|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. | 
|  | // http://code.google.com/p/ceres-solver/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  |  | 
|  | #include "gtest/gtest.h" | 
|  | #include "ceres/autodiff_cost_function.h" | 
|  | #include "ceres/linear_solver.h" | 
|  | #include "ceres/ordered_groups.h" | 
|  | #include "ceres/parameter_block.h" | 
|  | #include "ceres/problem_impl.h" | 
|  | #include "ceres/program.h" | 
|  | #include "ceres/residual_block.h" | 
|  | #include "ceres/solver_impl.h" | 
|  | #include "ceres/sized_cost_function.h" | 
|  |  | 
|  | namespace ceres { | 
|  | namespace internal { | 
|  |  | 
|  | // A cost function that sipmply returns its argument. | 
|  | class UnaryIdentityCostFunction : public SizedCostFunction<1, 1> { | 
|  | public: | 
|  | virtual bool Evaluate(double const* const* parameters, | 
|  | double* residuals, | 
|  | double** jacobians) const { | 
|  | residuals[0] = parameters[0][0]; | 
|  | if (jacobians != NULL && jacobians[0] != NULL) { | 
|  | jacobians[0][0] = 1.0; | 
|  | } | 
|  | return true; | 
|  | } | 
|  | }; | 
|  |  | 
|  | // Templated base class for the CostFunction signatures. | 
|  | template <int kNumResiduals, int N0, int N1, int N2> | 
|  | class MockCostFunctionBase : public | 
|  | SizedCostFunction<kNumResiduals, N0, N1, N2> { | 
|  | public: | 
|  | virtual bool Evaluate(double const* const* parameters, | 
|  | double* residuals, | 
|  | double** jacobians) const { | 
|  | // Do nothing. This is never called. | 
|  | return true; | 
|  | } | 
|  | }; | 
|  |  | 
|  | class UnaryCostFunction : public MockCostFunctionBase<2, 1, 0, 0> {}; | 
|  | class BinaryCostFunction : public MockCostFunctionBase<2, 1, 1, 0> {}; | 
|  | class TernaryCostFunction : public MockCostFunctionBase<2, 1, 1, 1> {}; | 
|  |  | 
|  | TEST(SolverImpl, RemoveFixedBlocksNothingConstant) { | 
|  | ProblemImpl problem; | 
|  | double x; | 
|  | double y; | 
|  | double z; | 
|  |  | 
|  | problem.AddParameterBlock(&x, 1); | 
|  | problem.AddParameterBlock(&y, 1); | 
|  | problem.AddParameterBlock(&z, 1); | 
|  | problem.AddResidualBlock(new UnaryCostFunction(), NULL, &x); | 
|  | problem.AddResidualBlock(new BinaryCostFunction(), NULL, &x, &y); | 
|  | problem.AddResidualBlock(new TernaryCostFunction(), NULL, &x, &y, &z); | 
|  |  | 
|  | string message; | 
|  | { | 
|  | ParameterBlockOrdering linear_solver_ordering; | 
|  | linear_solver_ordering.AddElementToGroup(&x, 0); | 
|  | linear_solver_ordering.AddElementToGroup(&y, 0); | 
|  | linear_solver_ordering.AddElementToGroup(&z, 0); | 
|  |  | 
|  | ParameterBlockOrdering inner_iteration_ordering; | 
|  | inner_iteration_ordering.AddElementToGroup(&x, 0); | 
|  | inner_iteration_ordering.AddElementToGroup(&y, 0); | 
|  | inner_iteration_ordering.AddElementToGroup(&z, 0); | 
|  |  | 
|  | Program program(*problem.mutable_program()); | 
|  | EXPECT_TRUE(SolverImpl::RemoveFixedBlocksFromProgram( | 
|  | &program, | 
|  | &linear_solver_ordering, | 
|  | &inner_iteration_ordering, | 
|  | NULL, | 
|  | &message)); | 
|  | EXPECT_EQ(program.NumParameterBlocks(), 3); | 
|  | EXPECT_EQ(program.NumResidualBlocks(), 3); | 
|  | EXPECT_EQ(linear_solver_ordering.NumElements(), 3); | 
|  | EXPECT_EQ(inner_iteration_ordering.NumElements(), 3); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(SolverImpl, RemoveFixedBlocksAllParameterBlocksConstant) { | 
|  | ProblemImpl problem; | 
|  | double x; | 
|  |  | 
|  | problem.AddParameterBlock(&x, 1); | 
|  | problem.AddResidualBlock(new UnaryCostFunction(), NULL, &x); | 
|  | problem.SetParameterBlockConstant(&x); | 
|  |  | 
|  | ParameterBlockOrdering linear_solver_ordering; | 
|  | linear_solver_ordering.AddElementToGroup(&x, 0); | 
|  |  | 
|  | ParameterBlockOrdering inner_iteration_ordering; | 
|  | inner_iteration_ordering.AddElementToGroup(&x, 0); | 
|  |  | 
|  | Program program(problem.program()); | 
|  | string message; | 
|  | EXPECT_TRUE(SolverImpl::RemoveFixedBlocksFromProgram( | 
|  | &program, | 
|  | &linear_solver_ordering, | 
|  | &inner_iteration_ordering, | 
|  | NULL, | 
|  | &message)); | 
|  | EXPECT_EQ(program.NumParameterBlocks(), 0); | 
|  | EXPECT_EQ(program.NumResidualBlocks(), 0); | 
|  | EXPECT_EQ(linear_solver_ordering.NumElements(), 0); | 
|  | EXPECT_EQ(inner_iteration_ordering.NumElements(), 0); | 
|  | } | 
|  |  | 
|  | TEST(SolverImpl, RemoveFixedBlocksNoResidualBlocks) { | 
|  | ProblemImpl problem; | 
|  | double x; | 
|  | double y; | 
|  | double z; | 
|  |  | 
|  | problem.AddParameterBlock(&x, 1); | 
|  | problem.AddParameterBlock(&y, 1); | 
|  | problem.AddParameterBlock(&z, 1); | 
|  |  | 
|  | ParameterBlockOrdering linear_solver_ordering; | 
|  | linear_solver_ordering.AddElementToGroup(&x, 0); | 
|  | linear_solver_ordering.AddElementToGroup(&y, 0); | 
|  | linear_solver_ordering.AddElementToGroup(&z, 0); | 
|  |  | 
|  | ParameterBlockOrdering inner_iteration_ordering; | 
|  | inner_iteration_ordering.AddElementToGroup(&x, 0); | 
|  | inner_iteration_ordering.AddElementToGroup(&y, 0); | 
|  | inner_iteration_ordering.AddElementToGroup(&z, 0); | 
|  |  | 
|  | Program program(problem.program()); | 
|  | string message; | 
|  | EXPECT_TRUE(SolverImpl::RemoveFixedBlocksFromProgram( | 
|  | &program, | 
|  | &linear_solver_ordering, | 
|  | &inner_iteration_ordering, | 
|  | NULL, | 
|  | &message)); | 
|  | EXPECT_EQ(program.NumParameterBlocks(), 0); | 
|  | EXPECT_EQ(program.NumResidualBlocks(), 0); | 
|  | EXPECT_EQ(linear_solver_ordering.NumElements(), 0); | 
|  | EXPECT_EQ(inner_iteration_ordering.NumElements(), 0); | 
|  | } | 
|  |  | 
|  | TEST(SolverImpl, RemoveFixedBlocksOneParameterBlockConstant) { | 
|  | ProblemImpl problem; | 
|  | double x; | 
|  | double y; | 
|  | double z; | 
|  |  | 
|  | problem.AddParameterBlock(&x, 1); | 
|  | problem.AddParameterBlock(&y, 1); | 
|  | problem.AddParameterBlock(&z, 1); | 
|  |  | 
|  | ParameterBlockOrdering linear_solver_ordering; | 
|  | linear_solver_ordering.AddElementToGroup(&x, 0); | 
|  | linear_solver_ordering.AddElementToGroup(&y, 0); | 
|  | linear_solver_ordering.AddElementToGroup(&z, 0); | 
|  |  | 
|  | ParameterBlockOrdering inner_iteration_ordering; | 
|  | inner_iteration_ordering.AddElementToGroup(&x, 0); | 
|  | inner_iteration_ordering.AddElementToGroup(&y, 0); | 
|  | inner_iteration_ordering.AddElementToGroup(&z, 0); | 
|  |  | 
|  | problem.AddResidualBlock(new UnaryCostFunction(), NULL, &x); | 
|  | problem.AddResidualBlock(new BinaryCostFunction(), NULL, &x, &y); | 
|  | problem.SetParameterBlockConstant(&x); | 
|  |  | 
|  |  | 
|  | Program program(problem.program()); | 
|  | string message; | 
|  | EXPECT_TRUE(SolverImpl::RemoveFixedBlocksFromProgram( | 
|  | &program, | 
|  | &linear_solver_ordering, | 
|  | &inner_iteration_ordering, | 
|  | NULL, | 
|  | &message)); | 
|  | EXPECT_EQ(program.NumParameterBlocks(), 1); | 
|  | EXPECT_EQ(program.NumResidualBlocks(), 1); | 
|  | EXPECT_EQ(linear_solver_ordering.NumElements(), 1); | 
|  | EXPECT_EQ(inner_iteration_ordering.NumElements(), 1); | 
|  | } | 
|  |  | 
|  | TEST(SolverImpl, RemoveFixedBlocksNumEliminateBlocks) { | 
|  | ProblemImpl problem; | 
|  | double x; | 
|  | double y; | 
|  | double z; | 
|  |  | 
|  | problem.AddParameterBlock(&x, 1); | 
|  | problem.AddParameterBlock(&y, 1); | 
|  | problem.AddParameterBlock(&z, 1); | 
|  | problem.AddResidualBlock(new UnaryCostFunction(), NULL, &x); | 
|  | problem.AddResidualBlock(new TernaryCostFunction(), NULL, &x, &y, &z); | 
|  | problem.AddResidualBlock(new BinaryCostFunction(), NULL, &x, &y); | 
|  | problem.SetParameterBlockConstant(&x); | 
|  |  | 
|  | ParameterBlockOrdering linear_solver_ordering; | 
|  | linear_solver_ordering.AddElementToGroup(&x, 0); | 
|  | linear_solver_ordering.AddElementToGroup(&y, 0); | 
|  | linear_solver_ordering.AddElementToGroup(&z, 1); | 
|  |  | 
|  | ParameterBlockOrdering inner_iteration_ordering; | 
|  | inner_iteration_ordering.AddElementToGroup(&x, 0); | 
|  | inner_iteration_ordering.AddElementToGroup(&y, 0); | 
|  | inner_iteration_ordering.AddElementToGroup(&z, 1); | 
|  |  | 
|  | Program program(problem.program()); | 
|  | string message; | 
|  | EXPECT_TRUE(SolverImpl::RemoveFixedBlocksFromProgram( | 
|  | &program, | 
|  | &linear_solver_ordering, | 
|  | &inner_iteration_ordering, | 
|  | NULL, | 
|  | &message)); | 
|  | EXPECT_EQ(program.NumParameterBlocks(), 2); | 
|  | EXPECT_EQ(program.NumResidualBlocks(), 2); | 
|  | EXPECT_EQ(linear_solver_ordering.NumElements(), 2); | 
|  | EXPECT_EQ(linear_solver_ordering.GroupId(&y), 0); | 
|  | EXPECT_EQ(linear_solver_ordering.GroupId(&z), 1); | 
|  | EXPECT_EQ(inner_iteration_ordering.NumElements(), 2); | 
|  | EXPECT_EQ(inner_iteration_ordering.GroupId(&y), 0); | 
|  | EXPECT_EQ(inner_iteration_ordering.GroupId(&z), 1); | 
|  | } | 
|  |  | 
|  | TEST(SolverImpl, RemoveFixedBlocksFixedCost) { | 
|  | ProblemImpl problem; | 
|  | double x = 1.23; | 
|  | double y = 4.56; | 
|  | double z = 7.89; | 
|  |  | 
|  | problem.AddParameterBlock(&x, 1); | 
|  | problem.AddParameterBlock(&y, 1); | 
|  | problem.AddParameterBlock(&z, 1); | 
|  | problem.AddResidualBlock(new UnaryIdentityCostFunction(), NULL, &x); | 
|  | problem.AddResidualBlock(new TernaryCostFunction(), NULL, &x, &y, &z); | 
|  | problem.AddResidualBlock(new BinaryCostFunction(), NULL, &x, &y); | 
|  | problem.SetParameterBlockConstant(&x); | 
|  |  | 
|  | ParameterBlockOrdering linear_solver_ordering; | 
|  | linear_solver_ordering.AddElementToGroup(&x, 0); | 
|  | linear_solver_ordering.AddElementToGroup(&y, 0); | 
|  | linear_solver_ordering.AddElementToGroup(&z, 1); | 
|  |  | 
|  | double fixed_cost = 0.0; | 
|  | Program program(problem.program()); | 
|  |  | 
|  | double expected_fixed_cost; | 
|  | ResidualBlock *expected_removed_block = program.residual_blocks()[0]; | 
|  | scoped_array<double> scratch( | 
|  | new double[expected_removed_block->NumScratchDoublesForEvaluate()]); | 
|  | expected_removed_block->Evaluate(true, | 
|  | &expected_fixed_cost, | 
|  | NULL, | 
|  | NULL, | 
|  | scratch.get()); | 
|  |  | 
|  | string message; | 
|  | EXPECT_TRUE(SolverImpl::RemoveFixedBlocksFromProgram( | 
|  | &program, | 
|  | &linear_solver_ordering, | 
|  | NULL, | 
|  | &fixed_cost, | 
|  | &message)); | 
|  | EXPECT_EQ(program.NumParameterBlocks(), 2); | 
|  | EXPECT_EQ(program.NumResidualBlocks(), 2); | 
|  | EXPECT_EQ(linear_solver_ordering.NumElements(), 2); | 
|  | EXPECT_EQ(linear_solver_ordering.GroupId(&y), 0); | 
|  | EXPECT_EQ(linear_solver_ordering.GroupId(&z), 1); | 
|  | EXPECT_DOUBLE_EQ(fixed_cost, expected_fixed_cost); | 
|  | } | 
|  |  | 
|  | TEST(SolverImpl, ReorderResidualBlockNormalFunction) { | 
|  | ProblemImpl problem; | 
|  | double x; | 
|  | double y; | 
|  | double z; | 
|  |  | 
|  | problem.AddParameterBlock(&x, 1); | 
|  | problem.AddParameterBlock(&y, 1); | 
|  | problem.AddParameterBlock(&z, 1); | 
|  |  | 
|  | problem.AddResidualBlock(new UnaryCostFunction(), NULL, &x); | 
|  | problem.AddResidualBlock(new BinaryCostFunction(), NULL, &z, &x); | 
|  | problem.AddResidualBlock(new BinaryCostFunction(), NULL, &z, &y); | 
|  | problem.AddResidualBlock(new UnaryCostFunction(), NULL, &z); | 
|  | problem.AddResidualBlock(new BinaryCostFunction(), NULL, &x, &y); | 
|  | problem.AddResidualBlock(new UnaryCostFunction(), NULL, &y); | 
|  |  | 
|  | ParameterBlockOrdering* linear_solver_ordering = new ParameterBlockOrdering; | 
|  | linear_solver_ordering->AddElementToGroup(&x, 0); | 
|  | linear_solver_ordering->AddElementToGroup(&y, 0); | 
|  | linear_solver_ordering->AddElementToGroup(&z, 1); | 
|  |  | 
|  | Solver::Options options; | 
|  | options.linear_solver_type = DENSE_SCHUR; | 
|  | options.linear_solver_ordering.reset(linear_solver_ordering); | 
|  |  | 
|  | const vector<ResidualBlock*>& residual_blocks = | 
|  | problem.program().residual_blocks(); | 
|  |  | 
|  | vector<ResidualBlock*> expected_residual_blocks; | 
|  |  | 
|  | // This is a bit fragile, but it serves the purpose. We know the | 
|  | // bucketing algorithm that the reordering function uses, so we | 
|  | // expect the order for residual blocks for each e_block to be | 
|  | // filled in reverse. | 
|  | expected_residual_blocks.push_back(residual_blocks[4]); | 
|  | expected_residual_blocks.push_back(residual_blocks[1]); | 
|  | expected_residual_blocks.push_back(residual_blocks[0]); | 
|  | expected_residual_blocks.push_back(residual_blocks[5]); | 
|  | expected_residual_blocks.push_back(residual_blocks[2]); | 
|  | expected_residual_blocks.push_back(residual_blocks[3]); | 
|  |  | 
|  | Program* program = problem.mutable_program(); | 
|  | program->SetParameterOffsetsAndIndex(); | 
|  |  | 
|  | string message; | 
|  | EXPECT_TRUE(SolverImpl::LexicographicallyOrderResidualBlocks( | 
|  | 2, | 
|  | problem.mutable_program(), | 
|  | &message)); | 
|  | EXPECT_EQ(residual_blocks.size(), expected_residual_blocks.size()); | 
|  | for (int i = 0; i < expected_residual_blocks.size(); ++i) { | 
|  | EXPECT_EQ(residual_blocks[i], expected_residual_blocks[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(SolverImpl, ReorderResidualBlockNormalFunctionWithFixedBlocks) { | 
|  | ProblemImpl problem; | 
|  | double x; | 
|  | double y; | 
|  | double z; | 
|  |  | 
|  | problem.AddParameterBlock(&x, 1); | 
|  | problem.AddParameterBlock(&y, 1); | 
|  | problem.AddParameterBlock(&z, 1); | 
|  |  | 
|  | // Set one parameter block constant. | 
|  | problem.SetParameterBlockConstant(&z); | 
|  |  | 
|  | // Mark residuals for x's row block with "x" for readability. | 
|  | problem.AddResidualBlock(new UnaryCostFunction(), NULL, &x);       // 0 x | 
|  | problem.AddResidualBlock(new BinaryCostFunction(), NULL, &z, &x);  // 1 x | 
|  | problem.AddResidualBlock(new BinaryCostFunction(), NULL, &z, &y);  // 2 | 
|  | problem.AddResidualBlock(new BinaryCostFunction(), NULL, &z, &y);  // 3 | 
|  | problem.AddResidualBlock(new BinaryCostFunction(), NULL, &x, &z);  // 4 x | 
|  | problem.AddResidualBlock(new BinaryCostFunction(), NULL, &z, &y);  // 5 | 
|  | problem.AddResidualBlock(new BinaryCostFunction(), NULL, &x, &z);  // 6 x | 
|  | problem.AddResidualBlock(new UnaryCostFunction(), NULL, &y);       // 7 | 
|  |  | 
|  | ParameterBlockOrdering* linear_solver_ordering = new ParameterBlockOrdering; | 
|  | linear_solver_ordering->AddElementToGroup(&x, 0); | 
|  | linear_solver_ordering->AddElementToGroup(&z, 0); | 
|  | linear_solver_ordering->AddElementToGroup(&y, 1); | 
|  |  | 
|  | Solver::Options options; | 
|  | options.linear_solver_type = DENSE_SCHUR; | 
|  | options.linear_solver_ordering.reset(linear_solver_ordering); | 
|  |  | 
|  | // Create the reduced program. This should remove the fixed block "z", | 
|  | // marking the index to -1 at the same time. x and y also get indices. | 
|  | string message; | 
|  | scoped_ptr<Program> reduced_program( | 
|  | SolverImpl::CreateReducedProgram(&options, &problem, NULL, &message)); | 
|  |  | 
|  | const vector<ResidualBlock*>& residual_blocks = | 
|  | problem.program().residual_blocks(); | 
|  |  | 
|  | // This is a bit fragile, but it serves the purpose. We know the | 
|  | // bucketing algorithm that the reordering function uses, so we | 
|  | // expect the order for residual blocks for each e_block to be | 
|  | // filled in reverse. | 
|  |  | 
|  | vector<ResidualBlock*> expected_residual_blocks; | 
|  |  | 
|  | // Row block for residuals involving "x". These are marked "x" in the block | 
|  | // of code calling AddResidual() above. | 
|  | expected_residual_blocks.push_back(residual_blocks[6]); | 
|  | expected_residual_blocks.push_back(residual_blocks[4]); | 
|  | expected_residual_blocks.push_back(residual_blocks[1]); | 
|  | expected_residual_blocks.push_back(residual_blocks[0]); | 
|  |  | 
|  | // Row block for residuals involving "y". | 
|  | expected_residual_blocks.push_back(residual_blocks[7]); | 
|  | expected_residual_blocks.push_back(residual_blocks[5]); | 
|  | expected_residual_blocks.push_back(residual_blocks[3]); | 
|  | expected_residual_blocks.push_back(residual_blocks[2]); | 
|  |  | 
|  | EXPECT_EQ(reduced_program->residual_blocks().size(), | 
|  | expected_residual_blocks.size()); | 
|  | for (int i = 0; i < expected_residual_blocks.size(); ++i) { | 
|  | EXPECT_EQ(reduced_program->residual_blocks()[i], | 
|  | expected_residual_blocks[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(SolverImpl, AutomaticSchurReorderingRespectsConstantBlocks) { | 
|  | ProblemImpl problem; | 
|  | double x; | 
|  | double y; | 
|  | double z; | 
|  |  | 
|  | problem.AddParameterBlock(&x, 1); | 
|  | problem.AddParameterBlock(&y, 1); | 
|  | problem.AddParameterBlock(&z, 1); | 
|  |  | 
|  | // Set one parameter block constant. | 
|  | problem.SetParameterBlockConstant(&z); | 
|  |  | 
|  | problem.AddResidualBlock(new UnaryCostFunction(), NULL, &x); | 
|  | problem.AddResidualBlock(new BinaryCostFunction(), NULL, &z, &x); | 
|  | problem.AddResidualBlock(new BinaryCostFunction(), NULL, &z, &y); | 
|  | problem.AddResidualBlock(new BinaryCostFunction(), NULL, &z, &y); | 
|  | problem.AddResidualBlock(new BinaryCostFunction(), NULL, &x, &z); | 
|  | problem.AddResidualBlock(new BinaryCostFunction(), NULL, &z, &y); | 
|  | problem.AddResidualBlock(new BinaryCostFunction(), NULL, &x, &z); | 
|  | problem.AddResidualBlock(new UnaryCostFunction(), NULL, &y); | 
|  | problem.AddResidualBlock(new UnaryCostFunction(), NULL, &z); | 
|  |  | 
|  | ParameterBlockOrdering* linear_solver_ordering = new ParameterBlockOrdering; | 
|  | linear_solver_ordering->AddElementToGroup(&x, 0); | 
|  | linear_solver_ordering->AddElementToGroup(&z, 0); | 
|  | linear_solver_ordering->AddElementToGroup(&y, 0); | 
|  |  | 
|  | Solver::Options options; | 
|  | options.linear_solver_type = DENSE_SCHUR; | 
|  | options.linear_solver_ordering.reset(linear_solver_ordering); | 
|  |  | 
|  | string message; | 
|  | scoped_ptr<Program> reduced_program( | 
|  | SolverImpl::CreateReducedProgram(&options, &problem, NULL, &message)); | 
|  |  | 
|  | const vector<ResidualBlock*>& residual_blocks = | 
|  | reduced_program->residual_blocks(); | 
|  | const vector<ParameterBlock*>& parameter_blocks = | 
|  | reduced_program->parameter_blocks(); | 
|  |  | 
|  | const vector<ResidualBlock*>& original_residual_blocks = | 
|  | problem.program().residual_blocks(); | 
|  |  | 
|  | EXPECT_EQ(residual_blocks.size(), 8); | 
|  | EXPECT_EQ(reduced_program->parameter_blocks().size(), 2); | 
|  |  | 
|  | // Verify that right parmeter block and the residual blocks have | 
|  | // been removed. | 
|  | for (int i = 0; i < 8; ++i) { | 
|  | EXPECT_NE(residual_blocks[i], original_residual_blocks.back()); | 
|  | } | 
|  | for (int i = 0; i < 2; ++i) { | 
|  | EXPECT_NE(parameter_blocks[i]->mutable_user_state(), &z); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(SolverImpl, ApplyUserOrderingOrderingTooSmall) { | 
|  | ProblemImpl problem; | 
|  | double x; | 
|  | double y; | 
|  | double z; | 
|  |  | 
|  | problem.AddParameterBlock(&x, 1); | 
|  | problem.AddParameterBlock(&y, 1); | 
|  | problem.AddParameterBlock(&z, 1); | 
|  |  | 
|  | ParameterBlockOrdering linear_solver_ordering; | 
|  | linear_solver_ordering.AddElementToGroup(&x, 0); | 
|  | linear_solver_ordering.AddElementToGroup(&y, 1); | 
|  |  | 
|  | Program program(problem.program()); | 
|  | string message; | 
|  | EXPECT_FALSE(SolverImpl::ApplyUserOrdering(problem.parameter_map(), | 
|  | &linear_solver_ordering, | 
|  | &program, | 
|  | &message)); | 
|  | } | 
|  |  | 
|  | TEST(SolverImpl, ApplyUserOrderingNormal) { | 
|  | ProblemImpl problem; | 
|  | double x; | 
|  | double y; | 
|  | double z; | 
|  |  | 
|  | problem.AddParameterBlock(&x, 1); | 
|  | problem.AddParameterBlock(&y, 1); | 
|  | problem.AddParameterBlock(&z, 1); | 
|  |  | 
|  | ParameterBlockOrdering linear_solver_ordering; | 
|  | linear_solver_ordering.AddElementToGroup(&x, 0); | 
|  | linear_solver_ordering.AddElementToGroup(&y, 2); | 
|  | linear_solver_ordering.AddElementToGroup(&z, 1); | 
|  |  | 
|  | Program* program = problem.mutable_program(); | 
|  | string message; | 
|  |  | 
|  | EXPECT_TRUE(SolverImpl::ApplyUserOrdering(problem.parameter_map(), | 
|  | &linear_solver_ordering, | 
|  | program, | 
|  | &message)); | 
|  | const vector<ParameterBlock*>& parameter_blocks = program->parameter_blocks(); | 
|  |  | 
|  | EXPECT_EQ(parameter_blocks.size(), 3); | 
|  | EXPECT_EQ(parameter_blocks[0]->user_state(), &x); | 
|  | EXPECT_EQ(parameter_blocks[1]->user_state(), &z); | 
|  | EXPECT_EQ(parameter_blocks[2]->user_state(), &y); | 
|  | } | 
|  |  | 
|  | #if defined(CERES_NO_SUITESPARSE) && defined(CERES_NO_CXSPARSE) | 
|  | TEST(SolverImpl, CreateLinearSolverNoSuiteSparse) { | 
|  | Solver::Options options; | 
|  | options.linear_solver_type = SPARSE_NORMAL_CHOLESKY; | 
|  | // CreateLinearSolver assumes a non-empty ordering. | 
|  | options.linear_solver_ordering.reset(new ParameterBlockOrdering); | 
|  | string message; | 
|  | EXPECT_FALSE(SolverImpl::CreateLinearSolver(&options, &message)); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | TEST(SolverImpl, CreateLinearSolverNegativeMaxNumIterations) { | 
|  | Solver::Options options; | 
|  | options.linear_solver_type = DENSE_QR; | 
|  | options.max_linear_solver_iterations = -1; | 
|  | // CreateLinearSolver assumes a non-empty ordering. | 
|  | options.linear_solver_ordering.reset(new ParameterBlockOrdering); | 
|  | string message; | 
|  | EXPECT_EQ(SolverImpl::CreateLinearSolver(&options, &message), | 
|  | static_cast<LinearSolver*>(NULL)); | 
|  | } | 
|  |  | 
|  | TEST(SolverImpl, CreateLinearSolverNegativeMinNumIterations) { | 
|  | Solver::Options options; | 
|  | options.linear_solver_type = DENSE_QR; | 
|  | options.min_linear_solver_iterations = -1; | 
|  | // CreateLinearSolver assumes a non-empty ordering. | 
|  | options.linear_solver_ordering.reset(new ParameterBlockOrdering); | 
|  | string message; | 
|  | EXPECT_EQ(SolverImpl::CreateLinearSolver(&options, &message), | 
|  | static_cast<LinearSolver*>(NULL)); | 
|  | } | 
|  |  | 
|  | TEST(SolverImpl, CreateLinearSolverMaxLessThanMinIterations) { | 
|  | Solver::Options options; | 
|  | options.linear_solver_type = DENSE_QR; | 
|  | options.min_linear_solver_iterations = 10; | 
|  | options.max_linear_solver_iterations = 5; | 
|  | options.linear_solver_ordering.reset(new ParameterBlockOrdering); | 
|  | string message; | 
|  | EXPECT_EQ(SolverImpl::CreateLinearSolver(&options, &message), | 
|  | static_cast<LinearSolver*>(NULL)); | 
|  | } | 
|  |  | 
|  | TEST(SolverImpl, CreateLinearSolverDenseSchurMultipleThreads) { | 
|  | Solver::Options options; | 
|  | options.linear_solver_type = DENSE_SCHUR; | 
|  | options.num_linear_solver_threads = 2; | 
|  | // The Schur type solvers can only be created with the Ordering | 
|  | // contains at least one elimination group. | 
|  | options.linear_solver_ordering.reset(new ParameterBlockOrdering); | 
|  | double x; | 
|  | double y; | 
|  | options.linear_solver_ordering->AddElementToGroup(&x, 0); | 
|  | options.linear_solver_ordering->AddElementToGroup(&y, 0); | 
|  |  | 
|  | string message; | 
|  | scoped_ptr<LinearSolver> solver( | 
|  | SolverImpl::CreateLinearSolver(&options, &message)); | 
|  | EXPECT_TRUE(solver != NULL); | 
|  | EXPECT_EQ(options.linear_solver_type, DENSE_SCHUR); | 
|  | EXPECT_EQ(options.num_linear_solver_threads, 2); | 
|  | } | 
|  |  | 
|  | TEST(SolverImpl, CreateIterativeLinearSolverForDogleg) { | 
|  | Solver::Options options; | 
|  | options.trust_region_strategy_type = DOGLEG; | 
|  | // CreateLinearSolver assumes a non-empty ordering. | 
|  | options.linear_solver_ordering.reset(new ParameterBlockOrdering); | 
|  | string message; | 
|  | options.linear_solver_type = ITERATIVE_SCHUR; | 
|  | EXPECT_EQ(SolverImpl::CreateLinearSolver(&options, &message), | 
|  | static_cast<LinearSolver*>(NULL)); | 
|  |  | 
|  | options.linear_solver_type = CGNR; | 
|  | EXPECT_EQ(SolverImpl::CreateLinearSolver(&options, &message), | 
|  | static_cast<LinearSolver*>(NULL)); | 
|  | } | 
|  |  | 
|  | TEST(SolverImpl, CreateLinearSolverNormalOperation) { | 
|  | Solver::Options options; | 
|  | scoped_ptr<LinearSolver> solver; | 
|  | options.linear_solver_type = DENSE_QR; | 
|  | // CreateLinearSolver assumes a non-empty ordering. | 
|  | options.linear_solver_ordering.reset(new ParameterBlockOrdering); | 
|  | string message; | 
|  | solver.reset(SolverImpl::CreateLinearSolver(&options, &message)); | 
|  | EXPECT_EQ(options.linear_solver_type, DENSE_QR); | 
|  | EXPECT_TRUE(solver.get() != NULL); | 
|  |  | 
|  | options.linear_solver_type = DENSE_NORMAL_CHOLESKY; | 
|  | solver.reset(SolverImpl::CreateLinearSolver(&options, &message)); | 
|  | EXPECT_EQ(options.linear_solver_type, DENSE_NORMAL_CHOLESKY); | 
|  | EXPECT_TRUE(solver.get() != NULL); | 
|  |  | 
|  | #ifndef CERES_NO_SUITESPARSE | 
|  | options.linear_solver_type = SPARSE_NORMAL_CHOLESKY; | 
|  | options.sparse_linear_algebra_library_type = SUITE_SPARSE; | 
|  | solver.reset(SolverImpl::CreateLinearSolver(&options, &message)); | 
|  | EXPECT_EQ(options.linear_solver_type, SPARSE_NORMAL_CHOLESKY); | 
|  | EXPECT_TRUE(solver.get() != NULL); | 
|  | #endif | 
|  |  | 
|  | #ifndef CERES_NO_CXSPARSE | 
|  | options.linear_solver_type = SPARSE_NORMAL_CHOLESKY; | 
|  | options.sparse_linear_algebra_library_type = CX_SPARSE; | 
|  | solver.reset(SolverImpl::CreateLinearSolver(&options, &message)); | 
|  | EXPECT_EQ(options.linear_solver_type, SPARSE_NORMAL_CHOLESKY); | 
|  | EXPECT_TRUE(solver.get() != NULL); | 
|  | #endif | 
|  |  | 
|  | double x; | 
|  | double y; | 
|  | options.linear_solver_ordering->AddElementToGroup(&x, 0); | 
|  | options.linear_solver_ordering->AddElementToGroup(&y, 0); | 
|  |  | 
|  | options.linear_solver_type = DENSE_SCHUR; | 
|  | solver.reset(SolverImpl::CreateLinearSolver(&options, &message)); | 
|  | EXPECT_EQ(options.linear_solver_type, DENSE_SCHUR); | 
|  | EXPECT_TRUE(solver.get() != NULL); | 
|  |  | 
|  | options.linear_solver_type = SPARSE_SCHUR; | 
|  | solver.reset(SolverImpl::CreateLinearSolver(&options, &message)); | 
|  |  | 
|  | #if defined(CERES_NO_SUITESPARSE) && defined(CERES_NO_CXSPARSE) | 
|  | EXPECT_TRUE(SolverImpl::CreateLinearSolver(&options, &message) == NULL); | 
|  | #else | 
|  | EXPECT_TRUE(solver.get() != NULL); | 
|  | EXPECT_EQ(options.linear_solver_type, SPARSE_SCHUR); | 
|  | #endif | 
|  |  | 
|  | options.linear_solver_type = ITERATIVE_SCHUR; | 
|  | solver.reset(SolverImpl::CreateLinearSolver(&options, &message)); | 
|  | EXPECT_EQ(options.linear_solver_type, ITERATIVE_SCHUR); | 
|  | EXPECT_TRUE(solver.get() != NULL); | 
|  | } | 
|  |  | 
|  | struct QuadraticCostFunction { | 
|  | template <typename T> bool operator()(const T* const x, | 
|  | T* residual) const { | 
|  | residual[0] = T(5.0) - *x; | 
|  | return true; | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct RememberingCallback : public IterationCallback { | 
|  | explicit RememberingCallback(double *x) : calls(0), x(x) {} | 
|  | virtual ~RememberingCallback() {} | 
|  | virtual CallbackReturnType operator()(const IterationSummary& summary) { | 
|  | x_values.push_back(*x); | 
|  | return SOLVER_CONTINUE; | 
|  | } | 
|  | int calls; | 
|  | double *x; | 
|  | vector<double> x_values; | 
|  | }; | 
|  |  | 
|  | TEST(SolverImpl, UpdateStateEveryIterationOption) { | 
|  | double x = 50.0; | 
|  | const double original_x = x; | 
|  |  | 
|  | scoped_ptr<CostFunction> cost_function( | 
|  | new AutoDiffCostFunction<QuadraticCostFunction, 1, 1>( | 
|  | new QuadraticCostFunction)); | 
|  |  | 
|  | Problem::Options problem_options; | 
|  | problem_options.cost_function_ownership = DO_NOT_TAKE_OWNERSHIP; | 
|  | ProblemImpl problem(problem_options); | 
|  | problem.AddResidualBlock(cost_function.get(), NULL, &x); | 
|  |  | 
|  | Solver::Options options; | 
|  | options.linear_solver_type = DENSE_QR; | 
|  |  | 
|  | RememberingCallback callback(&x); | 
|  | options.callbacks.push_back(&callback); | 
|  |  | 
|  | Solver::Summary summary; | 
|  |  | 
|  | int num_iterations; | 
|  |  | 
|  | // First try: no updating. | 
|  | SolverImpl::Solve(options, &problem, &summary); | 
|  | num_iterations = summary.num_successful_steps + | 
|  | summary.num_unsuccessful_steps; | 
|  | EXPECT_GT(num_iterations, 1); | 
|  | for (int i = 0; i < callback.x_values.size(); ++i) { | 
|  | EXPECT_EQ(50.0, callback.x_values[i]); | 
|  | } | 
|  |  | 
|  | // Second try: with updating | 
|  | x = 50.0; | 
|  | options.update_state_every_iteration = true; | 
|  | callback.x_values.clear(); | 
|  | SolverImpl::Solve(options, &problem, &summary); | 
|  | num_iterations = summary.num_successful_steps + | 
|  | summary.num_unsuccessful_steps; | 
|  | EXPECT_GT(num_iterations, 1); | 
|  | EXPECT_EQ(original_x, callback.x_values[0]); | 
|  | EXPECT_NE(original_x, callback.x_values[1]); | 
|  | } | 
|  |  | 
|  | // The parameters must be in separate blocks so that they can be individually | 
|  | // set constant or not. | 
|  | struct Quadratic4DCostFunction { | 
|  | template <typename T> bool operator()(const T* const x, | 
|  | const T* const y, | 
|  | const T* const z, | 
|  | const T* const w, | 
|  | T* residual) const { | 
|  | // A 4-dimension axis-aligned quadratic. | 
|  | residual[0] = T(10.0) - *x + | 
|  | T(20.0) - *y + | 
|  | T(30.0) - *z + | 
|  | T(40.0) - *w; | 
|  | return true; | 
|  | } | 
|  | }; | 
|  |  | 
|  | TEST(SolverImpl, ConstantParameterBlocksDoNotChangeAndStateInvariantKept) { | 
|  | double x = 50.0; | 
|  | double y = 50.0; | 
|  | double z = 50.0; | 
|  | double w = 50.0; | 
|  | const double original_x = 50.0; | 
|  | const double original_y = 50.0; | 
|  | const double original_z = 50.0; | 
|  | const double original_w = 50.0; | 
|  |  | 
|  | scoped_ptr<CostFunction> cost_function( | 
|  | new AutoDiffCostFunction<Quadratic4DCostFunction, 1, 1, 1, 1, 1>( | 
|  | new Quadratic4DCostFunction)); | 
|  |  | 
|  | Problem::Options problem_options; | 
|  | problem_options.cost_function_ownership = DO_NOT_TAKE_OWNERSHIP; | 
|  |  | 
|  | ProblemImpl problem(problem_options); | 
|  | problem.AddResidualBlock(cost_function.get(), NULL, &x, &y, &z, &w); | 
|  | problem.SetParameterBlockConstant(&x); | 
|  | problem.SetParameterBlockConstant(&w); | 
|  |  | 
|  | Solver::Options options; | 
|  | options.linear_solver_type = DENSE_QR; | 
|  |  | 
|  | Solver::Summary summary; | 
|  | SolverImpl::Solve(options, &problem, &summary); | 
|  |  | 
|  | // Verify only the non-constant parameters were mutated. | 
|  | EXPECT_EQ(original_x, x); | 
|  | EXPECT_NE(original_y, y); | 
|  | EXPECT_NE(original_z, z); | 
|  | EXPECT_EQ(original_w, w); | 
|  |  | 
|  | // Check that the parameter block state pointers are pointing back at the | 
|  | // user state, instead of inside a random temporary vector made by Solve(). | 
|  | EXPECT_EQ(&x, problem.program().parameter_blocks()[0]->state()); | 
|  | EXPECT_EQ(&y, problem.program().parameter_blocks()[1]->state()); | 
|  | EXPECT_EQ(&z, problem.program().parameter_blocks()[2]->state()); | 
|  | EXPECT_EQ(&w, problem.program().parameter_blocks()[3]->state()); | 
|  |  | 
|  | EXPECT_TRUE(problem.program().IsValid()); | 
|  | } | 
|  |  | 
|  | TEST(SolverImpl, NoParameterBlocks) { | 
|  | ProblemImpl problem_impl; | 
|  | Solver::Options options; | 
|  | Solver::Summary summary; | 
|  | SolverImpl::Solve(options, &problem_impl, &summary); | 
|  | EXPECT_EQ(summary.termination_type, CONVERGENCE); | 
|  | EXPECT_EQ(summary.message, | 
|  | "Terminating: Function tolerance reached. " | 
|  | "No non-constant parameter blocks found."); | 
|  | } | 
|  |  | 
|  | TEST(SolverImpl, NoResiduals) { | 
|  | ProblemImpl problem_impl; | 
|  | Solver::Options options; | 
|  | Solver::Summary summary; | 
|  | double x = 1; | 
|  | problem_impl.AddParameterBlock(&x, 1); | 
|  | SolverImpl::Solve(options, &problem_impl, &summary); | 
|  | EXPECT_EQ(summary.termination_type, CONVERGENCE); | 
|  | EXPECT_EQ(summary.message, | 
|  | "Terminating: Function tolerance reached. " | 
|  | "No non-constant parameter blocks found."); | 
|  | } | 
|  |  | 
|  |  | 
|  | TEST(SolverImpl, ProblemIsConstant) { | 
|  | ProblemImpl problem_impl; | 
|  | Solver::Options options; | 
|  | Solver::Summary summary; | 
|  | double x = 1; | 
|  | problem_impl.AddResidualBlock(new UnaryIdentityCostFunction, NULL, &x); | 
|  | problem_impl.SetParameterBlockConstant(&x); | 
|  | SolverImpl::Solve(options, &problem_impl, &summary); | 
|  | EXPECT_EQ(summary.termination_type, CONVERGENCE); | 
|  | EXPECT_EQ(summary.initial_cost, 1.0 / 2.0); | 
|  | EXPECT_EQ(summary.final_cost, 1.0 / 2.0); | 
|  | } | 
|  |  | 
|  | TEST(SolverImpl, AlternateLinearSolverForSchurTypeLinearSolver) { | 
|  | Solver::Options options; | 
|  |  | 
|  | options.linear_solver_type = DENSE_QR; | 
|  | SolverImpl::AlternateLinearSolverForSchurTypeLinearSolver(&options); | 
|  | EXPECT_EQ(options.linear_solver_type, DENSE_QR); | 
|  |  | 
|  | options.linear_solver_type = DENSE_NORMAL_CHOLESKY; | 
|  | SolverImpl::AlternateLinearSolverForSchurTypeLinearSolver(&options); | 
|  | EXPECT_EQ(options.linear_solver_type, DENSE_NORMAL_CHOLESKY); | 
|  |  | 
|  | options.linear_solver_type = SPARSE_NORMAL_CHOLESKY; | 
|  | SolverImpl::AlternateLinearSolverForSchurTypeLinearSolver(&options); | 
|  | EXPECT_EQ(options.linear_solver_type, SPARSE_NORMAL_CHOLESKY); | 
|  |  | 
|  | options.linear_solver_type = CGNR; | 
|  | SolverImpl::AlternateLinearSolverForSchurTypeLinearSolver(&options); | 
|  | EXPECT_EQ(options.linear_solver_type, CGNR); | 
|  |  | 
|  | options.linear_solver_type = DENSE_SCHUR; | 
|  | SolverImpl::AlternateLinearSolverForSchurTypeLinearSolver(&options); | 
|  | EXPECT_EQ(options.linear_solver_type, DENSE_QR); | 
|  |  | 
|  | options.linear_solver_type = SPARSE_SCHUR; | 
|  | SolverImpl::AlternateLinearSolverForSchurTypeLinearSolver(&options); | 
|  | EXPECT_EQ(options.linear_solver_type, SPARSE_NORMAL_CHOLESKY); | 
|  |  | 
|  | options.linear_solver_type = ITERATIVE_SCHUR; | 
|  | options.preconditioner_type = IDENTITY; | 
|  | SolverImpl::AlternateLinearSolverForSchurTypeLinearSolver(&options); | 
|  | EXPECT_EQ(options.linear_solver_type, CGNR); | 
|  | EXPECT_EQ(options.preconditioner_type, IDENTITY); | 
|  |  | 
|  | options.linear_solver_type = ITERATIVE_SCHUR; | 
|  | options.preconditioner_type = JACOBI; | 
|  | SolverImpl::AlternateLinearSolverForSchurTypeLinearSolver(&options); | 
|  | EXPECT_EQ(options.linear_solver_type, CGNR); | 
|  | EXPECT_EQ(options.preconditioner_type, JACOBI); | 
|  |  | 
|  | options.linear_solver_type = ITERATIVE_SCHUR; | 
|  | options.preconditioner_type = SCHUR_JACOBI; | 
|  | SolverImpl::AlternateLinearSolverForSchurTypeLinearSolver(&options); | 
|  | EXPECT_EQ(options.linear_solver_type, CGNR); | 
|  | EXPECT_EQ(options.preconditioner_type, JACOBI); | 
|  |  | 
|  | options.linear_solver_type = ITERATIVE_SCHUR; | 
|  | options.preconditioner_type = CLUSTER_JACOBI; | 
|  | SolverImpl::AlternateLinearSolverForSchurTypeLinearSolver(&options); | 
|  | EXPECT_EQ(options.linear_solver_type, CGNR); | 
|  | EXPECT_EQ(options.preconditioner_type, JACOBI); | 
|  |  | 
|  | options.linear_solver_type = ITERATIVE_SCHUR; | 
|  | options.preconditioner_type = CLUSTER_TRIDIAGONAL; | 
|  | SolverImpl::AlternateLinearSolverForSchurTypeLinearSolver(&options); | 
|  | EXPECT_EQ(options.linear_solver_type, CGNR); | 
|  | EXPECT_EQ(options.preconditioner_type, JACOBI); | 
|  | } | 
|  |  | 
|  | TEST(SolverImpl, CreateJacobianBlockSparsityTranspose) { | 
|  | ProblemImpl problem; | 
|  | double x[2]; | 
|  | double y[3]; | 
|  | double z; | 
|  |  | 
|  | problem.AddParameterBlock(x, 2); | 
|  | problem.AddParameterBlock(y, 3); | 
|  | problem.AddParameterBlock(&z, 1); | 
|  |  | 
|  | problem.AddResidualBlock(new MockCostFunctionBase<2, 2, 0, 0>(), NULL, x); | 
|  | problem.AddResidualBlock(new MockCostFunctionBase<3, 1, 2, 0>(), NULL, &z, x); | 
|  | problem.AddResidualBlock(new MockCostFunctionBase<4, 1, 3, 0>(), NULL, &z, y); | 
|  | problem.AddResidualBlock(new MockCostFunctionBase<5, 1, 3, 0>(), NULL, &z, y); | 
|  | problem.AddResidualBlock(new MockCostFunctionBase<1, 2, 1, 0>(), NULL, x, &z); | 
|  | problem.AddResidualBlock(new MockCostFunctionBase<2, 1, 3, 0>(), NULL, &z, y); | 
|  | problem.AddResidualBlock(new MockCostFunctionBase<2, 2, 1, 0>(), NULL, x, &z); | 
|  | problem.AddResidualBlock(new MockCostFunctionBase<1, 3, 0, 0>(), NULL, y); | 
|  |  | 
|  | TripletSparseMatrix expected_block_sparse_jacobian(3, 8, 14); | 
|  | { | 
|  | int* rows = expected_block_sparse_jacobian.mutable_rows(); | 
|  | int* cols = expected_block_sparse_jacobian.mutable_cols(); | 
|  | double* values = expected_block_sparse_jacobian.mutable_values(); | 
|  | rows[0] = 0; | 
|  | cols[0] = 0; | 
|  |  | 
|  | rows[1] = 2; | 
|  | cols[1] = 1; | 
|  | rows[2] = 0; | 
|  | cols[2] = 1; | 
|  |  | 
|  | rows[3] = 2; | 
|  | cols[3] = 2; | 
|  | rows[4] = 1; | 
|  | cols[4] = 2; | 
|  |  | 
|  | rows[5] = 2; | 
|  | cols[5] = 3; | 
|  | rows[6] = 1; | 
|  | cols[6] = 3; | 
|  |  | 
|  | rows[7] = 0; | 
|  | cols[7] = 4; | 
|  | rows[8] = 2; | 
|  | cols[8] = 4; | 
|  |  | 
|  | rows[9] = 2; | 
|  | cols[9] = 5; | 
|  | rows[10] = 1; | 
|  | cols[10] = 5; | 
|  |  | 
|  | rows[11] = 0; | 
|  | cols[11] = 6; | 
|  | rows[12] = 2; | 
|  | cols[12] = 6; | 
|  |  | 
|  | rows[13] = 1; | 
|  | cols[13] = 7; | 
|  | fill(values, values + 14, 1.0); | 
|  | expected_block_sparse_jacobian.set_num_nonzeros(14); | 
|  | } | 
|  |  | 
|  | Program* program = problem.mutable_program(); | 
|  | program->SetParameterOffsetsAndIndex(); | 
|  |  | 
|  | scoped_ptr<TripletSparseMatrix> actual_block_sparse_jacobian( | 
|  | SolverImpl::CreateJacobianBlockSparsityTranspose(program)); | 
|  |  | 
|  | Matrix expected_dense_jacobian; | 
|  | expected_block_sparse_jacobian.ToDenseMatrix(&expected_dense_jacobian); | 
|  |  | 
|  | Matrix actual_dense_jacobian; | 
|  | actual_block_sparse_jacobian->ToDenseMatrix(&actual_dense_jacobian); | 
|  | EXPECT_EQ((expected_dense_jacobian - actual_dense_jacobian).norm(), 0.0); | 
|  | } | 
|  |  | 
|  | template <int kNumResiduals, int kNumParameterBlocks> | 
|  | class NumParameterBlocksCostFunction : public CostFunction { | 
|  | public: | 
|  | NumParameterBlocksCostFunction() { | 
|  | set_num_residuals(kNumResiduals); | 
|  | for (int i = 0; i < kNumParameterBlocks; ++i) { | 
|  | mutable_parameter_block_sizes()->push_back(1); | 
|  | } | 
|  | } | 
|  |  | 
|  | virtual ~NumParameterBlocksCostFunction() { | 
|  | } | 
|  |  | 
|  | virtual bool Evaluate(double const* const* parameters, | 
|  | double* residuals, | 
|  | double** jacobians) const { | 
|  | return true; | 
|  | } | 
|  | }; | 
|  |  | 
|  | TEST(SolverImpl, ReallocationInCreateJacobianBlockSparsityTranspose) { | 
|  | // CreateJacobianBlockSparsityTranspose starts with a conservative | 
|  | // estimate of the size of the sparsity pattern. This test ensures | 
|  | // that when those estimates are violated, the reallocation/resizing | 
|  | // logic works correctly. | 
|  |  | 
|  | ProblemImpl problem; | 
|  | double x[20]; | 
|  |  | 
|  | vector<double*> parameter_blocks; | 
|  | for (int i = 0; i < 20; ++i) { | 
|  | problem.AddParameterBlock(x + i, 1); | 
|  | parameter_blocks.push_back(x + i); | 
|  | } | 
|  |  | 
|  | problem.AddResidualBlock(new NumParameterBlocksCostFunction<1, 20>(), | 
|  | NULL, | 
|  | parameter_blocks); | 
|  |  | 
|  | TripletSparseMatrix expected_block_sparse_jacobian(20, 1, 20); | 
|  | { | 
|  | int* rows = expected_block_sparse_jacobian.mutable_rows(); | 
|  | int* cols = expected_block_sparse_jacobian.mutable_cols(); | 
|  | for (int i = 0; i < 20; ++i) { | 
|  | rows[i] = i; | 
|  | cols[i] = 0; | 
|  | } | 
|  |  | 
|  | double* values = expected_block_sparse_jacobian.mutable_values(); | 
|  | fill(values, values + 20, 1.0); | 
|  | expected_block_sparse_jacobian.set_num_nonzeros(20); | 
|  | } | 
|  |  | 
|  | Program* program = problem.mutable_program(); | 
|  | program->SetParameterOffsetsAndIndex(); | 
|  |  | 
|  | scoped_ptr<TripletSparseMatrix> actual_block_sparse_jacobian( | 
|  | SolverImpl::CreateJacobianBlockSparsityTranspose(program)); | 
|  |  | 
|  | Matrix expected_dense_jacobian; | 
|  | expected_block_sparse_jacobian.ToDenseMatrix(&expected_dense_jacobian); | 
|  |  | 
|  | Matrix actual_dense_jacobian; | 
|  | actual_block_sparse_jacobian->ToDenseMatrix(&actual_dense_jacobian); | 
|  | EXPECT_EQ((expected_dense_jacobian - actual_dense_jacobian).norm(), 0.0); | 
|  | } | 
|  |  | 
|  | TEST(CompactifyArray, ContiguousEntries) { | 
|  | vector<int> array; | 
|  | array.push_back(0); | 
|  | array.push_back(1); | 
|  | vector<int> expected = array; | 
|  | SolverImpl::CompactifyArray(&array); | 
|  | EXPECT_EQ(array, expected); | 
|  | array.clear(); | 
|  |  | 
|  | array.push_back(1); | 
|  | array.push_back(0); | 
|  | expected = array; | 
|  | SolverImpl::CompactifyArray(&array); | 
|  | EXPECT_EQ(array, expected); | 
|  | } | 
|  |  | 
|  | TEST(CompactifyArray, NonContiguousEntries) { | 
|  | vector<int> array; | 
|  | array.push_back(0); | 
|  | array.push_back(2); | 
|  | vector<int> expected; | 
|  | expected.push_back(0); | 
|  | expected.push_back(1); | 
|  | SolverImpl::CompactifyArray(&array); | 
|  | EXPECT_EQ(array, expected); | 
|  | } | 
|  |  | 
|  | TEST(CompactifyArray, NonContiguousRepeatingEntries) { | 
|  | vector<int> array; | 
|  | array.push_back(3); | 
|  | array.push_back(1); | 
|  | array.push_back(0); | 
|  | array.push_back(0); | 
|  | array.push_back(0); | 
|  | array.push_back(5); | 
|  | vector<int> expected; | 
|  | expected.push_back(2); | 
|  | expected.push_back(1); | 
|  | expected.push_back(0); | 
|  | expected.push_back(0); | 
|  | expected.push_back(0); | 
|  | expected.push_back(3); | 
|  |  | 
|  | SolverImpl::CompactifyArray(&array); | 
|  | EXPECT_EQ(array, expected); | 
|  | } | 
|  |  | 
|  | TEST(SolverImpl, ProblemHasNanParameterBlocks) { | 
|  | Problem problem; | 
|  | double x[2]; | 
|  | x[0] = 1.0; | 
|  | x[1] = std::numeric_limits<double>::quiet_NaN(); | 
|  | problem.AddResidualBlock(new MockCostFunctionBase<1, 2, 0, 0>(), NULL, x); | 
|  | Solver::Options options; | 
|  | Solver::Summary summary; | 
|  | Solve(options, &problem, &summary); | 
|  | EXPECT_EQ(summary.termination_type, FAILURE); | 
|  | EXPECT_NE(summary.message.find("has at least one invalid value"), | 
|  | string::npos) | 
|  | << summary.message; | 
|  | } | 
|  |  | 
|  | TEST(SolverImpl, BoundsConstrainedProblemWithLineSearchMinimizerDoesNotWork) { | 
|  | Problem problem; | 
|  | double x[] = {0.0, 0.0}; | 
|  | problem.AddResidualBlock(new MockCostFunctionBase<1, 2, 0, 0>(), NULL, x); | 
|  | problem.SetParameterUpperBound(x, 0, 1.0); | 
|  | Solver::Options options; | 
|  | options.minimizer_type = LINE_SEARCH; | 
|  | Solver::Summary summary; | 
|  | Solve(options, &problem, &summary); | 
|  | EXPECT_EQ(summary.termination_type, FAILURE); | 
|  | EXPECT_NE(summary.message.find( | 
|  | "LINE_SEARCH Minimizer does not support bounds"), | 
|  | string::npos) | 
|  | << summary.message; | 
|  | } | 
|  |  | 
|  | TEST(SolverImpl, InfeasibleParameterBlock) { | 
|  | Problem problem; | 
|  | double x[] = {0.0, 0.0}; | 
|  | problem.AddResidualBlock(new MockCostFunctionBase<1, 2, 0, 0>(), NULL, x); | 
|  | problem.SetParameterLowerBound(x, 0, 2.0); | 
|  | problem.SetParameterUpperBound(x, 0, 1.0); | 
|  | Solver::Options options; | 
|  | Solver::Summary summary; | 
|  | Solve(options, &problem, &summary); | 
|  | EXPECT_EQ(summary.termination_type, FAILURE); | 
|  | EXPECT_NE(summary.message.find("infeasible bound"), string::npos) | 
|  | << summary.message; | 
|  | } | 
|  |  | 
|  | TEST(SolverImpl, InfeasibleConstantParameterBlock) { | 
|  | Problem problem; | 
|  | double x[] = {0.0, 0.0}; | 
|  | problem.AddResidualBlock(new MockCostFunctionBase<1, 2, 0, 0>(), NULL, x); | 
|  | problem.SetParameterLowerBound(x, 0, 1.0); | 
|  | problem.SetParameterUpperBound(x, 0, 2.0); | 
|  | problem.SetParameterBlockConstant(x); | 
|  | Solver::Options options; | 
|  | Solver::Summary summary; | 
|  | Solve(options, &problem, &summary); | 
|  | EXPECT_EQ(summary.termination_type, FAILURE); | 
|  | EXPECT_NE(summary.message.find("infeasible value"), string::npos) | 
|  | << summary.message; | 
|  | } | 
|  |  | 
|  | }  // namespace internal | 
|  | }  // namespace ceres |