| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2023 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: sameeragarwal@google.com (Sameer Agarwal) |
| |
| #include "ceres/compressed_col_sparse_matrix_utils.h" |
| |
| #include <algorithm> |
| #include <numeric> |
| #include <vector> |
| |
| #include "Eigen/SparseCore" |
| #include "ceres/internal/export.h" |
| #include "ceres/triplet_sparse_matrix.h" |
| #include "gtest/gtest.h" |
| |
| namespace ceres::internal { |
| |
| TEST(_, BlockPermutationToScalarPermutation) { |
| // Block structure |
| // 0 --1- ---2--- ---3--- 4 |
| // [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] |
| std::vector<Block> blocks{{1, 0}, {2, 1}, {3, 3}, {3, 6}, {1, 9}}; |
| // Block ordering |
| // [1, 0, 2, 4, 5] |
| std::vector<int> block_ordering{{1, 0, 2, 4, 3}}; |
| |
| // Expected ordering |
| // [1, 2, 0, 3, 4, 5, 9, 6, 7, 8] |
| std::vector<int> expected_scalar_ordering{{1, 2, 0, 3, 4, 5, 9, 6, 7, 8}}; |
| |
| std::vector<int> scalar_ordering; |
| BlockOrderingToScalarOrdering(blocks, block_ordering, &scalar_ordering); |
| EXPECT_EQ(scalar_ordering.size(), expected_scalar_ordering.size()); |
| for (int i = 0; i < expected_scalar_ordering.size(); ++i) { |
| EXPECT_EQ(scalar_ordering[i], expected_scalar_ordering[i]); |
| } |
| } |
| |
| static void FillBlock(const std::vector<Block>& row_blocks, |
| const std::vector<Block>& col_blocks, |
| const int row_block_id, |
| const int col_block_id, |
| std::vector<Eigen::Triplet<double>>* triplets) { |
| for (int r = 0; r < row_blocks[row_block_id].size; ++r) { |
| for (int c = 0; c < col_blocks[col_block_id].size; ++c) { |
| triplets->push_back( |
| Eigen::Triplet<double>(row_blocks[row_block_id].position + r, |
| col_blocks[col_block_id].position + c, |
| 1.0)); |
| } |
| } |
| } |
| |
| TEST(_, ScalarMatrixToBlockMatrix) { |
| // Block sparsity. |
| // |
| // [1 2 3 2] |
| // [1] x x |
| // [2] x x |
| // [2] x x |
| // num_nonzeros = 1 + 3 + 4 + 4 + 1 + 2 = 15 |
| |
| std::vector<Block> col_blocks{{1, 0}, {2, 1}, {3, 3}, {2, 5}}; |
| const int num_cols = NumScalarEntries(col_blocks); |
| |
| std::vector<Block> row_blocks{{1, 0}, {2, 1}, {2, 3}}; |
| const int num_rows = NumScalarEntries(row_blocks); |
| |
| std::vector<Eigen::Triplet<double>> triplets; |
| FillBlock(row_blocks, col_blocks, 0, 0, &triplets); |
| FillBlock(row_blocks, col_blocks, 2, 0, &triplets); |
| FillBlock(row_blocks, col_blocks, 1, 1, &triplets); |
| FillBlock(row_blocks, col_blocks, 2, 1, &triplets); |
| FillBlock(row_blocks, col_blocks, 0, 2, &triplets); |
| FillBlock(row_blocks, col_blocks, 1, 3, &triplets); |
| Eigen::SparseMatrix<double> sparse_matrix(num_rows, num_cols); |
| sparse_matrix.setFromTriplets(triplets.begin(), triplets.end()); |
| |
| const std::vector<int> expected_compressed_block_rows{{0, 2, 1, 2, 0, 1}}; |
| const std::vector<int> expected_compressed_block_cols{{0, 2, 4, 5, 6}}; |
| |
| std::vector<int> compressed_block_rows; |
| std::vector<int> compressed_block_cols; |
| CompressedColumnScalarMatrixToBlockMatrix(sparse_matrix.innerIndexPtr(), |
| sparse_matrix.outerIndexPtr(), |
| row_blocks, |
| col_blocks, |
| &compressed_block_rows, |
| &compressed_block_cols); |
| |
| EXPECT_EQ(compressed_block_rows, expected_compressed_block_rows); |
| EXPECT_EQ(compressed_block_cols, expected_compressed_block_cols); |
| } |
| |
| class SolveUpperTriangularTest : public ::testing::Test { |
| protected: |
| const std::vector<int>& cols() const { return cols_; } |
| const std::vector<int>& rows() const { return rows_; } |
| const std::vector<double>& values() const { return values_; } |
| |
| private: |
| const std::vector<int> cols_ = {0, 1, 2, 4, 7}; |
| const std::vector<int> rows_ = {0, 1, 1, 2, 0, 1, 3}; |
| const std::vector<double> values_ = { |
| 0.50754, 0.80483, 0.14120, 0.3, 0.77696, 0.41860, 0.88979}; |
| }; |
| |
| TEST_F(SolveUpperTriangularTest, SolveInPlace) { |
| double rhs_and_solution[] = {1.0, 1.0, 2.0, 2.0}; |
| const double expected[] = {-1.4706, -1.0962, 6.6667, 2.2477}; |
| |
| SolveUpperTriangularInPlace<int>(cols().size() - 1, |
| rows().data(), |
| cols().data(), |
| values().data(), |
| rhs_and_solution); |
| |
| for (int i = 0; i < 4; ++i) { |
| EXPECT_NEAR(rhs_and_solution[i], expected[i], 1e-4) << i; |
| } |
| } |
| |
| TEST_F(SolveUpperTriangularTest, TransposeSolveInPlace) { |
| double rhs_and_solution[] = {1.0, 1.0, 2.0, 2.0}; |
| double expected[] = {1.970288, 1.242498, 6.081864, -0.057255}; |
| |
| SolveUpperTriangularTransposeInPlace<int>(cols().size() - 1, |
| rows().data(), |
| cols().data(), |
| values().data(), |
| rhs_and_solution); |
| |
| for (int i = 0; i < 4; ++i) { |
| EXPECT_NEAR(rhs_and_solution[i], expected[i], 1e-4) << i; |
| } |
| } |
| |
| TEST_F(SolveUpperTriangularTest, RTRSolveWithSparseRHS) { |
| double solution[4]; |
| // clang-format off |
| double expected[] = { 6.8420e+00, 1.0057e+00, -1.4907e-16, -1.9335e+00, |
| 1.0057e+00, 2.2275e+00, -1.9493e+00, -6.5693e-01, |
| -1.4907e-16, -1.9493e+00, 1.1111e+01, 9.7381e-17, |
| -1.9335e+00, -6.5693e-01, 9.7381e-17, 1.2631e+00 }; |
| // clang-format on |
| |
| for (int i = 0; i < 4; ++i) { |
| SolveRTRWithSparseRHS<int>(cols().size() - 1, |
| rows().data(), |
| cols().data(), |
| values().data(), |
| i, |
| solution); |
| for (int j = 0; j < 4; ++j) { |
| EXPECT_NEAR(solution[j], expected[4 * i + j], 1e-3) << i; |
| } |
| } |
| } |
| |
| } // namespace ceres::internal |