 7; |
| Matrix B(kRowB, kColB); |
| B.setOnes(); |
| |
| for (int row_stride_c = kRowA; row_stride_c < 3 * kRowA; ++row_stride_c) { |
| for (int col_stride_c = kColB; col_stride_c < 3 * kColB; ++col_stride_c) { |
| Matrix C(row_stride_c, col_stride_c); |
| C.setOnes(); |
| |
| Matrix C_plus = C; |
| Matrix C_minus = C; |
| Matrix C_assign = C; |
| |
| Matrix C_plus_ref = C; |
| Matrix C_minus_ref = C; |
| Matrix C_assign_ref = C; |
| for (int start_row_c = 0; start_row_c + kRowA < row_stride_c; ++start_row_c) { |
| for (int start_col_c = 0; start_col_c + kColB < col_stride_c; ++start_col_c) { |
| C_plus_ref.block(start_row_c, start_col_c, kRowA, kColB) += |
| A * B; |
| |
| MatrixMatrixMultiply<kRowA, kColA, kRowB, kColB, 1>( |
| A.data(), kRowA, kColA, |
| B.data(), kRowB, kColB, |
| C_plus.data(), start_row_c, start_col_c, row_stride_c, col_stride_c); |
| |
| EXPECT_NEAR((C_plus_ref - C_plus).norm(), 0.0, kTolerance) |
| << "C += A * B \n" |
| << "row_stride_c : " << row_stride_c << "\n" |
| << "col_stride_c : " << col_stride_c << "\n" |
| << "start_row_c : " << start_row_c << "\n" |
| << "start_col_c : " << start_col_c << "\n" |
| << "Cref : \n" << C_plus_ref << "\n" |
| << "C: \n" << C_plus; |
| |
| |
| C_minus_ref.block(start_row_c, start_col_c, kRowA, kColB) -= |
| A * B; |
| |
| MatrixMatrixMultiply<kRowA, kColA, kRowB, kColB, -1>( |
| A.data(), kRowA, kColA, |
| B.data(), kRowB, kColB, |
| C_minus.data(), start_row_c, start_col_c, row_stride_c, col_stride_c); |
| |
| EXPECT_NEAR((C_minus_ref - C_minus).norm(), 0.0, kTolerance) |
| << "C -= A * B \n" |
| << "row_stride_c : " << row_stride_c << "\n" |
| << "col_stride_c : " << col_stride_c << "\n" |
| << "start_row_c : " << start_row_c << "\n" |
| << "start_col_c : " << start_col_c << "\n" |
| << "Cref : \n" << C_minus_ref << "\n" |
| << "C: \n" << C_minus; |
| |
| C_assign_ref.block(start_row_c, start_col_c, kRowA, kColB) = |
| A * B; |
| |
| MatrixMatrixMultiply<kRowA, kColA, kRowB, kColB, 0>( |
| A.data(), kRowA, kColA, |
| B.data(), kRowB, kColB, |
| C_assign.data(), start_row_c, start_col_c, row_stride_c, col_stride_c); |
| |
| EXPECT_NEAR((C_assign_ref - C_assign).norm(), 0.0, kTolerance) |
| << "C = A * B \n" |
| << "row_stride_c : " << row_stride_c << "\n" |
| << "col_stride_c : " << col_stride_c << "\n" |
| << "start_row_c : " << start_row_c << "\n" |
| << "start_col_c : " << start_col_c << "\n" |
| << "Cref : \n" << C_assign_ref << "\n" |
| << "C: \n" << C_assign; |
| } |
| } |
| } |
| } |
| } |
| |
| TEST(BLAS, MatrixTransposeMatrixMultiply) { |
| const int kRowA = 5; |
| const int kColA = 3; |
| Matrix A(kRowA, kColA); |
| A.setOnes(); |
| |
| const int kRowB = 5; |
| const int kColB = 7; |
| Matrix B(kRowB, kColB); |
| B.setOnes(); |
| |
| for (int row_stride_c = kColA; row_stride_c < 3 * kColA; ++row_stride_c) { |
| for (int col_stride_c = kColB; col_stride_c < 3 * kColB; ++col_stride_c) { |
| Matrix C(row_stride_c, col_stride_c); |
| C.setOnes(); |
| |
| Matrix C_plus = C; |
| Matrix C_minus = C; |
| Matrix C_assign = C; |
| |
| Matrix C_plus_ref = C; |
| Matrix C_minus_ref = C; |
| Matrix C_assign_ref = C; |
| for (int start_row_c = 0; start_row_c + kColA < row_stride_c; ++start_row_c) { |
| for (int start_col_c = 0; start_col_c + kColB < col_stride_c; ++start_col_c) { |
| C_plus_ref.block(start_row_c, start_col_c, kColA, kColB) += |
| A.transpose() * B; |
| |
| MatrixTransposeMatrixMultiply<kRowA, kColA, kRowB, kColB, 1>( |
| A.data(), kRowA, kColA, |
| B.data(), kRowB, kColB, |
| C_plus.data(), start_row_c, start_col_c, row_stride_c, col_stride_c); |
| |
| EXPECT_NEAR((C_plus_ref - C_plus).norm(), 0.0, kTolerance) |
| << "C += A' * B \n" |
| << "row_stride_c : " << row_stride_c << "\n" |
| << "col_stride_c : " << col_stride_c << "\n" |
| << "start_row_c : " << start_row_c << "\n" |
| << "start_col_c : " << start_col_c << "\n" |
| << "Cref : \n" << C_plus_ref << "\n" |
| << "C: \n" << C_plus; |
| |
| C_minus_ref.block(start_row_c, start_col_c, kColA, kColB) -= |
| A.transpose() * B; |
| |
| MatrixTransposeMatrixMultiply<kRowA, kColA, kRowB, kColB, -1>( |
| A.data(), kRowA, kColA, |
| B.data(), kRowB, kColB, |
| C_minus.data(), start_row_c, start_col_c, row_stride_c, col_stride_c); |
| |
| EXPECT_NEAR((C_minus_ref - C_minus).norm(), 0.0, kTolerance) |
| << "C -= A' * B \n" |
| << "row_stride_c : " << row_stride_c << "\n" |
| << "col_stride_c : " << col_stride_c << "\n" |
| << "start_row_c : " << start_row_c << "\n" |
| << "start_col_c : " << start_col_c << "\n" |
| << "Cref : \n" << C_minus_ref << "\n" |
| << "C: \n" << C_minus; |
| |
| C_assign_ref.block(start_row_c, start_col_c, kColA, kColB) = |
| A.transpose() * B; |
| |
| MatrixTransposeMatrixMultiply<kRowA, kColA, kRowB, kColB, 0>( |
| A.data(), kRowA, kColA, |
| B.data(), kRowB, kColB, |
| C_assign.data(), start_row_c, start_col_c, row_stride_c, col_stride_c); |
| |
| EXPECT_NEAR((C_assign_ref - C_assign).norm(), 0.0, kTolerance) |
| << "C = A' * B \n" |
| << "row_stride_c : " << row_stride_c << "\n" |
| << "col_stride_c : " << col_stride_c << "\n" |
| << "start_row_c : " << start_row_c << "\n" |
| << "start_col_c : " << start_col_c << "\n" |
| << "Cref : \n" << C_assign_ref << "\n" |
| << "C: \n" << C_assign; |
| } |
| } |
| } |
| } |
| } |
| |
| TEST(BLAS, MatrixVectorMultiply) { |
| const int kRowA = 5; |
| const int kColA = 3; |
| Matrix A(kRowA, kColA); |
| A.setOnes(); |
| |
| Vector b(kColA); |
| b.setOnes(); |
| |
| Vector c(kRowA); |
| c.setOnes(); |
| |
| Vector c_plus = c; |
| Vector c_minus = c; |
| Vector c_assign = c; |
| |
| Vector c_plus_ref = c; |
| Vector c_minus_ref = c; |
| Vector c_assign_ref = c; |
| |
| c_plus_ref += A * b; |
| MatrixVectorMultiply<kRowA, kColA, 1>(A.data(), kRowA, kColA, |
| b.data(), |
| c_plus.data()); |
| EXPECT_NEAR((c_plus_ref - c_plus).norm(), 0.0, kTolerance) |
| << "c += A * b \n" |
| << "c_ref : \n" << c_plus_ref << "\n" |
| << "c: \n" << c_plus; |
| |
| c_minus_ref -= A * b; |
| MatrixVectorMultiply<kRowA, kColA, -1>(A.data(), kRowA, kColA, |
| b.data(), |
| c_minus.data()); |
| EXPECT_NEAR((c_minus_ref - c_minus).norm(), 0.0, kTolerance) |
| << "c += A * b \n" |
| << "c_ref : \n" << c_minus_ref << "\n" |
| << "c: \n" << c_minus; |
| |
| c_assign_ref = A * b; |
| MatrixVectorMultiply<kRowA, kColA, 0>(A.data(), kRowA, kColA, |
| b.data(), |
| c_assign.data()); |
| EXPECT_NEAR((c_assign_ref - c_assign).norm(), 0.0, kTolerance) |
| << "c += A * b \n" |
| << "c_ref : \n" << c_assign_ref << "\n" |
| << "c: \n" << c_assign; |
| } |
| |
| TEST(BLAS, MatrixTransposeVectorMultiply) { |
| const int kRowA = 5; |
| const int kColA = 3; |
| Matrix A(kRowA, kColA); |
| A.setRandom(); |
| |
| Vector b(kRowA); |
| b.setRandom(); |
| |
| Vector c(kColA); |
| c.setOnes(); |
| |
| Vector c_plus = c; |
| Vector c_minus = c; |
| Vector c_assign = c; |
| |
| Vector c_plus_ref = c; |
| Vector c_minus_ref = c; |
| Vector c_assign_ref = c; |
| |
| c_plus_ref += A.transpose() * b; |
| MatrixTransposeVectorMultiply<kRowA, kColA, 1>(A.data(), kRowA, kColA, |
| b.data(), |
| c_plus.data()); |
| EXPECT_NEAR((c_plus_ref - c_plus).norm(), 0.0, kTolerance) |
| << "c += A' * b \n" |
| << "c_ref : \n" << c_plus_ref << "\n" |
| << "c: \n" << c_plus; |
| |
| c_minus_ref -= A.transpose() * b; |
| MatrixTransposeVectorMultiply<kRowA, kColA, -1>(A.data(), kRowA, kColA, |
| b.data(), |
| c_minus.data()); |
| EXPECT_NEAR((c_minus_ref - c_minus).norm(), 0.0, kTolerance) |
| << "c += A' * b \n" |
| << "c_ref : \n" << c_minus_ref << "\n" |
| << "c: \n" << c_minus; |
| |
| c_assign_ref = A.transpose() * b; |
| MatrixTransposeVectorMultiply<kRowA, kColA, 0>(A.data(), kRowA, kColA, |
| b.data(), |
| c_assign.data()); |
| EXPECT_NEAR((c_assign_ref - c_assign).norm(), 0.0, kTolerance) |
| << "c += A' * b \n" |
| << "c_ref : \n" << c_assign_ref << "\n" |
| << "c: \n" << c_assign; |
| } |
| |
| } // namespace internal |
| } // namespace ceres |