| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2023 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: sameeragarwal@google.com (Sameer Agarwal) |
| |
| #include "ceres/iterative_refiner.h" |
| |
| #include <utility> |
| |
| #include "Eigen/Dense" |
| #include "absl/log/check.h" |
| #include "absl/log/log.h" |
| #include "ceres/dense_cholesky.h" |
| #include "ceres/internal/eigen.h" |
| #include "ceres/sparse_cholesky.h" |
| #include "ceres/sparse_matrix.h" |
| #include "gtest/gtest.h" |
| |
| namespace ceres::internal { |
| |
| // Macros to help us define virtual methods which we do not expect to |
| // use/call in this test. |
| #define DO_NOT_CALL \ |
| { LOG(FATAL) << "DO NOT CALL"; } |
| #define DO_NOT_CALL_WITH_RETURN(x) \ |
| { \ |
| LOG(FATAL) << "DO NOT CALL"; \ |
| return x; \ |
| } |
| |
| // A fake SparseMatrix, which uses an Eigen matrix to do the real work. |
| class FakeSparseMatrix : public SparseMatrix { |
| public: |
| explicit FakeSparseMatrix(Matrix m) : m_(std::move(m)) {} |
| |
| // y += Ax |
| void RightMultiplyAndAccumulate(const double* x, double* y) const final { |
| VectorRef(y, m_.cols()) += m_ * ConstVectorRef(x, m_.cols()); |
| } |
| // y += A'x |
| void LeftMultiplyAndAccumulate(const double* x, double* y) const final { |
| // We will assume that this is a symmetric matrix. |
| RightMultiplyAndAccumulate(x, y); |
| } |
| |
| double* mutable_values() final { return m_.data(); } |
| const double* values() const final { return m_.data(); } |
| int num_rows() const final { return m_.cols(); } |
| int num_cols() const final { return m_.cols(); } |
| int num_nonzeros() const final { return m_.cols() * m_.cols(); } |
| |
| // The following methods are not needed for tests in this file. |
| void SquaredColumnNorm(double* x) const final DO_NOT_CALL; |
| void ScaleColumns(const double* scale) final DO_NOT_CALL; |
| void SetZero() final DO_NOT_CALL; |
| void ToDenseMatrix(Matrix* dense_matrix) const final DO_NOT_CALL; |
| void ToTextFile(FILE* file) const final DO_NOT_CALL; |
| |
| private: |
| Matrix m_; |
| }; |
| |
| // A fake SparseCholesky which uses Eigen's Cholesky factorization to |
| // do the real work. The template parameter allows us to work in |
| // doubles or floats, even though the source matrix is double. |
| template <typename Scalar> |
| class FakeSparseCholesky : public SparseCholesky { |
| public: |
| explicit FakeSparseCholesky(const Matrix& lhs) { lhs_ = lhs.cast<Scalar>(); } |
| |
| LinearSolverTerminationType Solve(const double* rhs_ptr, |
| double* solution_ptr, |
| std::string* message) final { |
| const int num_cols = lhs_.cols(); |
| VectorRef solution(solution_ptr, num_cols); |
| ConstVectorRef rhs(rhs_ptr, num_cols); |
| auto llt = lhs_.llt(); |
| CHECK_EQ(llt.info(), Eigen::Success); |
| solution = llt.solve(rhs.cast<Scalar>()).template cast<double>(); |
| return LinearSolverTerminationType::SUCCESS; |
| } |
| |
| // The following methods are not needed for tests in this file. |
| CompressedRowSparseMatrix::StorageType StorageType() const final |
| DO_NOT_CALL_WITH_RETURN( |
| CompressedRowSparseMatrix::StorageType::UPPER_TRIANGULAR); |
| LinearSolverTerminationType Factorize(CompressedRowSparseMatrix* lhs, |
| std::string* message) final |
| DO_NOT_CALL_WITH_RETURN(LinearSolverTerminationType::FAILURE); |
| |
| private: |
| Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> lhs_; |
| }; |
| |
| // A fake DenseCholesky which uses Eigen's Cholesky factorization to |
| // do the real work. The template parameter allows us to work in |
| // doubles or floats, even though the source matrix is double. |
| template <typename Scalar> |
| class FakeDenseCholesky : public DenseCholesky { |
| public: |
| explicit FakeDenseCholesky(const Matrix& lhs) { lhs_ = lhs.cast<Scalar>(); } |
| |
| LinearSolverTerminationType Solve(const double* rhs_ptr, |
| double* solution_ptr, |
| std::string* message) final { |
| const int num_cols = lhs_.cols(); |
| VectorRef solution(solution_ptr, num_cols); |
| ConstVectorRef rhs(rhs_ptr, num_cols); |
| solution = lhs_.llt().solve(rhs.cast<Scalar>()).template cast<double>(); |
| return LinearSolverTerminationType::SUCCESS; |
| } |
| |
| LinearSolverTerminationType Factorize(int num_cols, |
| double* lhs, |
| std::string* message) final |
| DO_NOT_CALL_WITH_RETURN(LinearSolverTerminationType::FAILURE); |
| |
| private: |
| Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> lhs_; |
| }; |
| |
| #undef DO_NOT_CALL |
| #undef DO_NOT_CALL_WITH_RETURN |
| |
| class SparseIterativeRefinerTest : public ::testing::Test { |
| public: |
| void SetUp() override { |
| num_cols_ = 5; |
| max_num_iterations_ = 30; |
| Matrix m(num_cols_, num_cols_); |
| m.setRandom(); |
| lhs_ = m * m.transpose(); |
| solution_.resize(num_cols_); |
| solution_.setRandom(); |
| rhs_ = lhs_ * solution_; |
| }; |
| |
| protected: |
| int num_cols_; |
| int max_num_iterations_; |
| Matrix lhs_; |
| Vector rhs_, solution_; |
| }; |
| |
| TEST_F(SparseIterativeRefinerTest, |
| RandomSolutionWithExactFactorizationConverges) { |
| FakeSparseMatrix lhs(lhs_); |
| FakeSparseCholesky<double> sparse_cholesky(lhs_); |
| SparseIterativeRefiner refiner(max_num_iterations_); |
| Vector refined_solution(num_cols_); |
| refined_solution.setRandom(); |
| refiner.Refine(lhs, rhs_.data(), &sparse_cholesky, refined_solution.data()); |
| EXPECT_NEAR((lhs_ * refined_solution - rhs_).norm(), |
| 0.0, |
| std::numeric_limits<double>::epsilon() * 10); |
| } |
| |
| TEST_F(SparseIterativeRefinerTest, |
| RandomSolutionWithApproximationFactorizationConverges) { |
| FakeSparseMatrix lhs(lhs_); |
| // Use a single precision Cholesky factorization of the double |
| // precision matrix. This will give us an approximate factorization. |
| FakeSparseCholesky<float> sparse_cholesky(lhs_); |
| SparseIterativeRefiner refiner(max_num_iterations_); |
| Vector refined_solution(num_cols_); |
| refined_solution.setRandom(); |
| refiner.Refine(lhs, rhs_.data(), &sparse_cholesky, refined_solution.data()); |
| EXPECT_NEAR((lhs_ * refined_solution - rhs_).norm(), |
| 0.0, |
| std::numeric_limits<double>::epsilon() * 10); |
| } |
| |
| class DenseIterativeRefinerTest : public ::testing::Test { |
| public: |
| void SetUp() override { |
| num_cols_ = 5; |
| max_num_iterations_ = 30; |
| Matrix m(num_cols_, num_cols_); |
| m.setRandom(); |
| lhs_ = m * m.transpose(); |
| solution_.resize(num_cols_); |
| solution_.setRandom(); |
| rhs_ = lhs_ * solution_; |
| }; |
| |
| protected: |
| int num_cols_; |
| int max_num_iterations_; |
| Matrix lhs_; |
| Vector rhs_, solution_; |
| }; |
| |
| TEST_F(DenseIterativeRefinerTest, |
| RandomSolutionWithExactFactorizationConverges) { |
| Matrix lhs = lhs_; |
| FakeDenseCholesky<double> dense_cholesky(lhs); |
| DenseIterativeRefiner refiner(max_num_iterations_); |
| Vector refined_solution(num_cols_); |
| refined_solution.setRandom(); |
| refiner.Refine(lhs.cols(), |
| lhs.data(), |
| rhs_.data(), |
| &dense_cholesky, |
| refined_solution.data()); |
| EXPECT_NEAR((lhs_ * refined_solution - rhs_).norm(), |
| 0.0, |
| std::numeric_limits<double>::epsilon() * 10); |
| } |
| |
| TEST_F(DenseIterativeRefinerTest, |
| RandomSolutionWithApproximationFactorizationConverges) { |
| Matrix lhs = lhs_; |
| // Use a single precision Cholesky factorization of the double |
| // precision matrix. This will give us an approximate factorization. |
| FakeDenseCholesky<float> dense_cholesky(lhs_); |
| DenseIterativeRefiner refiner(max_num_iterations_); |
| Vector refined_solution(num_cols_); |
| refined_solution.setRandom(); |
| refiner.Refine(lhs.cols(), |
| lhs.data(), |
| rhs_.data(), |
| &dense_cholesky, |
| refined_solution.data()); |
| EXPECT_NEAR((lhs_ * refined_solution - rhs_).norm(), |
| 0.0, |
| std::numeric_limits<double>::epsilon() * 10); |
| } |
| |
| } // namespace ceres::internal |