| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. | 
 | // http://code.google.com/p/ceres-solver/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: keir@google.com (Keir Mierle) | 
 |  | 
 | #ifndef CERES_INTERNAL_SOLVER_IMPL_H_ | 
 | #define CERES_INTERNAL_SOLVER_IMPL_H_ | 
 |  | 
 | #include <set> | 
 | #include <string> | 
 | #include <vector> | 
 | #include "ceres/internal/port.h" | 
 | #include "ceres/ordered_groups.h" | 
 | #include "ceres/problem_impl.h" | 
 | #include "ceres/solver.h" | 
 |  | 
 | namespace ceres { | 
 | namespace internal { | 
 |  | 
 | class CoordinateDescentMinimizer; | 
 | class Evaluator; | 
 | class LinearSolver; | 
 | class Program; | 
 | class TripletSparseMatrix; | 
 |  | 
 | class SolverImpl { | 
 |  public: | 
 |   // Mirrors the interface in solver.h, but exposes implementation | 
 |   // details for testing internally. | 
 |   static void Solve(const Solver::Options& options, | 
 |                     ProblemImpl* problem_impl, | 
 |                     Solver::Summary* summary); | 
 |  | 
 |   static void TrustRegionSolve(const Solver::Options& options, | 
 |                                ProblemImpl* problem_impl, | 
 |                                Solver::Summary* summary); | 
 |  | 
 |   // Run the TrustRegionMinimizer for the given evaluator and configuration. | 
 |   static void TrustRegionMinimize( | 
 |       const Solver::Options &options, | 
 |       Program* program, | 
 |       CoordinateDescentMinimizer* inner_iteration_minimizer, | 
 |       Evaluator* evaluator, | 
 |       LinearSolver* linear_solver, | 
 |       Solver::Summary* summary); | 
 |  | 
 |   static void LineSearchSolve(const Solver::Options& options, | 
 |                               ProblemImpl* problem_impl, | 
 |                               Solver::Summary* summary); | 
 |  | 
 |   // Run the LineSearchMinimizer for the given evaluator and configuration. | 
 |   static void LineSearchMinimize(const Solver::Options &options, | 
 |                                  Program* program, | 
 |                                  Evaluator* evaluator, | 
 |                                  Solver::Summary* summary); | 
 |  | 
 |   // Create the transformed Program, which has all the fixed blocks | 
 |   // and residuals eliminated, and in the case of automatic schur | 
 |   // ordering, has the E blocks first in the resulting program, with | 
 |   // options.num_eliminate_blocks set appropriately. | 
 |   // | 
 |   // If fixed_cost is not NULL, the residual blocks that are removed | 
 |   // are evaluated and the sum of their cost is returned in fixed_cost. | 
 |   static Program* CreateReducedProgram(Solver::Options* options, | 
 |                                        ProblemImpl* problem_impl, | 
 |                                        double* fixed_cost, | 
 |                                        string* message); | 
 |  | 
 |   // Create the appropriate linear solver, taking into account any | 
 |   // config changes decided by CreateTransformedProgram(). The | 
 |   // selected linear solver, which may be different from what the user | 
 |   // selected; consider the case that the remaining elimininated | 
 |   // blocks is zero after removing fixed blocks. | 
 |   static LinearSolver* CreateLinearSolver(Solver::Options* options, | 
 |                                           string* message); | 
 |  | 
 |   // Reorder the residuals for program, if necessary, so that the | 
 |   // residuals involving e block (i.e., the first num_eliminate_block | 
 |   // parameter blocks) occur together. This is a necessary condition | 
 |   // for the Schur eliminator. | 
 |   static bool LexicographicallyOrderResidualBlocks( | 
 |       const int num_eliminate_blocks, | 
 |       Program* program, | 
 |       string* message); | 
 |  | 
 |   // Create the appropriate evaluator for the transformed program. | 
 |   static Evaluator* CreateEvaluator( | 
 |       const Solver::Options& options, | 
 |       const ProblemImpl::ParameterMap& parameter_map, | 
 |       Program* program, | 
 |       string* message); | 
 |  | 
 |   // Remove the fixed or unused parameter blocks and residuals | 
 |   // depending only on fixed parameters from the program. | 
 |   // | 
 |   // If either linear_solver_ordering or inner_iteration_ordering are | 
 |   // not NULL, the constant parameter blocks are removed from them | 
 |   // too. | 
 |   // | 
 |   // If fixed_cost is not NULL, the residual blocks that are removed | 
 |   // are evaluated and the sum of their cost is returned in | 
 |   // fixed_cost. | 
 |   // | 
 |   // If a failure is encountered, the function returns false with a | 
 |   // description of the failure in message. | 
 |   static bool RemoveFixedBlocksFromProgram( | 
 |       Program* program, | 
 |       ParameterBlockOrdering* linear_solver_ordering, | 
 |       ParameterBlockOrdering* inner_iteration_ordering, | 
 |       double* fixed_cost, | 
 |       string* message); | 
 |  | 
 |   static bool IsOrderingValid(const Solver::Options& options, | 
 |                               const ProblemImpl* problem_impl, | 
 |                               string* message); | 
 |  | 
 |   static bool IsParameterBlockSetIndependent( | 
 |       const set<double*>& parameter_block_ptrs, | 
 |       const vector<ResidualBlock*>& residual_blocks); | 
 |  | 
 |   static CoordinateDescentMinimizer* CreateInnerIterationMinimizer( | 
 |       const Solver::Options& options, | 
 |       const Program& program, | 
 |       const ProblemImpl::ParameterMap& parameter_map, | 
 |       Solver::Summary* summary); | 
 |  | 
 |   // If the linear solver is of Schur type, then replace it with the | 
 |   // closest equivalent linear solver. This is done when the user | 
 |   // requested a Schur type solver but the problem structure makes it | 
 |   // impossible to use one. | 
 |   // | 
 |   // If the linear solver is not of Schur type, the function is a | 
 |   // no-op. | 
 |   static void AlternateLinearSolverForSchurTypeLinearSolver( | 
 |       Solver::Options* options); | 
 |  | 
 |   // Create a TripletSparseMatrix which contains the zero-one | 
 |   // structure corresponding to the block sparsity of the transpose of | 
 |   // the Jacobian matrix. | 
 |   // | 
 |   // Caller owns the result. | 
 |   static TripletSparseMatrix* CreateJacobianBlockSparsityTranspose( | 
 |       const Program* program); | 
 |  | 
 |   // Reorder the parameter blocks in program using the ordering | 
 |   static bool ApplyUserOrdering( | 
 |       const ProblemImpl::ParameterMap& parameter_map, | 
 |       const ParameterBlockOrdering* parameter_block_ordering, | 
 |       Program* program, | 
 |       string* message); | 
 |  | 
 |   // Sparse cholesky factorization routines when doing the sparse | 
 |   // cholesky factorization of the Jacobian matrix, reorders its | 
 |   // columns to reduce the fill-in. Compute this permutation and | 
 |   // re-order the parameter blocks. | 
 |   // | 
 |   // If the parameter_block_ordering contains more than one | 
 |   // elimination group and support for constrained fill-reducing | 
 |   // ordering is available in the sparse linear algebra library | 
 |   // (SuiteSparse version >= 4.2.0) then the fill reducing | 
 |   // ordering will take it into account, otherwise it will be ignored. | 
 |   static bool ReorderProgramForSparseNormalCholesky( | 
 |       const SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type, | 
 |       const ParameterBlockOrdering* parameter_block_ordering, | 
 |       Program* program, | 
 |       string* message); | 
 |  | 
 |   // Schur type solvers require that all parameter blocks eliminated | 
 |   // by the Schur eliminator occur before others and the residuals be | 
 |   // sorted in lexicographic order of their parameter blocks. | 
 |   // | 
 |   // If the parameter_block_ordering only contains one elimination | 
 |   // group then a maximal independent set is computed and used as the | 
 |   // first elimination group, otherwise the user's ordering is used. | 
 |   // | 
 |   // If the linear solver type is SPARSE_SCHUR and support for | 
 |   // constrained fill-reducing ordering is available in the sparse | 
 |   // linear algebra library (SuiteSparse version >= 4.2.0) then | 
 |   // columns of the schur complement matrix are ordered to reduce the | 
 |   // fill-in the Cholesky factorization. | 
 |   // | 
 |   // Upon return, ordering contains the parameter block ordering that | 
 |   // was used to order the program. | 
 |   static bool ReorderProgramForSchurTypeLinearSolver( | 
 |       const LinearSolverType linear_solver_type, | 
 |       const SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type, | 
 |       const ProblemImpl::ParameterMap& parameter_map, | 
 |       ParameterBlockOrdering* parameter_block_ordering, | 
 |       Program* program, | 
 |       string* message); | 
 |  | 
 |   // array contains a list of (possibly repeating) non-negative | 
 |   // integers. Let us assume that we have constructed another array | 
 |   // `p` by sorting and uniqueing the entries of array. | 
 |   // CompactifyArray replaces each entry in "array" with its position | 
 |   // in `p`. | 
 |   static void CompactifyArray(vector<int>* array); | 
 | }; | 
 |  | 
 | }  // namespace internal | 
 | }  // namespace ceres | 
 |  | 
 | #endif  // CERES_INTERNAL_SOLVER_IMPL_H_ |