| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2015 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
 |  | 
 | #include <limits> | 
 | #include <vector> | 
 |  | 
 | #include "ceres/block_random_access_diagonal_matrix.h" | 
 | #include "ceres/internal/eigen.h" | 
 | #include "glog/logging.h" | 
 | #include "gtest/gtest.h" | 
 | #include "Eigen/Cholesky" | 
 |  | 
 | namespace ceres { | 
 | namespace internal { | 
 |  | 
 | class BlockRandomAccessDiagonalMatrixTest : public ::testing::Test { | 
 |  public: | 
 |   void SetUp() { | 
 |     std::vector<int> blocks; | 
 |     blocks.push_back(3); | 
 |     blocks.push_back(4); | 
 |     blocks.push_back(5); | 
 |     const int num_rows = 3 + 4 + 5; | 
 |     num_nonzeros_ =  3 * 3 + 4 * 4 + 5 * 5; | 
 |  | 
 |     m_.reset(new BlockRandomAccessDiagonalMatrix(blocks)); | 
 |  | 
 |     EXPECT_EQ(m_->num_rows(), num_rows); | 
 |     EXPECT_EQ(m_->num_cols(), num_rows); | 
 |  | 
 |     for (int i = 0; i < blocks.size(); ++i) { | 
 |       const int row_block_id = i; | 
 |       int col_block_id; | 
 |       int row; | 
 |       int col; | 
 |       int row_stride; | 
 |       int col_stride; | 
 |  | 
 |       for (int j = 0; j < blocks.size(); ++j) { | 
 |         col_block_id = j; | 
 |         CellInfo* cell =  m_->GetCell(row_block_id, col_block_id, | 
 |                                     &row, &col, | 
 |                                     &row_stride, &col_stride); | 
 |         // Off diagonal entries are not present. | 
 |         if (i != j) { | 
 |           EXPECT_TRUE(cell == NULL); | 
 |           continue; | 
 |         } | 
 |  | 
 |         EXPECT_TRUE(cell != NULL); | 
 |         EXPECT_EQ(row, 0); | 
 |         EXPECT_EQ(col, 0); | 
 |         EXPECT_EQ(row_stride, blocks[row_block_id]); | 
 |         EXPECT_EQ(col_stride, blocks[col_block_id]); | 
 |  | 
 |         // Write into the block | 
 |         MatrixRef(cell->values, row_stride, col_stride).block( | 
 |             row, col, blocks[row_block_id], blocks[col_block_id]) = | 
 |             (row_block_id + 1) * (col_block_id +1) * | 
 |             Matrix::Ones(blocks[row_block_id], blocks[col_block_id]) | 
 |             + Matrix::Identity(blocks[row_block_id], blocks[row_block_id]); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |  protected: | 
 |   int num_nonzeros_; | 
 |   scoped_ptr<BlockRandomAccessDiagonalMatrix> m_; | 
 | }; | 
 |  | 
 | TEST_F(BlockRandomAccessDiagonalMatrixTest, MatrixContents) { | 
 |   const TripletSparseMatrix* tsm = m_->matrix(); | 
 |   EXPECT_EQ(tsm->num_nonzeros(), num_nonzeros_); | 
 |   EXPECT_EQ(tsm->max_num_nonzeros(), num_nonzeros_); | 
 |  | 
 |   Matrix dense; | 
 |   tsm->ToDenseMatrix(&dense); | 
 |  | 
 |   double kTolerance = 1e-14; | 
 |  | 
 |   // (0,0) | 
 |   EXPECT_NEAR((dense.block(0, 0, 3, 3) - | 
 |                (Matrix::Ones(3, 3) + Matrix::Identity(3, 3))).norm(), | 
 |               0.0, | 
 |               kTolerance); | 
 |  | 
 |   // (1,1) | 
 |   EXPECT_NEAR((dense.block(3, 3, 4, 4) - | 
 |                (2 * 2 * Matrix::Ones(4, 4) + Matrix::Identity(4, 4))).norm(), | 
 |               0.0, | 
 |               kTolerance); | 
 |  | 
 |   // (1,1) | 
 |   EXPECT_NEAR((dense.block(7, 7, 5, 5) - | 
 |                (3 * 3 * Matrix::Ones(5, 5) + Matrix::Identity(5, 5))).norm(), | 
 |               0.0, | 
 |               kTolerance); | 
 |  | 
 |   // There is nothing else in the matrix besides these four blocks. | 
 |   EXPECT_NEAR(dense.norm(), | 
 |               sqrt(6 * 1.0 + 3 * 4.0 + | 
 |                    12 * 16.0 + 4 * 25.0 + | 
 |                    20 * 81.0 + 5 * 100.0), kTolerance); | 
 | } | 
 |  | 
 | TEST_F(BlockRandomAccessDiagonalMatrixTest, RightMultiply) { | 
 |   double kTolerance = 1e-14; | 
 |   const TripletSparseMatrix* tsm = m_->matrix(); | 
 |   Matrix dense; | 
 |   tsm->ToDenseMatrix(&dense); | 
 |   Vector x = Vector::Random(dense.rows()); | 
 |   Vector expected_y = dense * x; | 
 |   Vector actual_y = Vector::Zero(dense.rows()); | 
 |   m_->RightMultiply(x.data(),  actual_y.data()); | 
 |   EXPECT_NEAR((expected_y - actual_y).norm(), 0, kTolerance); | 
 | } | 
 |  | 
 | TEST_F(BlockRandomAccessDiagonalMatrixTest, Invert) { | 
 |   double kTolerance = 1e-14; | 
 |   const TripletSparseMatrix* tsm = m_->matrix(); | 
 |   Matrix dense; | 
 |   tsm->ToDenseMatrix(&dense); | 
 |   Matrix expected_inverse = | 
 |       dense.llt().solve(Matrix::Identity(dense.rows(), dense.rows())); | 
 |  | 
 |   m_->Invert(); | 
 |   tsm->ToDenseMatrix(&dense); | 
 |  | 
 |   EXPECT_NEAR((expected_inverse - dense).norm(), 0.0, kTolerance); | 
 | } | 
 |  | 
 | }  // namespace internal | 
 | }  // namespace ceres |