| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2023 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: sameeragarwal@google.com (Sameer Agarwal) |
| |
| #include "ceres/schur_eliminator.h" |
| |
| #include <algorithm> |
| #include <memory> |
| #include <random> |
| #include <vector> |
| |
| #include "Eigen/Dense" |
| #include "ceres/block_random_access_dense_matrix.h" |
| #include "ceres/block_sparse_matrix.h" |
| #include "ceres/block_structure.h" |
| #include "ceres/casts.h" |
| #include "ceres/context_impl.h" |
| #include "ceres/detect_structure.h" |
| #include "ceres/internal/eigen.h" |
| #include "ceres/linear_least_squares_problems.h" |
| #include "ceres/test_util.h" |
| #include "ceres/triplet_sparse_matrix.h" |
| #include "ceres/types.h" |
| #include "gtest/gtest.h" |
| |
| // TODO(sameeragarwal): Reduce the size of these tests and redo the |
| // parameterization to be more efficient. |
| |
| namespace ceres::internal { |
| |
| class SchurEliminatorTest : public ::testing::Test { |
| protected: |
| void SetUpFromId(int id) { |
| auto problem = CreateLinearLeastSquaresProblemFromId(id); |
| ASSERT_TRUE(problem != nullptr); |
| SetupHelper(problem.get()); |
| } |
| |
| void SetupHelper(LinearLeastSquaresProblem* problem) { |
| A.reset(down_cast<BlockSparseMatrix*>(problem->A.release())); |
| b = std::move(problem->b); |
| D = std::move(problem->D); |
| |
| num_eliminate_blocks = problem->num_eliminate_blocks; |
| num_eliminate_cols = 0; |
| const CompressedRowBlockStructure* bs = A->block_structure(); |
| |
| for (int i = 0; i < num_eliminate_blocks; ++i) { |
| num_eliminate_cols += bs->cols[i].size; |
| } |
| } |
| |
| // Compute the golden values for the reduced linear system and the |
| // solution to the linear least squares problem using dense linear |
| // algebra. |
| void ComputeReferenceSolution(const Vector& D) { |
| Matrix J; |
| A->ToDenseMatrix(&J); |
| VectorRef f(b.get(), J.rows()); |
| |
| Matrix H = (D.cwiseProduct(D)).asDiagonal(); |
| H.noalias() += J.transpose() * J; |
| |
| const Vector g = J.transpose() * f; |
| const int schur_size = J.cols() - num_eliminate_cols; |
| |
| lhs_expected.resize(schur_size, schur_size); |
| lhs_expected.setZero(); |
| |
| rhs_expected.resize(schur_size); |
| rhs_expected.setZero(); |
| |
| sol_expected.resize(J.cols()); |
| sol_expected.setZero(); |
| |
| Matrix P = H.block(0, 0, num_eliminate_cols, num_eliminate_cols); |
| Matrix Q = H.block(0, num_eliminate_cols, num_eliminate_cols, schur_size); |
| Matrix R = |
| H.block(num_eliminate_cols, num_eliminate_cols, schur_size, schur_size); |
| int row = 0; |
| const CompressedRowBlockStructure* bs = A->block_structure(); |
| for (int i = 0; i < num_eliminate_blocks; ++i) { |
| const int block_size = bs->cols[i].size; |
| P.block(row, row, block_size, block_size) = |
| P.block(row, row, block_size, block_size) |
| .llt() |
| .solve(Matrix::Identity(block_size, block_size)); |
| row += block_size; |
| } |
| |
| lhs_expected.triangularView<Eigen::Upper>() = R - Q.transpose() * P * Q; |
| rhs_expected = |
| g.tail(schur_size) - Q.transpose() * P * g.head(num_eliminate_cols); |
| sol_expected = H.llt().solve(g); |
| } |
| |
| void EliminateSolveAndCompare(const VectorRef& diagonal, |
| bool use_static_structure, |
| const double relative_tolerance) { |
| const CompressedRowBlockStructure* bs = A->block_structure(); |
| const int num_col_blocks = bs->cols.size(); |
| auto blocks = Tail(bs->cols, num_col_blocks - num_eliminate_blocks); |
| BlockRandomAccessDenseMatrix lhs(blocks, &context_, 1); |
| |
| const int num_cols = A->num_cols(); |
| const int schur_size = lhs.num_rows(); |
| |
| Vector rhs(schur_size); |
| |
| LinearSolver::Options options; |
| options.context = &context_; |
| options.elimination_groups.push_back(num_eliminate_blocks); |
| if (use_static_structure) { |
| DetectStructure(*bs, |
| num_eliminate_blocks, |
| &options.row_block_size, |
| &options.e_block_size, |
| &options.f_block_size); |
| } |
| |
| std::unique_ptr<SchurEliminatorBase> eliminator = |
| SchurEliminatorBase::Create(options); |
| const bool kFullRankETE = true; |
| eliminator->Init(num_eliminate_blocks, kFullRankETE, A->block_structure()); |
| eliminator->Eliminate( |
| BlockSparseMatrixData(*A), b.get(), diagonal.data(), &lhs, rhs.data()); |
| |
| MatrixRef lhs_ref(lhs.mutable_values(), lhs.num_rows(), lhs.num_cols()); |
| Vector reduced_sol = |
| lhs_ref.selfadjointView<Eigen::Upper>().llt().solve(rhs); |
| |
| // Solution to the linear least squares problem. |
| Vector sol(num_cols); |
| sol.setZero(); |
| sol.tail(schur_size) = reduced_sol; |
| eliminator->BackSubstitute(BlockSparseMatrixData(*A), |
| b.get(), |
| diagonal.data(), |
| reduced_sol.data(), |
| sol.data()); |
| |
| Matrix delta = (lhs_ref - lhs_expected).selfadjointView<Eigen::Upper>(); |
| double diff = delta.norm(); |
| EXPECT_NEAR(diff / lhs_expected.norm(), 0.0, relative_tolerance); |
| EXPECT_NEAR((rhs - rhs_expected).norm() / rhs_expected.norm(), |
| 0.0, |
| relative_tolerance); |
| EXPECT_NEAR((sol - sol_expected).norm() / sol_expected.norm(), |
| 0.0, |
| relative_tolerance); |
| } |
| |
| ContextImpl context_; |
| |
| std::unique_ptr<BlockSparseMatrix> A; |
| std::unique_ptr<double[]> b; |
| std::unique_ptr<double[]> D; |
| int num_eliminate_blocks; |
| int num_eliminate_cols; |
| |
| Matrix lhs_expected; |
| Vector rhs_expected; |
| Vector sol_expected; |
| }; |
| |
| TEST_F(SchurEliminatorTest, ScalarProblemNoRegularization) { |
| SetUpFromId(2); |
| Vector zero(A->num_cols()); |
| zero.setZero(); |
| |
| ComputeReferenceSolution(VectorRef(zero.data(), A->num_cols())); |
| EliminateSolveAndCompare(VectorRef(zero.data(), A->num_cols()), true, 1e-14); |
| EliminateSolveAndCompare(VectorRef(zero.data(), A->num_cols()), false, 1e-14); |
| } |
| |
| TEST_F(SchurEliminatorTest, ScalarProblemWithRegularization) { |
| SetUpFromId(2); |
| ComputeReferenceSolution(VectorRef(D.get(), A->num_cols())); |
| EliminateSolveAndCompare(VectorRef(D.get(), A->num_cols()), true, 1e-14); |
| EliminateSolveAndCompare(VectorRef(D.get(), A->num_cols()), false, 1e-14); |
| } |
| |
| TEST_F(SchurEliminatorTest, VaryingFBlockSizeWithStaticStructure) { |
| SetUpFromId(4); |
| ComputeReferenceSolution(VectorRef(D.get(), A->num_cols())); |
| EliminateSolveAndCompare(VectorRef(D.get(), A->num_cols()), true, 1e-14); |
| } |
| |
| TEST_F(SchurEliminatorTest, VaryingFBlockSizeWithoutStaticStructure) { |
| SetUpFromId(4); |
| ComputeReferenceSolution(VectorRef(D.get(), A->num_cols())); |
| EliminateSolveAndCompare(VectorRef(D.get(), A->num_cols()), false, 1e-14); |
| } |
| |
| TEST(SchurEliminatorForOneFBlock, MatchesSchurEliminator) { |
| constexpr int kRowBlockSize = 2; |
| constexpr int kEBlockSize = 3; |
| constexpr int kFBlockSize = 6; |
| constexpr int num_e_blocks = 5; |
| |
| ContextImpl context; |
| |
| auto* bs = new CompressedRowBlockStructure; |
| bs->cols.resize(num_e_blocks + 1); |
| int col_pos = 0; |
| for (int i = 0; i < num_e_blocks; ++i) { |
| bs->cols[i].position = col_pos; |
| bs->cols[i].size = kEBlockSize; |
| col_pos += kEBlockSize; |
| } |
| bs->cols.back().position = col_pos; |
| bs->cols.back().size = kFBlockSize; |
| |
| bs->rows.resize(2 * num_e_blocks + 1); |
| int row_pos = 0; |
| int cell_pos = 0; |
| for (int i = 0; i < num_e_blocks; ++i) { |
| { |
| auto& row = bs->rows[2 * i]; |
| row.block.position = row_pos; |
| row.block.size = kRowBlockSize; |
| row_pos += kRowBlockSize; |
| auto& cells = row.cells; |
| cells.resize(2); |
| cells[0].block_id = i; |
| cells[0].position = cell_pos; |
| cell_pos += kRowBlockSize * kEBlockSize; |
| cells[1].block_id = num_e_blocks; |
| cells[1].position = cell_pos; |
| cell_pos += kRowBlockSize * kFBlockSize; |
| } |
| { |
| auto& row = bs->rows[2 * i + 1]; |
| row.block.position = row_pos; |
| row.block.size = kRowBlockSize; |
| row_pos += kRowBlockSize; |
| auto& cells = row.cells; |
| cells.resize(1); |
| cells[0].block_id = i; |
| cells[0].position = cell_pos; |
| cell_pos += kRowBlockSize * kEBlockSize; |
| } |
| } |
| |
| { |
| auto& row = bs->rows.back(); |
| row.block.position = row_pos; |
| row.block.size = kEBlockSize; |
| row_pos += kRowBlockSize; |
| auto& cells = row.cells; |
| cells.resize(1); |
| cells[0].block_id = num_e_blocks; |
| cells[0].position = cell_pos; |
| cell_pos += kEBlockSize * kEBlockSize; |
| } |
| |
| BlockSparseMatrix matrix(bs); |
| double* values = matrix.mutable_values(); |
| std::mt19937 prng; |
| std::normal_distribution<> standard_normal; |
| std::generate_n(values, matrix.num_nonzeros(), [&prng, &standard_normal] { |
| return standard_normal(prng); |
| }); |
| |
| Vector b(matrix.num_rows()); |
| b.setRandom(); |
| |
| Vector diagonal(matrix.num_cols()); |
| diagonal.setOnes(); |
| |
| std::vector<Block> blocks; |
| blocks.emplace_back(kFBlockSize, 0); |
| BlockRandomAccessDenseMatrix actual_lhs(blocks, &context, 1); |
| BlockRandomAccessDenseMatrix expected_lhs(blocks, &context, 1); |
| Vector actual_rhs(kFBlockSize); |
| Vector expected_rhs(kFBlockSize); |
| |
| Vector f_sol(kFBlockSize); |
| f_sol.setRandom(); |
| Vector actual_e_sol(num_e_blocks * kEBlockSize); |
| actual_e_sol.setZero(); |
| Vector expected_e_sol(num_e_blocks * kEBlockSize); |
| expected_e_sol.setZero(); |
| |
| { |
| LinearSolver::Options linear_solver_options; |
| linear_solver_options.e_block_size = kEBlockSize; |
| linear_solver_options.row_block_size = kRowBlockSize; |
| linear_solver_options.f_block_size = kFBlockSize; |
| linear_solver_options.context = &context; |
| std::unique_ptr<SchurEliminatorBase> eliminator( |
| SchurEliminatorBase::Create(linear_solver_options)); |
| eliminator->Init(num_e_blocks, true, matrix.block_structure()); |
| eliminator->Eliminate(BlockSparseMatrixData(matrix), |
| b.data(), |
| diagonal.data(), |
| &expected_lhs, |
| expected_rhs.data()); |
| eliminator->BackSubstitute(BlockSparseMatrixData(matrix), |
| b.data(), |
| diagonal.data(), |
| f_sol.data(), |
| actual_e_sol.data()); |
| } |
| |
| { |
| SchurEliminatorForOneFBlock<2, 3, 6> eliminator; |
| eliminator.Init(num_e_blocks, true, matrix.block_structure()); |
| eliminator.Eliminate(BlockSparseMatrixData(matrix), |
| b.data(), |
| diagonal.data(), |
| &actual_lhs, |
| actual_rhs.data()); |
| eliminator.BackSubstitute(BlockSparseMatrixData(matrix), |
| b.data(), |
| diagonal.data(), |
| f_sol.data(), |
| expected_e_sol.data()); |
| } |
| ConstMatrixRef actual_lhsref( |
| actual_lhs.values(), actual_lhs.num_cols(), actual_lhs.num_cols()); |
| ConstMatrixRef expected_lhsref( |
| expected_lhs.values(), actual_lhs.num_cols(), actual_lhs.num_cols()); |
| |
| EXPECT_NEAR((actual_lhsref - expected_lhsref).norm() / expected_lhsref.norm(), |
| 0.0, |
| 1e-12) |
| << "expected: \n" |
| << expected_lhsref << "\nactual: \n" |
| << actual_lhsref; |
| |
| EXPECT_NEAR( |
| (actual_rhs - expected_rhs).norm() / expected_rhs.norm(), 0.0, 1e-12) |
| << "expected: \n" |
| << expected_rhs << "\nactual: \n" |
| << actual_rhs; |
| |
| EXPECT_NEAR((actual_e_sol - expected_e_sol).norm() / expected_e_sol.norm(), |
| 0.0, |
| 1e-12) |
| << "expected: \n" |
| << expected_e_sol << "\nactual: \n" |
| << actual_e_sol; |
| } |
| |
| } // namespace ceres::internal |