| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2023 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: keir@google.com (Keir Mierle) |
| |
| #ifndef CERES_INTERNAL_STL_UTIL_H_ |
| #define CERES_INTERNAL_STL_UTIL_H_ |
| |
| #include <algorithm> |
| |
| namespace ceres { |
| |
| // STLDeleteContainerPointers() |
| // For a range within a container of pointers, calls delete |
| // (non-array version) on these pointers. |
| // NOTE: for these three functions, we could just implement a DeleteObject |
| // functor and then call for_each() on the range and functor, but this |
| // requires us to pull in all of algorithm.h, which seems expensive. |
| // For hash_[multi]set, it is important that this deletes behind the iterator |
| // because the hash_set may call the hash function on the iterator when it is |
| // advanced, which could result in the hash function trying to deference a |
| // stale pointer. |
| template <class ForwardIterator> |
| void STLDeleteContainerPointers(ForwardIterator begin, ForwardIterator end) { |
| while (begin != end) { |
| ForwardIterator temp = begin; |
| ++begin; |
| delete *temp; |
| } |
| } |
| |
| // Variant of STLDeleteContainerPointers which allows the container to |
| // contain duplicates. |
| template <class ForwardIterator> |
| void STLDeleteUniqueContainerPointers(ForwardIterator begin, |
| ForwardIterator end) { |
| std::sort(begin, end); |
| ForwardIterator new_end = std::unique(begin, end); |
| while (begin != new_end) { |
| ForwardIterator temp = begin; |
| ++begin; |
| delete *temp; |
| } |
| } |
| |
| // STLDeleteElements() deletes all the elements in an STL container and clears |
| // the container. This function is suitable for use with a vector, set, |
| // hash_set, or any other STL container which defines sensible begin(), end(), |
| // and clear() methods. |
| // |
| // If container is nullptr, this function is a no-op. |
| // |
| // As an alternative to calling STLDeleteElements() directly, consider |
| // ElementDeleter (defined below), which ensures that your container's elements |
| // are deleted when the ElementDeleter goes out of scope. |
| template <class T> |
| void STLDeleteElements(T* container) { |
| if (!container) return; |
| STLDeleteContainerPointers(container->begin(), container->end()); |
| container->clear(); |
| } |
| |
| } // namespace ceres |
| |
| #endif // CERES_INTERNAL_STL_UTIL_H_ |