| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2012 Google Inc. All rights reserved. |
| // http://code.google.com/p/ceres-solver/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: sameeragarwal@google.com (Sameer Agarwal) |
| |
| #include "ceres/dogleg_strategy.h" |
| |
| #include <cmath> |
| #include "Eigen/Core" |
| #include "ceres/array_utils.h" |
| #include "ceres/internal/eigen.h" |
| #include "ceres/linear_solver.h" |
| #include "ceres/sparse_matrix.h" |
| #include "ceres/trust_region_strategy.h" |
| #include "ceres/types.h" |
| #include "glog/logging.h" |
| |
| namespace ceres { |
| namespace internal { |
| namespace { |
| const double kMaxMu = 1.0; |
| const double kMinMu = 1e-8; |
| } |
| |
| DoglegStrategy::DoglegStrategy(const TrustRegionStrategy::Options& options) |
| : linear_solver_(options.linear_solver), |
| radius_(options.initial_radius), |
| max_radius_(options.max_radius), |
| min_diagonal_(options.lm_min_diagonal), |
| max_diagonal_(options.lm_max_diagonal), |
| mu_(kMinMu), |
| min_mu_(kMinMu), |
| max_mu_(kMaxMu), |
| mu_increase_factor_(10.0), |
| increase_threshold_(0.75), |
| decrease_threshold_(0.25), |
| dogleg_step_norm_(0.0), |
| reuse_(false) { |
| CHECK_NOTNULL(linear_solver_); |
| CHECK_GT(min_diagonal_, 0.0); |
| CHECK_LT(min_diagonal_, max_diagonal_); |
| CHECK_GT(max_radius_, 0.0); |
| } |
| |
| // If the reuse_ flag is not set, then the Cauchy point (scaled |
| // gradient) and the new Gauss-Newton step are computed from |
| // scratch. The Dogleg step is then computed as interpolation of these |
| // two vectors. |
| LinearSolver::Summary DoglegStrategy::ComputeStep( |
| const TrustRegionStrategy::PerSolveOptions& per_solve_options, |
| SparseMatrix* jacobian, |
| const double* residuals, |
| double* step) { |
| CHECK_NOTNULL(jacobian); |
| CHECK_NOTNULL(residuals); |
| CHECK_NOTNULL(step); |
| |
| const int n = jacobian->num_cols(); |
| if (reuse_) { |
| // Gauss-Newton and gradient vectors are always available, only a |
| // new interpolant need to be computed. |
| ComputeDoglegStep(step); |
| LinearSolver::Summary linear_solver_summary; |
| linear_solver_summary.num_iterations = 0; |
| linear_solver_summary.termination_type = TOLERANCE; |
| return linear_solver_summary; |
| } |
| |
| reuse_ = true; |
| // Check that we have the storage needed to hold the various |
| // temporary vectors. |
| if (diagonal_.rows() != n) { |
| diagonal_.resize(n, 1); |
| gradient_.resize(n, 1); |
| gauss_newton_step_.resize(n, 1); |
| } |
| |
| // Vector used to form the diagonal matrix that is used to |
| // regularize the Gauss-Newton solve. |
| jacobian->SquaredColumnNorm(diagonal_.data()); |
| for (int i = 0; i < n; ++i) { |
| diagonal_[i] = min(max(diagonal_[i], min_diagonal_), max_diagonal_); |
| } |
| |
| gradient_.setZero(); |
| jacobian->LeftMultiply(residuals, gradient_.data()); |
| |
| // alpha * gradient is the Cauchy point. |
| Vector Jg(jacobian->num_rows()); |
| Jg.setZero(); |
| jacobian->RightMultiply(gradient_.data(), Jg.data()); |
| alpha_ = gradient_.squaredNorm() / Jg.squaredNorm(); |
| |
| LinearSolver::Summary linear_solver_summary = |
| ComputeGaussNewtonStep(jacobian, residuals); |
| |
| // Interpolate the Cauchy point and the Gauss-Newton step. |
| if (linear_solver_summary.termination_type != FAILURE) { |
| ComputeDoglegStep(step); |
| } |
| |
| return linear_solver_summary; |
| } |
| |
| void DoglegStrategy::ComputeDoglegStep(double* dogleg) { |
| VectorRef dogleg_step(dogleg, gradient_.rows()); |
| |
| // Case 1. The Gauss-Newton step lies inside the trust region, and |
| // is therefore the optimal solution to the trust-region problem. |
| const double gradient_norm = gradient_.norm(); |
| const double gauss_newton_norm = gauss_newton_step_.norm(); |
| if (gauss_newton_norm <= radius_) { |
| dogleg_step = gauss_newton_step_; |
| dogleg_step_norm_ = gauss_newton_norm; |
| VLOG(3) << "GaussNewton step size: " << dogleg_step_norm_ |
| << " radius: " << radius_; |
| return; |
| } |
| |
| // Case 2. The Cauchy point and the Gauss-Newton steps lie outside |
| // the trust region. Rescale the Cauchy point to the trust region |
| // and return. |
| if (gradient_norm * alpha_ >= radius_) { |
| dogleg_step = (radius_ / gradient_norm) * gradient_; |
| dogleg_step_norm_ = radius_; |
| VLOG(3) << "Cauchy step size: " << dogleg_step_norm_ |
| << " radius: " << radius_; |
| return; |
| } |
| |
| // Case 3. The Cauchy point is inside the trust region and the |
| // Gauss-Newton step is outside. Compute the line joining the two |
| // points and the point on it which intersects the trust region |
| // boundary. |
| |
| // a = alpha * gradient |
| // b = gauss_newton_step |
| const double b_dot_a = alpha_ * gradient_.dot(gauss_newton_step_); |
| const double a_squared_norm = pow(alpha_ * gradient_norm, 2.0); |
| const double b_minus_a_squared_norm = |
| a_squared_norm - 2 * b_dot_a + pow(gauss_newton_norm, 2); |
| |
| // c = a' (b - a) |
| // = alpha * gradient' gauss_newton_step - alpha^2 |gradient|^2 |
| const double c = b_dot_a - a_squared_norm; |
| const double d = sqrt(c * c + b_minus_a_squared_norm * |
| (pow(radius_, 2.0) - a_squared_norm)); |
| |
| double beta = |
| (c <= 0) |
| ? (d - c) / b_minus_a_squared_norm |
| : (radius_ * radius_ - a_squared_norm) / (d + c); |
| dogleg_step = (alpha_ * (1.0 - beta)) * gradient_ + beta * gauss_newton_step_; |
| dogleg_step_norm_ = dogleg_step.norm(); |
| VLOG(3) << "Dogleg step size: " << dogleg_step_norm_ |
| << " radius: " << radius_; |
| } |
| |
| LinearSolver::Summary DoglegStrategy::ComputeGaussNewtonStep( |
| SparseMatrix* jacobian, |
| const double* residuals) { |
| const int n = jacobian->num_cols(); |
| LinearSolver::Summary linear_solver_summary; |
| linear_solver_summary.termination_type = FAILURE; |
| |
| // The Jacobian matrix is often quite poorly conditioned. Thus it is |
| // necessary to add a diagonal matrix at the bottom to prevent the |
| // linear solver from failing. |
| // |
| // We do this by computing the same diagonal matrix as the one used |
| // by Levenberg-Marquardt (other choices are possible), and scaling |
| // it by a small constant (independent of the trust region radius). |
| // |
| // If the solve fails, the multiplier to the diagonal is increased |
| // up to max_mu_ by a factor of mu_increase_factor_ every time. If |
| // the linear solver is still not successful, the strategy returns |
| // with FAILURE. |
| // |
| // Next time when a new Gauss-Newton step is requested, the |
| // multiplier starts out from the last successful solve. |
| // |
| // When a step is declared successful, the multiplier is decreased |
| // by half of mu_increase_factor_. |
| while (mu_ < max_mu_) { |
| // Dogleg, as far as I (sameeragarwal) understand it, requires a |
| // reasonably good estimate of the Gauss-Newton step. This means |
| // that we need to solve the normal equations more or less |
| // exactly. This is reflected in the values of the tolerances set |
| // below. |
| // |
| // For now, this strategy should only be used with exact |
| // factorization based solvers, for which these tolerances are |
| // automatically satisfied. |
| // |
| // The right way to combine inexact solves with trust region |
| // methods is to use Stiehaug's method. |
| LinearSolver::PerSolveOptions solve_options; |
| solve_options.q_tolerance = 0.0; |
| solve_options.r_tolerance = 0.0; |
| |
| lm_diagonal_ = (diagonal_ * mu_).array().sqrt(); |
| solve_options.D = lm_diagonal_.data(); |
| |
| InvalidateArray(n, gauss_newton_step_.data()); |
| linear_solver_summary = linear_solver_->Solve(jacobian, |
| residuals, |
| solve_options, |
| gauss_newton_step_.data()); |
| |
| if (linear_solver_summary.termination_type == FAILURE || |
| !IsArrayValid(n, gauss_newton_step_.data())) { |
| mu_ *= mu_increase_factor_; |
| VLOG(2) << "Increasing mu " << mu_; |
| linear_solver_summary.termination_type = FAILURE; |
| continue; |
| } |
| break; |
| } |
| |
| return linear_solver_summary; |
| } |
| |
| void DoglegStrategy::StepAccepted(double step_quality) { |
| CHECK_GT(step_quality, 0.0); |
| if (step_quality < decrease_threshold_) { |
| radius_ *= 0.5; |
| return; |
| } |
| |
| if (step_quality > increase_threshold_) { |
| radius_ = max(radius_, 3.0 * dogleg_step_norm_); |
| } |
| |
| // Reduce the regularization multiplier, in the hope that whatever |
| // was causing the rank deficiency has gone away and we can return |
| // to doing a pure Gauss-Newton solve. |
| mu_ = max(min_mu_, 2.0 * mu_ / mu_increase_factor_ ); |
| reuse_ = false; |
| } |
| |
| void DoglegStrategy::StepRejected(double step_quality) { |
| radius_ *= 0.5; |
| reuse_ = true; |
| } |
| |
| void DoglegStrategy::StepIsInvalid() { |
| mu_ *= mu_increase_factor_; |
| reuse_ = false; |
| } |
| |
| double DoglegStrategy::Radius() const { |
| return radius_; |
| } |
| |
| } // namespace internal |
| } // namespace ceres |