|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. | 
|  | // http://code.google.com/p/ceres-solver/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  | // | 
|  | // An example of solving a dynamically sized problem with various | 
|  | // solvers and loss functions. | 
|  | // | 
|  | // For a simpler bare bones example of doing bundle adjustment with | 
|  | // Ceres, please see simple_bundle_adjuster.cc. | 
|  | // | 
|  | // NOTE: This example will not compile without gflags and SuiteSparse. | 
|  | // | 
|  | // The problem being solved here is known as a Bundle Adjustment | 
|  | // problem in computer vision. Given a set of 3d points X_1, ..., X_n, | 
|  | // a set of cameras P_1, ..., P_m. If the point X_i is visible in | 
|  | // image j, then there is a 2D observation u_ij that is the expected | 
|  | // projection of X_i using P_j. The aim of this optimization is to | 
|  | // find values of X_i and P_j such that the reprojection error | 
|  | // | 
|  | //    E(X,P) =  sum_ij  |u_ij - P_j X_i|^2 | 
|  | // | 
|  | // is minimized. | 
|  | // | 
|  | // The problem used here comes from a collection of bundle adjustment | 
|  | // problems published at University of Washington. | 
|  | // http://grail.cs.washington.edu/projects/bal | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <cmath> | 
|  | #include <cstdio> | 
|  | #include <cstdlib> | 
|  | #include <string> | 
|  | #include <vector> | 
|  |  | 
|  | #include "bal_problem.h" | 
|  | #include "ceres/ceres.h" | 
|  | #include "gflags/gflags.h" | 
|  | #include "glog/logging.h" | 
|  | #include "snavely_reprojection_error.h" | 
|  |  | 
|  | DEFINE_string(input, "", "Input File name"); | 
|  | DEFINE_string(trust_region_strategy, "levenberg_marquardt", | 
|  | "Options are: levenberg_marquardt, dogleg."); | 
|  | DEFINE_string(dogleg, "traditional_dogleg", "Options are: traditional_dogleg," | 
|  | "subspace_dogleg."); | 
|  |  | 
|  | DEFINE_bool(inner_iterations, false, "Use inner iterations to non-linearly " | 
|  | "refine each successful trust region step."); | 
|  |  | 
|  | DEFINE_string(blocks_for_inner_iterations, "automatic", "Options are: " | 
|  | "automatic, cameras, points, cameras,points, points,cameras"); | 
|  |  | 
|  | DEFINE_string(linear_solver, "sparse_schur", "Options are: " | 
|  | "sparse_schur, dense_schur, iterative_schur, sparse_normal_cholesky, " | 
|  | "dense_qr, dense_normal_cholesky and cgnr."); | 
|  | DEFINE_string(preconditioner, "jacobi", "Options are: " | 
|  | "identity, jacobi, schur_jacobi, cluster_jacobi, " | 
|  | "cluster_tridiagonal."); | 
|  | DEFINE_string(visibility_clustering, "canonical_views", | 
|  | "single_linkage, canonical_views"); | 
|  |  | 
|  | DEFINE_string(sparse_linear_algebra_library, "suite_sparse", | 
|  | "Options are: suite_sparse and cx_sparse."); | 
|  | DEFINE_string(dense_linear_algebra_library, "eigen", | 
|  | "Options are: eigen and lapack."); | 
|  | DEFINE_string(ordering, "automatic", "Options are: automatic, user."); | 
|  |  | 
|  | DEFINE_bool(use_quaternions, false, "If true, uses quaternions to represent " | 
|  | "rotations. If false, angle axis is used."); | 
|  | DEFINE_bool(use_local_parameterization, false, "For quaternions, use a local " | 
|  | "parameterization."); | 
|  | DEFINE_bool(robustify, false, "Use a robust loss function."); | 
|  |  | 
|  | DEFINE_double(eta, 1e-2, "Default value for eta. Eta determines the " | 
|  | "accuracy of each linear solve of the truncated newton step. " | 
|  | "Changing this parameter can affect solve performance."); | 
|  |  | 
|  | DEFINE_int32(num_threads, 1, "Number of threads."); | 
|  | DEFINE_int32(num_iterations, 5, "Number of iterations."); | 
|  | DEFINE_double(max_solver_time, 1e32, "Maximum solve time in seconds."); | 
|  | DEFINE_bool(nonmonotonic_steps, false, "Trust region algorithm can use" | 
|  | " nonmonotic steps."); | 
|  |  | 
|  | DEFINE_double(rotation_sigma, 0.0, "Standard deviation of camera rotation " | 
|  | "perturbation."); | 
|  | DEFINE_double(translation_sigma, 0.0, "Standard deviation of the camera " | 
|  | "translation perturbation."); | 
|  | DEFINE_double(point_sigma, 0.0, "Standard deviation of the point " | 
|  | "perturbation."); | 
|  | DEFINE_int32(random_seed, 38401, "Random seed used to set the state " | 
|  | "of the pseudo random number generator used to generate " | 
|  | "the pertubations."); | 
|  | DEFINE_string(solver_log, "", "File to record the solver execution to."); | 
|  | DEFINE_bool(line_search, false, "Use a line search instead of trust region " | 
|  | "algorithm."); | 
|  |  | 
|  | namespace ceres { | 
|  | namespace examples { | 
|  |  | 
|  | void SetLinearSolver(Solver::Options* options) { | 
|  | CHECK(StringToLinearSolverType(FLAGS_linear_solver, | 
|  | &options->linear_solver_type)); | 
|  | CHECK(StringToPreconditionerType(FLAGS_preconditioner, | 
|  | &options->preconditioner_type)); | 
|  | CHECK(StringToVisibilityClusteringType(FLAGS_visibility_clustering, | 
|  | &options->visibility_clustering_type)); | 
|  | CHECK(StringToSparseLinearAlgebraLibraryType( | 
|  | FLAGS_sparse_linear_algebra_library, | 
|  | &options->sparse_linear_algebra_library_type)); | 
|  | CHECK(StringToDenseLinearAlgebraLibraryType( | 
|  | FLAGS_dense_linear_algebra_library, | 
|  | &options->dense_linear_algebra_library_type)); | 
|  | options->num_linear_solver_threads = FLAGS_num_threads; | 
|  | } | 
|  |  | 
|  | void SetOrdering(BALProblem* bal_problem, Solver::Options* options) { | 
|  | const int num_points = bal_problem->num_points(); | 
|  | const int point_block_size = bal_problem->point_block_size(); | 
|  | double* points = bal_problem->mutable_points(); | 
|  |  | 
|  | const int num_cameras = bal_problem->num_cameras(); | 
|  | const int camera_block_size = bal_problem->camera_block_size(); | 
|  | double* cameras = bal_problem->mutable_cameras(); | 
|  |  | 
|  | if (options->use_inner_iterations) { | 
|  | if (FLAGS_blocks_for_inner_iterations == "cameras") { | 
|  | LOG(INFO) << "Camera blocks for inner iterations"; | 
|  | options->inner_iteration_ordering.reset(new ParameterBlockOrdering); | 
|  | for (int i = 0; i < num_cameras; ++i) { | 
|  | options->inner_iteration_ordering->AddElementToGroup(cameras + camera_block_size * i, 0); | 
|  | } | 
|  | } else if (FLAGS_blocks_for_inner_iterations == "points") { | 
|  | LOG(INFO) << "Point blocks for inner iterations"; | 
|  | options->inner_iteration_ordering.reset(new ParameterBlockOrdering); | 
|  | for (int i = 0; i < num_points; ++i) { | 
|  | options->inner_iteration_ordering->AddElementToGroup(points + point_block_size * i, 0); | 
|  | } | 
|  | } else if (FLAGS_blocks_for_inner_iterations == "cameras,points") { | 
|  | LOG(INFO) << "Camera followed by point blocks for inner iterations"; | 
|  | options->inner_iteration_ordering.reset(new ParameterBlockOrdering); | 
|  | for (int i = 0; i < num_cameras; ++i) { | 
|  | options->inner_iteration_ordering->AddElementToGroup(cameras + camera_block_size * i, 0); | 
|  | } | 
|  | for (int i = 0; i < num_points; ++i) { | 
|  | options->inner_iteration_ordering->AddElementToGroup(points + point_block_size * i, 1); | 
|  | } | 
|  | } else if (FLAGS_blocks_for_inner_iterations == "points,cameras") { | 
|  | LOG(INFO) << "Point followed by camera blocks for inner iterations"; | 
|  | options->inner_iteration_ordering.reset(new ParameterBlockOrdering); | 
|  | for (int i = 0; i < num_cameras; ++i) { | 
|  | options->inner_iteration_ordering->AddElementToGroup(cameras + camera_block_size * i, 1); | 
|  | } | 
|  | for (int i = 0; i < num_points; ++i) { | 
|  | options->inner_iteration_ordering->AddElementToGroup(points + point_block_size * i, 0); | 
|  | } | 
|  | } else if (FLAGS_blocks_for_inner_iterations == "automatic") { | 
|  | LOG(INFO) << "Choosing automatic blocks for inner iterations"; | 
|  | } else { | 
|  | LOG(FATAL) << "Unknown block type for inner iterations: " | 
|  | << FLAGS_blocks_for_inner_iterations; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Bundle adjustment problems have a sparsity structure that makes | 
|  | // them amenable to more specialized and much more efficient | 
|  | // solution strategies. The SPARSE_SCHUR, DENSE_SCHUR and | 
|  | // ITERATIVE_SCHUR solvers make use of this specialized | 
|  | // structure. | 
|  | // | 
|  | // This can either be done by specifying Options::ordering_type = | 
|  | // ceres::SCHUR, in which case Ceres will automatically determine | 
|  | // the right ParameterBlock ordering, or by manually specifying a | 
|  | // suitable ordering vector and defining | 
|  | // Options::num_eliminate_blocks. | 
|  | if (FLAGS_ordering == "automatic") { | 
|  | return; | 
|  | } | 
|  |  | 
|  | ceres::ParameterBlockOrdering* ordering = | 
|  | new ceres::ParameterBlockOrdering; | 
|  |  | 
|  | // The points come before the cameras. | 
|  | for (int i = 0; i < num_points; ++i) { | 
|  | ordering->AddElementToGroup(points + point_block_size * i, 0); | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < num_cameras; ++i) { | 
|  | // When using axis-angle, there is a single parameter block for | 
|  | // the entire camera. | 
|  | ordering->AddElementToGroup(cameras + camera_block_size * i, 1); | 
|  | // If quaternions are used, there are two blocks, so add the | 
|  | // second block to the ordering. | 
|  | if (FLAGS_use_quaternions) { | 
|  | ordering->AddElementToGroup(cameras + camera_block_size * i + 4, 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | options->linear_solver_ordering.reset(ordering); | 
|  | } | 
|  |  | 
|  | void SetMinimizerOptions(Solver::Options* options) { | 
|  | options->max_num_iterations = FLAGS_num_iterations; | 
|  | options->minimizer_progress_to_stdout = true; | 
|  | options->num_threads = FLAGS_num_threads; | 
|  | options->eta = FLAGS_eta; | 
|  | options->max_solver_time_in_seconds = FLAGS_max_solver_time; | 
|  | options->use_nonmonotonic_steps = FLAGS_nonmonotonic_steps; | 
|  | if (FLAGS_line_search) { | 
|  | options->minimizer_type = ceres::LINE_SEARCH; | 
|  | } | 
|  |  | 
|  | CHECK(StringToTrustRegionStrategyType(FLAGS_trust_region_strategy, | 
|  | &options->trust_region_strategy_type)); | 
|  | CHECK(StringToDoglegType(FLAGS_dogleg, &options->dogleg_type)); | 
|  | options->use_inner_iterations = FLAGS_inner_iterations; | 
|  | } | 
|  |  | 
|  | void SetSolverOptionsFromFlags(BALProblem* bal_problem, | 
|  | Solver::Options* options) { | 
|  | SetMinimizerOptions(options); | 
|  | SetLinearSolver(options); | 
|  | SetOrdering(bal_problem, options); | 
|  | } | 
|  |  | 
|  | void BuildProblem(BALProblem* bal_problem, Problem* problem) { | 
|  | const int point_block_size = bal_problem->point_block_size(); | 
|  | const int camera_block_size = bal_problem->camera_block_size(); | 
|  | double* points = bal_problem->mutable_points(); | 
|  | double* cameras = bal_problem->mutable_cameras(); | 
|  |  | 
|  | // Observations is 2*num_observations long array observations = | 
|  | // [u_1, u_2, ... , u_n], where each u_i is two dimensional, the x | 
|  | // and y positions of the observation. | 
|  | const double* observations = bal_problem->observations(); | 
|  |  | 
|  | for (int i = 0; i < bal_problem->num_observations(); ++i) { | 
|  | CostFunction* cost_function; | 
|  | // Each Residual block takes a point and a camera as input and | 
|  | // outputs a 2 dimensional residual. | 
|  | cost_function = | 
|  | (FLAGS_use_quaternions) | 
|  | ? SnavelyReprojectionErrorWithQuaternions::Create( | 
|  | observations[2 * i + 0], | 
|  | observations[2 * i + 1]) | 
|  | : SnavelyReprojectionError::Create( | 
|  | observations[2 * i + 0], | 
|  | observations[2 * i + 1]); | 
|  |  | 
|  | // If enabled use Huber's loss function. | 
|  | LossFunction* loss_function = FLAGS_robustify ? new HuberLoss(1.0) : NULL; | 
|  |  | 
|  | // Each observation correponds to a pair of a camera and a point | 
|  | // which are identified by camera_index()[i] and point_index()[i] | 
|  | // respectively. | 
|  | double* camera = | 
|  | cameras + camera_block_size * bal_problem->camera_index()[i]; | 
|  | double* point = points + point_block_size * bal_problem->point_index()[i]; | 
|  |  | 
|  | if (FLAGS_use_quaternions) { | 
|  | // When using quaternions, we split the camera into two | 
|  | // parameter blocks. One of size 4 for the quaternion and the | 
|  | // other of size 6 containing the translation, focal length and | 
|  | // the radial distortion parameters. | 
|  | problem->AddResidualBlock(cost_function, | 
|  | loss_function, | 
|  | camera, | 
|  | camera + 4, | 
|  | point); | 
|  | } else { | 
|  | problem->AddResidualBlock(cost_function, loss_function, camera, point); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (FLAGS_use_quaternions && FLAGS_use_local_parameterization) { | 
|  | LocalParameterization* quaternion_parameterization = | 
|  | new QuaternionParameterization; | 
|  | for (int i = 0; i < bal_problem->num_cameras(); ++i) { | 
|  | problem->SetParameterization(cameras + camera_block_size * i, | 
|  | quaternion_parameterization); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void SolveProblem(const char* filename) { | 
|  | BALProblem bal_problem(filename, FLAGS_use_quaternions); | 
|  | Problem problem; | 
|  |  | 
|  | srand(FLAGS_random_seed); | 
|  | bal_problem.Normalize(); | 
|  | bal_problem.Perturb(FLAGS_rotation_sigma, | 
|  | FLAGS_translation_sigma, | 
|  | FLAGS_point_sigma); | 
|  |  | 
|  | BuildProblem(&bal_problem, &problem); | 
|  | Solver::Options options; | 
|  | SetSolverOptionsFromFlags(&bal_problem, &options); | 
|  | options.solver_log = FLAGS_solver_log; | 
|  | options.gradient_tolerance = 1e-16; | 
|  | options.function_tolerance = 1e-16; | 
|  | Solver::Summary summary; | 
|  | Solve(options, &problem, &summary); | 
|  | std::cout << summary.FullReport() << "\n"; | 
|  | } | 
|  |  | 
|  | }  // namespace examples | 
|  | }  // namespace ceres | 
|  |  | 
|  | int main(int argc, char** argv) { | 
|  | google::ParseCommandLineFlags(&argc, &argv, true); | 
|  | google::InitGoogleLogging(argv[0]); | 
|  | if (FLAGS_input.empty()) { | 
|  | LOG(ERROR) << "Usage: bundle_adjustment_example --input=bal_problem"; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | CHECK(FLAGS_use_quaternions || !FLAGS_use_local_parameterization) | 
|  | << "--use_local_parameterization can only be used with " | 
|  | << "--use_quaternions."; | 
|  | ceres::examples::SolveProblem(FLAGS_input.c_str()); | 
|  | return 0; | 
|  | } |