| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2023 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: sameeragarwal@google.com (Sameer Agarwal) |
| |
| #include "ceres/block_random_access_diagonal_matrix.h" |
| |
| #include <limits> |
| #include <memory> |
| #include <vector> |
| |
| #include "Eigen/Cholesky" |
| #include "ceres/internal/eigen.h" |
| #include "gtest/gtest.h" |
| |
| namespace ceres::internal { |
| |
| class BlockRandomAccessDiagonalMatrixTest : public ::testing::Test { |
| public: |
| void SetUp() override { |
| std::vector<Block> blocks; |
| blocks.emplace_back(3, 0); |
| blocks.emplace_back(4, 3); |
| blocks.emplace_back(5, 7); |
| |
| const int num_rows = 3 + 4 + 5; |
| num_nonzeros_ = 3 * 3 + 4 * 4 + 5 * 5; |
| |
| m_ = |
| std::make_unique<BlockRandomAccessDiagonalMatrix>(blocks, &context_, 1); |
| |
| EXPECT_EQ(m_->num_rows(), num_rows); |
| EXPECT_EQ(m_->num_cols(), num_rows); |
| |
| for (int i = 0; i < blocks.size(); ++i) { |
| const int row_block_id = i; |
| int col_block_id; |
| int row; |
| int col; |
| int row_stride; |
| int col_stride; |
| |
| for (int j = 0; j < blocks.size(); ++j) { |
| col_block_id = j; |
| CellInfo* cell = m_->GetCell( |
| row_block_id, col_block_id, &row, &col, &row_stride, &col_stride); |
| // Off diagonal entries are not present. |
| if (i != j) { |
| EXPECT_TRUE(cell == nullptr); |
| continue; |
| } |
| |
| EXPECT_TRUE(cell != nullptr); |
| EXPECT_EQ(row, 0); |
| EXPECT_EQ(col, 0); |
| EXPECT_EQ(row_stride, blocks[row_block_id].size); |
| EXPECT_EQ(col_stride, blocks[col_block_id].size); |
| |
| // Write into the block |
| MatrixRef(cell->values, row_stride, col_stride) |
| .block(row, |
| col, |
| blocks[row_block_id].size, |
| blocks[col_block_id].size) = |
| (row_block_id + 1) * (col_block_id + 1) * |
| Matrix::Ones(blocks[row_block_id].size, |
| blocks[col_block_id].size) + |
| Matrix::Identity(blocks[row_block_id].size, |
| blocks[row_block_id].size); |
| } |
| } |
| } |
| |
| protected: |
| ContextImpl context_; |
| int num_nonzeros_; |
| std::unique_ptr<BlockRandomAccessDiagonalMatrix> m_; |
| }; |
| |
| TEST_F(BlockRandomAccessDiagonalMatrixTest, MatrixContents) { |
| auto* crsm = m_->matrix(); |
| EXPECT_EQ(crsm->num_nonzeros(), num_nonzeros_); |
| |
| Matrix dense; |
| crsm->ToDenseMatrix(&dense); |
| |
| double kTolerance = 1e-14; |
| |
| // (0,0) |
| EXPECT_NEAR( |
| (dense.block(0, 0, 3, 3) - (Matrix::Ones(3, 3) + Matrix::Identity(3, 3))) |
| .norm(), |
| 0.0, |
| kTolerance); |
| |
| // (1,1) |
| EXPECT_NEAR((dense.block(3, 3, 4, 4) - |
| (2 * 2 * Matrix::Ones(4, 4) + Matrix::Identity(4, 4))) |
| .norm(), |
| 0.0, |
| kTolerance); |
| |
| // (1,1) |
| EXPECT_NEAR((dense.block(7, 7, 5, 5) - |
| (3 * 3 * Matrix::Ones(5, 5) + Matrix::Identity(5, 5))) |
| .norm(), |
| 0.0, |
| kTolerance); |
| |
| // There is nothing else in the matrix besides these four blocks. |
| EXPECT_NEAR( |
| dense.norm(), |
| sqrt(6 * 1.0 + 3 * 4.0 + 12 * 16.0 + 4 * 25.0 + 20 * 81.0 + 5 * 100.0), |
| kTolerance); |
| } |
| |
| TEST_F(BlockRandomAccessDiagonalMatrixTest, RightMultiplyAndAccumulate) { |
| double kTolerance = 1e-14; |
| auto* crsm = m_->matrix(); |
| Matrix dense; |
| crsm->ToDenseMatrix(&dense); |
| Vector x = Vector::Random(dense.rows()); |
| Vector expected_y = dense * x; |
| Vector actual_y = Vector::Zero(dense.rows()); |
| m_->RightMultiplyAndAccumulate(x.data(), actual_y.data()); |
| EXPECT_NEAR((expected_y - actual_y).norm(), 0, kTolerance); |
| } |
| |
| TEST_F(BlockRandomAccessDiagonalMatrixTest, Invert) { |
| double kTolerance = 1e-14; |
| auto* crsm = m_->matrix(); |
| Matrix dense; |
| crsm->ToDenseMatrix(&dense); |
| Matrix expected_inverse = |
| dense.llt().solve(Matrix::Identity(dense.rows(), dense.rows())); |
| |
| m_->Invert(); |
| crsm->ToDenseMatrix(&dense); |
| |
| EXPECT_NEAR((expected_inverse - dense).norm(), 0.0, kTolerance); |
| } |
| |
| } // namespace ceres::internal |