| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2023 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: sameeragarwal@google.com (Sameer Agarwal) |
| |
| #include "ceres/tiny_solver_cost_function_adapter.h" |
| |
| #include <algorithm> |
| #include <cmath> |
| #include <memory> |
| |
| #include "ceres/cost_function.h" |
| #include "ceres/sized_cost_function.h" |
| #include "gtest/gtest.h" |
| |
| namespace ceres { |
| |
| class CostFunction2x3 : public SizedCostFunction<2, 3> { |
| bool Evaluate(double const* const* parameters, |
| double* residuals, |
| double** jacobians) const final { |
| double x = parameters[0][0]; |
| double y = parameters[0][1]; |
| double z = parameters[0][2]; |
| |
| residuals[0] = x + 2 * y + 4 * z; |
| residuals[1] = y * z; |
| |
| if (jacobians && jacobians[0]) { |
| jacobians[0][0] = 1; |
| jacobians[0][1] = 2; |
| jacobians[0][2] = 4; |
| |
| jacobians[0][3 + 0] = 0; |
| jacobians[0][3 + 1] = z; |
| jacobians[0][3 + 2] = y; |
| } |
| |
| return true; |
| } |
| }; |
| |
| template <int kNumResiduals, int kNumParameters> |
| void TestHelper() { |
| std::unique_ptr<CostFunction> cost_function(new CostFunction2x3); |
| using CostFunctionAdapter = |
| TinySolverCostFunctionAdapter<kNumResiduals, kNumParameters>; |
| CostFunctionAdapter cfa(*cost_function); |
| EXPECT_EQ(CostFunctionAdapter::NUM_RESIDUALS, kNumResiduals); |
| EXPECT_EQ(CostFunctionAdapter::NUM_PARAMETERS, kNumParameters); |
| |
| EXPECT_EQ(cfa.NumResiduals(), 2); |
| EXPECT_EQ(cfa.NumParameters(), 3); |
| |
| Eigen::Matrix<double, 2, 1> actual_residuals, expected_residuals; |
| Eigen::Matrix<double, 2, 3, Eigen::ColMajor> actual_jacobian; |
| Eigen::Matrix<double, 2, 3, Eigen::RowMajor> expected_jacobian; |
| |
| double xyz[3] = {1.0, -1.0, 2.0}; |
| double* parameters[1] = {xyz}; |
| |
| // Check that residual only evaluation works. |
| cost_function->Evaluate(parameters, expected_residuals.data(), nullptr); |
| cfa(xyz, actual_residuals.data(), nullptr); |
| EXPECT_NEAR( |
| (expected_residuals - actual_residuals).norm() / actual_residuals.norm(), |
| 0.0, |
| std::numeric_limits<double>::epsilon()) |
| << "\nExpected residuals: " << expected_residuals.transpose() |
| << "\nActual residuals: " << actual_residuals.transpose(); |
| |
| // Check that residual and jacobian evaluation works. |
| double* jacobians[1] = {expected_jacobian.data()}; |
| cost_function->Evaluate(parameters, expected_residuals.data(), jacobians); |
| cfa(xyz, actual_residuals.data(), actual_jacobian.data()); |
| |
| EXPECT_NEAR( |
| (expected_residuals - actual_residuals).norm() / actual_residuals.norm(), |
| 0.0, |
| std::numeric_limits<double>::epsilon()) |
| << "\nExpected residuals: " << expected_residuals.transpose() |
| << "\nActual residuals: " << actual_residuals.transpose(); |
| |
| EXPECT_NEAR( |
| (expected_jacobian - actual_jacobian).norm() / actual_jacobian.norm(), |
| 0.0, |
| std::numeric_limits<double>::epsilon()) |
| << "\nExpected jacobian: " << expected_jacobian.transpose() |
| << "\nActual jacobian: " << actual_jacobian.transpose(); |
| } |
| |
| TEST(TinySolverCostFunctionAdapter, StaticResidualsStaticParameterBlock) { |
| TestHelper<2, 3>(); |
| } |
| |
| TEST(TinySolverCostFunctionAdapter, DynamicResidualsStaticParameterBlock) { |
| TestHelper<Eigen::Dynamic, 3>(); |
| } |
| |
| TEST(TinySolverCostFunctionAdapter, StaticResidualsDynamicParameterBlock) { |
| TestHelper<2, Eigen::Dynamic>(); |
| } |
| |
| TEST(TinySolverCostFunctionAdapter, DynamicResidualsDynamicParameterBlock) { |
| TestHelper<Eigen::Dynamic, Eigen::Dynamic>(); |
| } |
| |
| } // namespace ceres |