ceres-solver / ceres-solver / 12263e28305a2a43b6c6a6b4f7f76814ab7ffa5f / . / data / nist / Rat42.dat

NIST/ITL StRD | |

Dataset Name: Rat42 (Rat42.dat) | |

File Format: ASCII | |

Starting Values (lines 41 to 43) | |

Certified Values (lines 41 to 48) | |

Data (lines 61 to 69) | |

Procedure: Nonlinear Least Squares Regression | |

Description: This model and data are an example of fitting | |

sigmoidal growth curves taken from Ratkowsky (1983). | |

The response variable is pasture yield, and the | |

predictor variable is growing time. | |

Reference: Ratkowsky, D.A. (1983). | |

Nonlinear Regression Modeling. | |

New York, NY: Marcel Dekker, pp. 61 and 88. | |

Data: 1 Response (y = pasture yield) | |

1 Predictor (x = growing time) | |

9 Observations | |

Higher Level of Difficulty | |

Observed Data | |

Model: Exponential Class | |

3 Parameters (b1 to b3) | |

y = b1 / (1+exp[b2-b3*x]) + e | |

Starting Values Certified Values | |

Start 1 Start 2 Parameter Standard Deviation | |

b1 = 100 75 7.2462237576E+01 1.7340283401E+00 | |

b2 = 1 2.5 2.6180768402E+00 8.8295217536E-02 | |

b3 = 0.1 0.07 6.7359200066E-02 3.4465663377E-03 | |

Residual Sum of Squares: 8.0565229338E+00 | |

Residual Standard Deviation: 1.1587725499E+00 | |

Degrees of Freedom: 6 | |

Number of Observations: 9 | |

Data: y x | |

8.930E0 9.000E0 | |

10.800E0 14.000E0 | |

18.590E0 21.000E0 | |

22.330E0 28.000E0 | |

39.350E0 42.000E0 | |

56.110E0 57.000E0 | |

61.730E0 63.000E0 | |

64.620E0 70.000E0 | |

67.080E0 79.000E0 |