|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2012 Google Inc. All rights reserved. | 
|  | // http://code.google.com/p/ceres-solver/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  | // | 
|  | // Generic loop for line search based optimization algorithms. | 
|  | // | 
|  | // This is primarily inpsired by the minFunc packaged written by Mark | 
|  | // Schmidt. | 
|  | // | 
|  | // http://www.di.ens.fr/~mschmidt/Software/minFunc.html | 
|  | // | 
|  | // For details on the theory and implementation see "Numerical | 
|  | // Optimization" by Nocedal & Wright. | 
|  |  | 
|  | #ifndef CERES_NO_LINE_SEARCH_MINIMIZER | 
|  |  | 
|  | #include "ceres/line_search_minimizer.h" | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <cstdlib> | 
|  | #include <cmath> | 
|  | #include <string> | 
|  | #include <vector> | 
|  |  | 
|  | #include "Eigen/Dense" | 
|  | #include "ceres/array_utils.h" | 
|  | #include "ceres/evaluator.h" | 
|  | #include "ceres/internal/eigen.h" | 
|  | #include "ceres/internal/port.h" | 
|  | #include "ceres/internal/scoped_ptr.h" | 
|  | #include "ceres/line_search.h" | 
|  | #include "ceres/line_search_direction.h" | 
|  | #include "ceres/stringprintf.h" | 
|  | #include "ceres/types.h" | 
|  | #include "ceres/wall_time.h" | 
|  | #include "glog/logging.h" | 
|  |  | 
|  | namespace ceres { | 
|  | namespace internal { | 
|  | namespace { | 
|  | // Small constant for various floating point issues. | 
|  | // TODO(sameeragarwal): Change to a better name if this has only one | 
|  | // use. | 
|  | const double kEpsilon = 1e-12; | 
|  |  | 
|  | bool Evaluate(Evaluator* evaluator, | 
|  | const Vector& x, | 
|  | LineSearchMinimizer::State* state) { | 
|  | const bool status = evaluator->Evaluate(x.data(), | 
|  | &(state->cost), | 
|  | NULL, | 
|  | state->gradient.data(), | 
|  | NULL); | 
|  | if (status) { | 
|  | state->gradient_squared_norm = state->gradient.squaredNorm(); | 
|  | state->gradient_max_norm = state->gradient.lpNorm<Eigen::Infinity>(); | 
|  | } | 
|  |  | 
|  | return status; | 
|  | } | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | void LineSearchMinimizer::Minimize(const Minimizer::Options& options, | 
|  | double* parameters, | 
|  | Solver::Summary* summary) { | 
|  | double start_time = WallTimeInSeconds(); | 
|  | double iteration_start_time =  start_time; | 
|  |  | 
|  | Evaluator* evaluator = CHECK_NOTNULL(options.evaluator); | 
|  | const int num_parameters = evaluator->NumParameters(); | 
|  | const int num_effective_parameters = evaluator->NumEffectiveParameters(); | 
|  |  | 
|  | summary->termination_type = NO_CONVERGENCE; | 
|  | summary->num_successful_steps = 0; | 
|  | summary->num_unsuccessful_steps = 0; | 
|  |  | 
|  | VectorRef x(parameters, num_parameters); | 
|  |  | 
|  | State current_state(num_parameters, num_effective_parameters); | 
|  | State previous_state(num_parameters, num_effective_parameters); | 
|  |  | 
|  | Vector delta(num_effective_parameters); | 
|  | Vector x_plus_delta(num_parameters); | 
|  |  | 
|  | IterationSummary iteration_summary; | 
|  | iteration_summary.iteration = 0; | 
|  | iteration_summary.step_is_valid = false; | 
|  | iteration_summary.step_is_successful = false; | 
|  | iteration_summary.cost_change = 0.0; | 
|  | iteration_summary.gradient_max_norm = 0.0; | 
|  | iteration_summary.step_norm = 0.0; | 
|  | iteration_summary.linear_solver_iterations = 0; | 
|  | iteration_summary.step_solver_time_in_seconds = 0; | 
|  |  | 
|  | // Do initial cost and Jacobian evaluation. | 
|  | if (!Evaluate(evaluator, x, ¤t_state)) { | 
|  | LOG(WARNING) << "Terminating: Cost and gradient evaluation failed."; | 
|  | summary->termination_type = NUMERICAL_FAILURE; | 
|  | return; | 
|  | } | 
|  |  | 
|  | summary->initial_cost = current_state.cost + summary->fixed_cost; | 
|  | iteration_summary.cost = current_state.cost + summary->fixed_cost; | 
|  |  | 
|  | iteration_summary.gradient_max_norm = current_state.gradient_max_norm; | 
|  |  | 
|  | // The initial gradient max_norm is bounded from below so that we do | 
|  | // not divide by zero. | 
|  | const double initial_gradient_max_norm = | 
|  | max(iteration_summary.gradient_max_norm, kEpsilon); | 
|  | const double absolute_gradient_tolerance = | 
|  | options.gradient_tolerance * initial_gradient_max_norm; | 
|  |  | 
|  | if (iteration_summary.gradient_max_norm <= absolute_gradient_tolerance) { | 
|  | summary->termination_type = GRADIENT_TOLERANCE; | 
|  | VLOG(1) << "Terminating: Gradient tolerance reached." | 
|  | << "Relative gradient max norm: " | 
|  | << iteration_summary.gradient_max_norm / initial_gradient_max_norm | 
|  | << " <= " << options.gradient_tolerance; | 
|  | return; | 
|  | } | 
|  |  | 
|  | iteration_summary.iteration_time_in_seconds = | 
|  | WallTimeInSeconds() - iteration_start_time; | 
|  | iteration_summary.cumulative_time_in_seconds = | 
|  | WallTimeInSeconds() - start_time | 
|  | + summary->preprocessor_time_in_seconds; | 
|  | summary->iterations.push_back(iteration_summary); | 
|  |  | 
|  | LineSearchDirection::Options line_search_direction_options; | 
|  | line_search_direction_options.num_parameters = num_effective_parameters; | 
|  | line_search_direction_options.type = options.line_search_direction_type; | 
|  | line_search_direction_options.nonlinear_conjugate_gradient_type = | 
|  | options.nonlinear_conjugate_gradient_type; | 
|  | line_search_direction_options.max_lbfgs_rank = options.max_lbfgs_rank; | 
|  | scoped_ptr<LineSearchDirection> line_search_direction( | 
|  | LineSearchDirection::Create(line_search_direction_options)); | 
|  |  | 
|  | LineSearchFunction line_search_function(evaluator); | 
|  | LineSearch::Options line_search_options; | 
|  | line_search_options.function = &line_search_function; | 
|  |  | 
|  | // TODO(sameeragarwal): Make this parameterizable over different | 
|  | // line searches. | 
|  | ArmijoLineSearch line_search; | 
|  | LineSearch::Summary line_search_summary; | 
|  |  | 
|  | while (true) { | 
|  | if (!RunCallbacks(options.callbacks, iteration_summary, summary)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | iteration_start_time = WallTimeInSeconds(); | 
|  | if (iteration_summary.iteration >= options.max_num_iterations) { | 
|  | summary->termination_type = NO_CONVERGENCE; | 
|  | VLOG(1) << "Terminating: Maximum number of iterations reached."; | 
|  | break; | 
|  | } | 
|  |  | 
|  | const double total_solver_time = iteration_start_time - start_time + | 
|  | summary->preprocessor_time_in_seconds; | 
|  | if (total_solver_time >= options.max_solver_time_in_seconds) { | 
|  | summary->termination_type = NO_CONVERGENCE; | 
|  | VLOG(1) << "Terminating: Maximum solver time reached."; | 
|  | break; | 
|  | } | 
|  |  | 
|  | iteration_summary = IterationSummary(); | 
|  | iteration_summary.iteration = summary->iterations.back().iteration + 1; | 
|  |  | 
|  | bool line_search_status = true; | 
|  | if (iteration_summary.iteration == 1) { | 
|  | current_state.search_direction = -current_state.gradient; | 
|  | } else { | 
|  | line_search_status = line_search_direction->NextDirection( | 
|  | previous_state, | 
|  | current_state, | 
|  | ¤t_state.search_direction); | 
|  | } | 
|  |  | 
|  | if (!line_search_status) { | 
|  | LOG(WARNING) << "Line search direction computation failed. " | 
|  | "Resorting to steepest descent."; | 
|  | current_state.search_direction = -current_state.gradient; | 
|  | } | 
|  |  | 
|  | line_search_function.Init(x, current_state.search_direction); | 
|  | current_state.directional_derivative = | 
|  | current_state.gradient.dot(current_state.search_direction); | 
|  |  | 
|  | // TODO(sameeragarwal): Refactor this into its own object and add | 
|  | // explanations for the various choices. | 
|  | const double initial_step_size = (iteration_summary.iteration == 1) | 
|  | ? min(1.0, 1.0 / current_state.gradient_max_norm) | 
|  | : min(1.0, 2.0 * (current_state.cost - previous_state.cost) / | 
|  | current_state.directional_derivative); | 
|  |  | 
|  | line_search.Search(line_search_options, | 
|  | initial_step_size, | 
|  | current_state.cost, | 
|  | current_state.directional_derivative, | 
|  | &line_search_summary); | 
|  |  | 
|  | current_state.step_size = line_search_summary.optimal_step_size; | 
|  | delta = current_state.step_size * current_state.search_direction; | 
|  |  | 
|  | previous_state = current_state; | 
|  |  | 
|  | // TODO(sameeragarwal): Collect stats. | 
|  | if (!evaluator->Plus(x.data(), delta.data(), x_plus_delta.data()) || | 
|  | !Evaluate(evaluator, x_plus_delta, ¤t_state)) { | 
|  | LOG(WARNING) << "Evaluation failed."; | 
|  | } else { | 
|  | x = x_plus_delta; | 
|  | } | 
|  |  | 
|  | iteration_summary.gradient_max_norm = current_state.gradient_max_norm; | 
|  | if (iteration_summary.gradient_max_norm <= absolute_gradient_tolerance) { | 
|  | summary->termination_type = GRADIENT_TOLERANCE; | 
|  | VLOG(1) << "Terminating: Gradient tolerance reached." | 
|  | << "Relative gradient max norm: " | 
|  | << iteration_summary.gradient_max_norm / initial_gradient_max_norm | 
|  | << " <= " << options.gradient_tolerance; | 
|  | break; | 
|  | } | 
|  |  | 
|  | iteration_summary.cost_change = previous_state.cost - current_state.cost; | 
|  | const double absolute_function_tolerance = | 
|  | options.function_tolerance * previous_state.cost; | 
|  | if (fabs(iteration_summary.cost_change) < absolute_function_tolerance) { | 
|  | VLOG(1) << "Terminating. Function tolerance reached. " | 
|  | << "|cost_change|/cost: " | 
|  | << fabs(iteration_summary.cost_change) / previous_state.cost | 
|  | << " <= " << options.function_tolerance; | 
|  | summary->termination_type = FUNCTION_TOLERANCE; | 
|  | return; | 
|  | } | 
|  |  | 
|  | iteration_summary.cost = current_state.cost + summary->fixed_cost; | 
|  | iteration_summary.step_norm = delta.norm(); | 
|  | iteration_summary.step_is_valid = true; | 
|  | iteration_summary.step_is_successful = true; | 
|  | iteration_summary.step_norm = delta.norm(); | 
|  | iteration_summary.step_size =  current_state.step_size; | 
|  | iteration_summary.line_search_function_evaluations = | 
|  | line_search_summary.num_evaluations; | 
|  | iteration_summary.iteration_time_in_seconds = | 
|  | WallTimeInSeconds() - iteration_start_time; | 
|  | iteration_summary.cumulative_time_in_seconds = | 
|  | WallTimeInSeconds() - start_time | 
|  | + summary->preprocessor_time_in_seconds; | 
|  |  | 
|  | summary->iterations.push_back(iteration_summary); | 
|  | } | 
|  | } | 
|  |  | 
|  | }  // namespace internal | 
|  | }  // namespace ceres | 
|  |  | 
|  | #endif  // CERES_NO_LINE_SEARCH_MINIMIZER |