|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2015 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  |  | 
|  | #include "ceres/dense_normal_cholesky_solver.h" | 
|  |  | 
|  | #include <cstddef> | 
|  |  | 
|  | #include "Eigen/Dense" | 
|  | #include "ceres/blas.h" | 
|  | #include "ceres/dense_sparse_matrix.h" | 
|  | #include "ceres/internal/eigen.h" | 
|  | #include "ceres/internal/scoped_ptr.h" | 
|  | #include "ceres/lapack.h" | 
|  | #include "ceres/linear_solver.h" | 
|  | #include "ceres/types.h" | 
|  | #include "ceres/wall_time.h" | 
|  |  | 
|  | namespace ceres { | 
|  | namespace internal { | 
|  |  | 
|  | DenseNormalCholeskySolver::DenseNormalCholeskySolver( | 
|  | const LinearSolver::Options& options) | 
|  | : options_(options) {} | 
|  |  | 
|  | LinearSolver::Summary DenseNormalCholeskySolver::SolveImpl( | 
|  | DenseSparseMatrix* A, | 
|  | const double* b, | 
|  | const LinearSolver::PerSolveOptions& per_solve_options, | 
|  | double* x) { | 
|  | if (options_.dense_linear_algebra_library_type == EIGEN) { | 
|  | return SolveUsingEigen(A, b, per_solve_options, x); | 
|  | } else { | 
|  | return SolveUsingLAPACK(A, b, per_solve_options, x); | 
|  | } | 
|  | } | 
|  |  | 
|  | LinearSolver::Summary DenseNormalCholeskySolver::SolveUsingEigen( | 
|  | DenseSparseMatrix* A, | 
|  | const double* b, | 
|  | const LinearSolver::PerSolveOptions& per_solve_options, | 
|  | double* x) { | 
|  | EventLogger event_logger("DenseNormalCholeskySolver::Solve"); | 
|  |  | 
|  | const int num_rows = A->num_rows(); | 
|  | const int num_cols = A->num_cols(); | 
|  |  | 
|  | ConstColMajorMatrixRef Aref = A->matrix(); | 
|  | Matrix lhs(num_cols, num_cols); | 
|  | lhs.setZero(); | 
|  |  | 
|  | event_logger.AddEvent("Setup"); | 
|  |  | 
|  | //   lhs += A'A | 
|  | // | 
|  | // Using rankUpdate instead of GEMM, exposes the fact that its the | 
|  | // same matrix being multiplied with itself and that the product is | 
|  | // symmetric. | 
|  | lhs.selfadjointView<Eigen::Upper>().rankUpdate(Aref.transpose()); | 
|  |  | 
|  | //   rhs = A'b | 
|  | Vector rhs = Aref.transpose() * ConstVectorRef(b, num_rows); | 
|  |  | 
|  | if (per_solve_options.D != NULL) { | 
|  | ConstVectorRef D(per_solve_options.D, num_cols); | 
|  | lhs += D.array().square().matrix().asDiagonal(); | 
|  | } | 
|  | event_logger.AddEvent("Product"); | 
|  |  | 
|  | LinearSolver::Summary summary; | 
|  | summary.num_iterations = 1; | 
|  | summary.termination_type = LINEAR_SOLVER_SUCCESS; | 
|  | Eigen::LLT<Matrix, Eigen::Upper> llt = | 
|  | lhs.selfadjointView<Eigen::Upper>().llt(); | 
|  |  | 
|  | if (llt.info() != Eigen::Success) { | 
|  | summary.termination_type = LINEAR_SOLVER_FAILURE; | 
|  | summary.message = "Eigen LLT decomposition failed."; | 
|  | } else { | 
|  | summary.termination_type = LINEAR_SOLVER_SUCCESS; | 
|  | summary.message = "Success."; | 
|  | } | 
|  |  | 
|  | VectorRef(x, num_cols) = llt.solve(rhs); | 
|  | event_logger.AddEvent("Solve"); | 
|  | return summary; | 
|  | } | 
|  |  | 
|  | LinearSolver::Summary DenseNormalCholeskySolver::SolveUsingLAPACK( | 
|  | DenseSparseMatrix* A, | 
|  | const double* b, | 
|  | const LinearSolver::PerSolveOptions& per_solve_options, | 
|  | double* x) { | 
|  | EventLogger event_logger("DenseNormalCholeskySolver::Solve"); | 
|  |  | 
|  | if (per_solve_options.D != NULL) { | 
|  | // Temporarily append a diagonal block to the A matrix, but undo | 
|  | // it before returning the matrix to the user. | 
|  | A->AppendDiagonal(per_solve_options.D); | 
|  | } | 
|  |  | 
|  | const int num_cols = A->num_cols(); | 
|  | Matrix lhs(num_cols, num_cols); | 
|  | event_logger.AddEvent("Setup"); | 
|  |  | 
|  | // lhs = A'A | 
|  | // | 
|  | // Note: This is a bit delicate, it assumes that the stride on this | 
|  | // matrix is the same as the number of rows. | 
|  | BLAS::SymmetricRankKUpdate(A->num_rows(), | 
|  | num_cols, | 
|  | A->values(), | 
|  | true, | 
|  | 1.0, | 
|  | 0.0, | 
|  | lhs.data()); | 
|  |  | 
|  | if (per_solve_options.D != NULL) { | 
|  | // Undo the modifications to the matrix A. | 
|  | A->RemoveDiagonal(); | 
|  | } | 
|  |  | 
|  | // TODO(sameeragarwal): Replace this with a gemv call for true blasness. | 
|  | //   rhs = A'b | 
|  | VectorRef(x, num_cols) = | 
|  | A->matrix().transpose() * ConstVectorRef(b, A->num_rows()); | 
|  | event_logger.AddEvent("Product"); | 
|  |  | 
|  | LinearSolver::Summary summary; | 
|  | summary.num_iterations = 1; | 
|  | summary.termination_type = | 
|  | LAPACK::SolveInPlaceUsingCholesky(num_cols, | 
|  | lhs.data(), | 
|  | x, | 
|  | &summary.message); | 
|  | event_logger.AddEvent("Solve"); | 
|  | return summary; | 
|  | } | 
|  | }   // namespace internal | 
|  | }   // namespace ceres |