| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2020 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: darius.rueckert@fau.de (Darius Rueckert) |
| // |
| // |
| #ifndef CERES_INTERNAL_AUTODIFF_BENCHMARK_BRDF_COST_FUNCTION_H_ |
| #define CERES_INTERNAL_AUTODIFF_BENCHMARK_BRDF_COST_FUNCTION_H_ |
| |
| #include <Eigen/Core> |
| #include <cmath> |
| |
| #include "ceres/constants.h" |
| |
| namespace ceres { |
| |
| // The brdf is based on: |
| // Burley, Brent, and Walt Disney Animation Studios. "Physically-based shading |
| // at disney." ACM SIGGRAPH. Vol. 2012. 2012. |
| // |
| // The implementation is based on: |
| // https://github.com/wdas/brdf/blob/master/src/brdfs/disney.brdf |
| struct Brdf { |
| public: |
| template <typename T> |
| inline bool operator()(const T* const material, |
| const T* const c_ptr, |
| const T* const n_ptr, |
| const T* const v_ptr, |
| const T* const l_ptr, |
| const T* const x_ptr, |
| const T* const y_ptr, |
| T* residual) const { |
| using Vec3 = Eigen::Matrix<T, 3, 1>; |
| |
| T metallic = material[0]; |
| T subsurface = material[1]; |
| T specular = material[2]; |
| T roughness = material[3]; |
| T specular_tint = material[4]; |
| T anisotropic = material[5]; |
| T sheen = material[6]; |
| T sheen_tint = material[7]; |
| T clearcoat = material[8]; |
| T clearcoat_gloss = material[9]; |
| |
| Eigen::Map<const Vec3> c(c_ptr); |
| Eigen::Map<const Vec3> n(n_ptr); |
| Eigen::Map<const Vec3> v(v_ptr); |
| Eigen::Map<const Vec3> l(l_ptr); |
| Eigen::Map<const Vec3> x(x_ptr); |
| Eigen::Map<const Vec3> y(y_ptr); |
| |
| const T n_dot_l = n.dot(l); |
| const T n_dot_v = n.dot(v); |
| |
| const Vec3 l_p_v = l + v; |
| const Vec3 h = l_p_v / l_p_v.norm(); |
| |
| const T n_dot_h = n.dot(h); |
| const T l_dot_h = l.dot(h); |
| |
| const T h_dot_x = h.dot(x); |
| const T h_dot_y = h.dot(y); |
| |
| const T c_dlum = T(0.3) * c[0] + T(0.6) * c[1] + T(0.1) * c[2]; |
| |
| const Vec3 c_tint = c / c_dlum; |
| |
| const Vec3 c_spec0 = |
| Lerp(specular * T(0.08) * |
| Lerp(Vec3(T(1), T(1), T(1)), c_tint, specular_tint), |
| c, |
| metallic); |
| const Vec3 c_sheen = Lerp(Vec3(T(1), T(1), T(1)), c_tint, sheen_tint); |
| |
| // Diffuse fresnel - go from 1 at normal incidence to .5 at grazing |
| // and mix in diffuse retro-reflection based on roughness |
| const T fl = SchlickFresnel(n_dot_l); |
| const T fv = SchlickFresnel(n_dot_v); |
| const T fd_90 = T(0.5) + T(2) * l_dot_h * l_dot_h * roughness; |
| const T fd = Lerp(T(1), fd_90, fl) * Lerp(T(1), fd_90, fv); |
| |
| // Based on Hanrahan-Krueger brdf approximation of isotropic bssrdf |
| // 1.25 scale is used to (roughly) preserve albedo |
| // Fss90 used to "flatten" retroreflection based on roughness |
| const T fss_90 = l_dot_h * l_dot_h * roughness; |
| const T fss = Lerp(T(1), fss_90, fl) * Lerp(T(1), fss_90, fv); |
| const T ss = |
| T(1.25) * (fss * (T(1) / (n_dot_l + n_dot_v) - T(0.5)) + T(0.5)); |
| |
| // specular |
| const T eps = T(0.001); |
| const T aspct = Aspect(anisotropic); |
| const T ax_temp = Square(roughness) / aspct; |
| const T ay_temp = Square(roughness) * aspct; |
| const T ax = (ax_temp < eps ? eps : ax_temp); |
| const T ay = (ay_temp < eps ? eps : ay_temp); |
| const T ds = GTR2Aniso(n_dot_h, h_dot_x, h_dot_y, ax, ay); |
| const T fh = SchlickFresnel(l_dot_h); |
| const Vec3 fs = Lerp(c_spec0, Vec3(T(1), T(1), T(1)), fh); |
| const T roughg = Square(roughness * T(0.5) + T(0.5)); |
| const T ggxn_dot_l = SmithG_GGX(n_dot_l, roughg); |
| const T ggxn_dot_v = SmithG_GGX(n_dot_v, roughg); |
| const T gs = ggxn_dot_l * ggxn_dot_v; |
| |
| // sheen |
| const Vec3 f_sheen = fh * sheen * c_sheen; |
| |
| // clearcoat (ior = 1.5 -> F0 = 0.04) |
| const T a = Lerp(T(0.1), T(0.001), clearcoat_gloss); |
| const T dr = GTR1(n_dot_h, a); |
| const T fr = Lerp(T(0.04), T(1), fh); |
| const T cggxn_dot_l = SmithG_GGX(n_dot_l, T(0.25)); |
| const T cggxn_dot_v = SmithG_GGX(n_dot_v, T(0.25)); |
| const T gr = cggxn_dot_l * cggxn_dot_v; |
| |
| const Vec3 result_no_cosine = |
| (T(1.0 / constants::pi) * Lerp(fd, ss, subsurface) * c + f_sheen) * |
| (T(1) - metallic) + |
| gs * fs * ds + |
| Vec3(T(0.25), T(0.25), T(0.25)) * clearcoat * gr * fr * dr; |
| const Vec3 result = n_dot_l * result_no_cosine; |
| residual[0] = result(0); |
| residual[1] = result(1); |
| residual[2] = result(2); |
| |
| return true; |
| } |
| |
| template <typename T> |
| inline T SchlickFresnel(const T& u) const { |
| T m = T(1) - u; |
| const T m2 = m * m; |
| return m2 * m2 * m; // (1-u)^5 |
| } |
| |
| template <typename T> |
| inline T Aspect(const T& anisotropic) const { |
| return T(sqrt(T(1) - anisotropic * T(0.9))); |
| } |
| |
| template <typename T> |
| inline T SmithG_GGX(const T& n_dot_v, const T& alpha_g) const { |
| const T a = alpha_g * alpha_g; |
| const T b = n_dot_v * n_dot_v; |
| return T(1) / (n_dot_v + T(sqrt(a + b - a * b))); |
| } |
| |
| // Generalized-Trowbridge-Reitz (GTR) Microfacet Distribution |
| // See paper, Appendix B |
| template <typename T> |
| inline T GTR1(const T& n_dot_h, const T& a) const { |
| T result = T(0); |
| |
| if (a >= T(1)) { |
| result = T(1 / constants::pi); |
| } else { |
| const T a2 = a * a; |
| const T t = T(1) + (a2 - T(1)) * n_dot_h * n_dot_h; |
| result = (a2 - T(1)) / (T(constants::pi) * T(log(a2) * t)); |
| } |
| return result; |
| } |
| |
| template <typename T> |
| inline T GTR2Aniso(const T& n_dot_h, |
| const T& h_dot_x, |
| const T& h_dot_y, |
| const T& ax, |
| const T& ay) const { |
| return T(1) / (T(constants::pi) * ax * ay * |
| Square(Square(h_dot_x / ax) + Square(h_dot_y / ay) + |
| n_dot_h * n_dot_h)); |
| } |
| |
| template <typename T> |
| inline T Lerp(const T& a, const T& b, const T& u) const { |
| return a + u * (b - a); |
| } |
| |
| template <typename Derived1, typename Derived2> |
| inline typename Derived1::PlainObject Lerp( |
| const Eigen::MatrixBase<Derived1>& a, |
| const Eigen::MatrixBase<Derived2>& b, |
| typename Derived1::Scalar alpha) const { |
| return (typename Derived1::Scalar(1) - alpha) * a + alpha * b; |
| } |
| |
| template <typename T> |
| inline T Square(const T& x) const { |
| return x * x; |
| } |
| }; |
| |
| } // namespace ceres |
| |
| #endif // CERES_INTERNAL_AUTODIFF_BENCHMARK_BRDF_COST_FUNCTION_H_ |