ceres-solver / ceres-solver / 12263e28305a2a43b6c6a6b4f7f76814ab7ffa5f / . / data / nist / MGH09.dat

NIST/ITL StRD | |

Dataset Name: MGH09 (MGH09.dat) | |

File Format: ASCII | |

Starting Values (lines 41 to 44) | |

Certified Values (lines 41 to 49) | |

Data (lines 61 to 71) | |

Procedure: Nonlinear Least Squares Regression | |

Description: This problem was found to be difficult for some very | |

good algorithms. There is a local minimum at (+inf, | |

-14.07..., -inf, -inf) with final sum of squares | |

0.00102734.... | |

See More, J. J., Garbow, B. S., and Hillstrom, K. E. | |

(1981). Testing unconstrained optimization software. | |

ACM Transactions on Mathematical Software. 7(1): | |

pp. 17-41. | |

Reference: Kowalik, J.S., and M. R. Osborne, (1978). | |

Methods for Unconstrained Optimization Problems. | |

New York, NY: Elsevier North-Holland. | |

Data: 1 Response (y) | |

1 Predictor (x) | |

11 Observations | |

Higher Level of Difficulty | |

Generated Data | |

Model: Rational Class (linear/quadratic) | |

4 Parameters (b1 to b4) | |

y = b1*(x**2+x*b2) / (x**2+x*b3+b4) + e | |

Starting values Certified Values | |

Start 1 Start 2 Parameter Standard Deviation | |

b1 = 25 0.25 1.9280693458E-01 1.1435312227E-02 | |

b2 = 39 0.39 1.9128232873E-01 1.9633220911E-01 | |

b3 = 41.5 0.415 1.2305650693E-01 8.0842031232E-02 | |

b4 = 39 0.39 1.3606233068E-01 9.0025542308E-02 | |

Residual Sum of Squares: 3.0750560385E-04 | |

Residual Standard Deviation: 6.6279236551E-03 | |

Degrees of Freedom: 7 | |

Number of Observations: 11 | |

Data: y x | |

1.957000E-01 4.000000E+00 | |

1.947000E-01 2.000000E+00 | |

1.735000E-01 1.000000E+00 | |

1.600000E-01 5.000000E-01 | |

8.440000E-02 2.500000E-01 | |

6.270000E-02 1.670000E-01 | |

4.560000E-02 1.250000E-01 | |

3.420000E-02 1.000000E-01 | |

3.230000E-02 8.330000E-02 | |

2.350000E-02 7.140000E-02 | |

2.460000E-02 6.250000E-02 |