| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. |
| // http://code.google.com/p/ceres-solver/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: keir@google.com (Keir Mierle) |
| |
| #include "ceres/numeric_diff_cost_function.h" |
| |
| #include <algorithm> |
| #include <cmath> |
| #include <string> |
| #include <vector> |
| #include "ceres/cost_function.h" |
| #include "ceres/internal/macros.h" |
| #include "ceres/internal/scoped_ptr.h" |
| #include "ceres/stringprintf.h" |
| #include "ceres/test_util.h" |
| #include "ceres/types.h" |
| #include "glog/logging.h" |
| #include "gtest/gtest.h" |
| |
| namespace ceres { |
| namespace internal { |
| |
| // y1 = x1'x2 -> dy1/dx1 = x2, dy1/dx2 = x1 |
| // y2 = (x1'x2)^2 -> dy2/dx1 = 2 * x2 * (x1'x2), dy2/dx2 = 2 * x1 * (x1'x2) |
| // y3 = x2'x2 -> dy3/dx1 = 0, dy3/dx2 = 2 * x2 |
| class TestCostFunction : public CostFunction { |
| public: |
| TestCostFunction() { |
| set_num_residuals(3); |
| mutable_parameter_block_sizes()->push_back(5); // x1. |
| mutable_parameter_block_sizes()->push_back(5); // x2. |
| } |
| virtual bool Evaluate(double const* const* parameters, |
| double* residuals, |
| double** jacobians) const { |
| (void) jacobians; // Ignored. |
| |
| residuals[0] = residuals[1] = residuals[2] = 0; |
| for (int i = 0; i < 5; ++i) { |
| residuals[0] += parameters[0][i] * parameters[1][i]; |
| residuals[2] += parameters[1][i] * parameters[1][i]; |
| } |
| residuals[1] = residuals[0] * residuals[0]; |
| return true; |
| } |
| }; |
| |
| TEST(NumericDiffCostFunction, EasyCase) { |
| // Try both central and forward difference. |
| internal::scoped_ptr<CostFunction> cfs[2]; |
| cfs[0].reset( |
| new NumericDiffCostFunction<TestCostFunction, |
| CENTRAL, |
| 3, /* number of residuals */ |
| 5, /* size of x1 */ |
| 5 /* size of x2 */>( |
| new TestCostFunction, TAKE_OWNERSHIP)); |
| |
| cfs[1].reset( |
| new NumericDiffCostFunction<TestCostFunction, |
| FORWARD, |
| 3, /* number of residuals */ |
| 5, /* size of x1 */ |
| 5 /* size of x2 */>( |
| new TestCostFunction, TAKE_OWNERSHIP)); |
| |
| for (int c = 0; c < 2; ++c) { |
| CostFunction *cost_function = cfs[c].get(); |
| |
| double x1[] = { 1.0, 2.0, 3.0, 4.0, 5.0 }; |
| double x2[] = { 9.0, 9.0, 5.0, 5.0, 1.0 }; |
| double *parameters[] = { &x1[0], &x2[0] }; |
| |
| double dydx1[15]; // 3 x 5, row major. |
| double dydx2[15]; // 3 x 5, row major. |
| double *jacobians[2] = { &dydx1[0], &dydx2[0] }; |
| |
| double residuals[3] = {-1e-100, -2e-100, -3e-100 }; |
| |
| ASSERT_TRUE(cost_function->Evaluate(¶meters[0], |
| &residuals[0], |
| &jacobians[0])); |
| |
| EXPECT_EQ(residuals[0], 67); |
| EXPECT_EQ(residuals[1], 4489); |
| EXPECT_EQ(residuals[2], 213); |
| |
| for (int i = 0; i < 5; ++i) { |
| LOG(INFO) << "c = " << c << " i = " << i; |
| const double kEps = c == 0 ? /* central */ 3e-9 : /* forward */ 2e-5; |
| |
| ExpectClose(x2[i], dydx1[5 * 0 + i], kEps); // y1 |
| ExpectClose(x1[i], dydx2[5 * 0 + i], kEps); |
| ExpectClose(2 * x2[i] * residuals[0], dydx1[5 * 1 + i], kEps); // y2 |
| ExpectClose(2 * x1[i] * residuals[0], dydx2[5 * 1 + i], kEps); |
| ExpectClose(0.0, dydx1[5 * 2 + i], kEps); // y3 |
| ExpectClose(2 * x2[i], dydx2[5 * 2 + i], kEps); |
| } |
| } |
| } |
| |
| // y1 = sin(x1'x2) |
| // y2 = exp(-x1'x2 / 10) |
| // |
| // dy1/dx1 = x2 * cos(x1'x2), dy1/dx2 = x1 * cos(x1'x2) |
| // dy2/dx1 = -x2 * exp(-x1'x2 / 10) / 10, dy2/dx2 = -x2 * exp(-x1'x2 / 10) / 10 |
| class TranscendentalTestCostFunction : public CostFunction { |
| public: |
| TranscendentalTestCostFunction() { |
| set_num_residuals(2); |
| mutable_parameter_block_sizes()->push_back(5); // x1. |
| mutable_parameter_block_sizes()->push_back(5); // x2. |
| } |
| virtual bool Evaluate(double const* const* parameters, |
| double* residuals, |
| double** jacobians) const { |
| (void) jacobians; // Ignored. |
| |
| double x1x2 = 0; |
| for (int i = 0; i < 5; ++i) { |
| x1x2 += parameters[0][i] * parameters[1][i]; |
| } |
| residuals[0] = sin(x1x2); |
| residuals[1] = exp(-x1x2 / 10); |
| return true; |
| } |
| }; |
| |
| TEST(NumericDiffCostFunction, TransendentalOperationsInCostFunction) { |
| // Try both central and forward difference. |
| internal::scoped_ptr<CostFunction> cfs[2]; |
| cfs[0].reset( |
| new NumericDiffCostFunction<TranscendentalTestCostFunction, |
| CENTRAL, |
| 2, /* number of residuals */ |
| 5, /* size of x1 */ |
| 5 /* size of x2 */>( |
| new TranscendentalTestCostFunction, TAKE_OWNERSHIP)); |
| |
| cfs[1].reset( |
| new NumericDiffCostFunction<TranscendentalTestCostFunction, |
| FORWARD, |
| 2, /* number of residuals */ |
| 5, /* size of x1 */ |
| 5 /* size of x2 */>( |
| new TranscendentalTestCostFunction, TAKE_OWNERSHIP)); |
| |
| for (int c = 0; c < 2; ++c) { |
| CostFunction *cost_function = cfs[c].get(); |
| |
| struct { |
| double x1[5]; |
| double x2[5]; |
| } kTests[] = { |
| { { 1.0, 2.0, 3.0, 4.0, 5.0 }, // No zeros. |
| { 9.0, 9.0, 5.0, 5.0, 1.0 }, |
| }, |
| { { 0.0, 2.0, 3.0, 0.0, 5.0 }, // Some zeros x1. |
| { 9.0, 9.0, 5.0, 5.0, 1.0 }, |
| }, |
| { { 1.0, 2.0, 3.0, 1.0, 5.0 }, // Some zeros x2. |
| { 0.0, 9.0, 0.0, 5.0, 0.0 }, |
| }, |
| { { 0.0, 0.0, 0.0, 0.0, 0.0 }, // All zeros x1. |
| { 9.0, 9.0, 5.0, 5.0, 1.0 }, |
| }, |
| { { 1.0, 2.0, 3.0, 4.0, 5.0 }, // All zeros x2. |
| { 0.0, 0.0, 0.0, 0.0, 0.0 }, |
| }, |
| { { 0.0, 0.0, 0.0, 0.0, 0.0 }, // All zeros. |
| { 0.0, 0.0, 0.0, 0.0, 0.0 }, |
| }, |
| }; |
| for (int k = 0; k < CERES_ARRAYSIZE(kTests); ++k) { |
| double *x1 = &(kTests[k].x1[0]); |
| double *x2 = &(kTests[k].x2[0]); |
| double *parameters[] = { x1, x2 }; |
| |
| double dydx1[10]; |
| double dydx2[10]; |
| double *jacobians[2] = { &dydx1[0], &dydx2[0] }; |
| |
| double residuals[2]; |
| |
| ASSERT_TRUE(cost_function->Evaluate(¶meters[0], |
| &residuals[0], |
| &jacobians[0])); |
| LOG(INFO) << "Ran evaluate for test k=" << k << " c=" << c; |
| |
| double x1x2 = 0; |
| for (int i = 0; i < 5; ++i) { |
| x1x2 += x1[i] * x2[i]; |
| } |
| |
| for (int i = 0; i < 5; ++i) { |
| const double kEps = c == 0 ? /* central */ 3e-9 : /* forward */ 2e-5; |
| |
| ExpectClose( x2[i] * cos(x1x2), dydx1[5 * 0 + i], kEps); |
| ExpectClose( x1[i] * cos(x1x2), dydx2[5 * 0 + i], kEps); |
| ExpectClose(-x2[i] * exp(-x1x2 / 10.) / 10., dydx1[5 * 1 + i], kEps); |
| ExpectClose(-x1[i] * exp(-x1x2 / 10.) / 10., dydx2[5 * 1 + i], kEps); |
| } |
| } |
| } |
| } |
| |
| } // namespace internal |
| } // namespace ceres |