| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2015 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: sameeragarwal@google.com (Sameer Agarwal) |
| |
| #ifndef CERES_PUBLIC_GRADIENT_PROBLEM_H_ |
| #define CERES_PUBLIC_GRADIENT_PROBLEM_H_ |
| |
| #include "ceres/internal/macros.h" |
| #include "ceres/internal/port.h" |
| #include "ceres/internal/scoped_ptr.h" |
| #include "ceres/local_parameterization.h" |
| |
| namespace ceres { |
| |
| class FirstOrderFunction; |
| |
| // Instances of GradientProblem represent general non-linear |
| // optimization problems that must be solved using just the value of |
| // the objective function and its gradient. Unlike the Problem class, |
| // which can only be used to model non-linear least squares problems, |
| // instances of GradientProblem not restricted in the form of the |
| // objective function. |
| // |
| // Structurally GradientProblem is a composition of a |
| // FirstOrderFunction and optionally a LocalParameterization. |
| // |
| // The FirstOrderFunction is responsible for evaluating the cost and |
| // gradient of the objective function. |
| // |
| // The LocalParameterization is responsible for going back and forth |
| // between the ambient space and the local tangent space. (See |
| // local_parameterization.h for more details). When a |
| // LocalParameterization is not provided, then the tangent space is |
| // assumed to coincide with the ambient Euclidean space that the |
| // gradient vector lives in. |
| // |
| // Example usage: |
| // |
| // The following demonstrate the problem construction for Rosenbrock's function |
| // |
| // f(x,y) = (1-x)^2 + 100(y - x^2)^2; |
| // |
| // class Rosenbrock : public ceres::FirstOrderFunction { |
| // public: |
| // virtual ~Rosenbrock() {} |
| // |
| // virtual bool Evaluate(const double* parameters, |
| // double* cost, |
| // double* gradient) const { |
| // const double x = parameters[0]; |
| // const double y = parameters[1]; |
| // |
| // cost[0] = (1.0 - x) * (1.0 - x) + 100.0 * (y - x * x) * (y - x * x); |
| // if (gradient != NULL) { |
| // gradient[0] = -2.0 * (1.0 - x) - 200.0 * (y - x * x) * 2.0 * x; |
| // gradient[1] = 200.0 * (y - x * x); |
| // } |
| // return true; |
| // }; |
| // |
| // virtual int NumParameters() const { return 2; }; |
| // }; |
| // |
| // ceres::GradientProblem problem(new Rosenbrock()); |
| class CERES_EXPORT GradientProblem { |
| public: |
| // Takes ownership of the function. |
| explicit GradientProblem(FirstOrderFunction* function); |
| |
| // Takes ownership of the function and the parameterization. |
| GradientProblem(FirstOrderFunction* function, |
| LocalParameterization* parameterization); |
| |
| int NumParameters() const; |
| int NumLocalParameters() const; |
| |
| // This call is not thread safe. |
| bool Evaluate(const double* parameters, double* cost, double* gradient) const; |
| bool Plus(const double* x, const double* delta, double* x_plus_delta) const; |
| |
| private: |
| internal::scoped_ptr<FirstOrderFunction> function_; |
| internal::scoped_ptr<LocalParameterization> parameterization_; |
| internal::scoped_array<double> scratch_; |
| }; |
| |
| // A FirstOrderFunction object implements the evaluation of a function |
| // and its gradient. |
| class CERES_EXPORT FirstOrderFunction { |
| public: |
| virtual ~FirstOrderFunction() {} |
| // cost is never NULL. gradient may be null. |
| virtual bool Evaluate(const double* const parameters, |
| double* cost, |
| double* gradient) const = 0; |
| virtual int NumParameters() const = 0; |
| }; |
| |
| } // namespace ceres |
| |
| #endif // CERES_PUBLIC_GRADIENT_PROBLEM_H_ |