|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2015 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  |  | 
|  | #include <algorithm> | 
|  | #include "ceres/compressed_col_sparse_matrix_utils.h" | 
|  | #include "ceres/internal/port.h" | 
|  | #include "ceres/suitesparse.h" | 
|  | #include "ceres/triplet_sparse_matrix.h" | 
|  | #include "glog/logging.h" | 
|  | #include "gtest/gtest.h" | 
|  |  | 
|  | namespace ceres { | 
|  | namespace internal { | 
|  |  | 
|  | using std::vector; | 
|  |  | 
|  | TEST(_, BlockPermutationToScalarPermutation) { | 
|  | vector<int> blocks; | 
|  | //  Block structure | 
|  | //  0  --1-  ---2---  ---3---  4 | 
|  | // [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] | 
|  | blocks.push_back(1); | 
|  | blocks.push_back(2); | 
|  | blocks.push_back(3); | 
|  | blocks.push_back(3); | 
|  | blocks.push_back(1); | 
|  |  | 
|  | // Block ordering | 
|  | // [1, 0, 2, 4, 5] | 
|  | vector<int> block_ordering; | 
|  | block_ordering.push_back(1); | 
|  | block_ordering.push_back(0); | 
|  | block_ordering.push_back(2); | 
|  | block_ordering.push_back(4); | 
|  | block_ordering.push_back(3); | 
|  |  | 
|  | // Expected ordering | 
|  | // [1, 2, 0, 3, 4, 5, 9, 6, 7, 8] | 
|  | vector<int> expected_scalar_ordering; | 
|  | expected_scalar_ordering.push_back(1); | 
|  | expected_scalar_ordering.push_back(2); | 
|  | expected_scalar_ordering.push_back(0); | 
|  | expected_scalar_ordering.push_back(3); | 
|  | expected_scalar_ordering.push_back(4); | 
|  | expected_scalar_ordering.push_back(5); | 
|  | expected_scalar_ordering.push_back(9); | 
|  | expected_scalar_ordering.push_back(6); | 
|  | expected_scalar_ordering.push_back(7); | 
|  | expected_scalar_ordering.push_back(8); | 
|  |  | 
|  | vector<int> scalar_ordering; | 
|  | BlockOrderingToScalarOrdering(blocks, | 
|  | block_ordering, | 
|  | &scalar_ordering); | 
|  | EXPECT_EQ(scalar_ordering.size(), expected_scalar_ordering.size()); | 
|  | for (int i = 0; i < expected_scalar_ordering.size(); ++i) { | 
|  | EXPECT_EQ(scalar_ordering[i], expected_scalar_ordering[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Helper function to fill the sparsity pattern of a TripletSparseMatrix. | 
|  | int FillBlock(const vector<int>& row_blocks, | 
|  | const vector<int>& col_blocks, | 
|  | const int row_block_id, | 
|  | const int col_block_id, | 
|  | int* rows, | 
|  | int* cols) { | 
|  | int row_pos = 0; | 
|  | for (int i = 0; i < row_block_id; ++i) { | 
|  | row_pos += row_blocks[i]; | 
|  | } | 
|  |  | 
|  | int col_pos = 0; | 
|  | for (int i = 0; i < col_block_id; ++i) { | 
|  | col_pos += col_blocks[i]; | 
|  | } | 
|  |  | 
|  | int offset = 0; | 
|  | for (int r = 0; r < row_blocks[row_block_id]; ++r) { | 
|  | for (int c = 0; c < col_blocks[col_block_id]; ++c, ++offset) { | 
|  | rows[offset] = row_pos + r; | 
|  | cols[offset] = col_pos + c; | 
|  | } | 
|  | } | 
|  | return offset; | 
|  | } | 
|  |  | 
|  | TEST(_, ScalarMatrixToBlockMatrix) { | 
|  | // Block sparsity. | 
|  | // | 
|  | //     [1 2 3 2] | 
|  | // [1]  x   x | 
|  | // [2]    x   x | 
|  | // [2]  x x | 
|  | // num_nonzeros = 1 + 3 + 4 + 4 + 1 + 2 = 15 | 
|  |  | 
|  | vector<int> col_blocks; | 
|  | col_blocks.push_back(1); | 
|  | col_blocks.push_back(2); | 
|  | col_blocks.push_back(3); | 
|  | col_blocks.push_back(2); | 
|  |  | 
|  | vector<int> row_blocks; | 
|  | row_blocks.push_back(1); | 
|  | row_blocks.push_back(2); | 
|  | row_blocks.push_back(2); | 
|  |  | 
|  | TripletSparseMatrix tsm(5, 8, 18); | 
|  | int* rows = tsm.mutable_rows(); | 
|  | int* cols = tsm.mutable_cols(); | 
|  | std::fill(tsm.mutable_values(), tsm.mutable_values() + 18, 1.0); | 
|  | int offset = 0; | 
|  |  | 
|  | #define CERES_TEST_FILL_BLOCK(row_block_id, col_block_id) \ | 
|  | offset += FillBlock(row_blocks, col_blocks, \ | 
|  | row_block_id, col_block_id, \ | 
|  | rows + offset, cols + offset); | 
|  |  | 
|  | CERES_TEST_FILL_BLOCK(0, 0); | 
|  | CERES_TEST_FILL_BLOCK(2, 0); | 
|  | CERES_TEST_FILL_BLOCK(1, 1); | 
|  | CERES_TEST_FILL_BLOCK(2, 1); | 
|  | CERES_TEST_FILL_BLOCK(0, 2); | 
|  | CERES_TEST_FILL_BLOCK(1, 3); | 
|  | #undef CERES_TEST_FILL_BLOCK | 
|  |  | 
|  | tsm.set_num_nonzeros(offset); | 
|  |  | 
|  | SuiteSparse ss; | 
|  | scoped_ptr<cholmod_sparse> ccsm(ss.CreateSparseMatrix(&tsm)); | 
|  |  | 
|  | vector<int> expected_block_rows; | 
|  | expected_block_rows.push_back(0); | 
|  | expected_block_rows.push_back(2); | 
|  | expected_block_rows.push_back(1); | 
|  | expected_block_rows.push_back(2); | 
|  | expected_block_rows.push_back(0); | 
|  | expected_block_rows.push_back(1); | 
|  |  | 
|  | vector<int> expected_block_cols; | 
|  | expected_block_cols.push_back(0); | 
|  | expected_block_cols.push_back(2); | 
|  | expected_block_cols.push_back(4); | 
|  | expected_block_cols.push_back(5); | 
|  | expected_block_cols.push_back(6); | 
|  |  | 
|  | vector<int> block_rows; | 
|  | vector<int> block_cols; | 
|  | CompressedColumnScalarMatrixToBlockMatrix( | 
|  | reinterpret_cast<const int*>(ccsm->i), | 
|  | reinterpret_cast<const int*>(ccsm->p), | 
|  | row_blocks, | 
|  | col_blocks, | 
|  | &block_rows, | 
|  | &block_cols); | 
|  |  | 
|  | EXPECT_EQ(block_cols.size(), expected_block_cols.size()); | 
|  | EXPECT_EQ(block_rows.size(), expected_block_rows.size()); | 
|  |  | 
|  | for (int i = 0; i < expected_block_cols.size(); ++i) { | 
|  | EXPECT_EQ(block_cols[i], expected_block_cols[i]); | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < expected_block_rows.size(); ++i) { | 
|  | EXPECT_EQ(block_rows[i], expected_block_rows[i]); | 
|  | } | 
|  |  | 
|  | ss.Free(ccsm.release()); | 
|  | } | 
|  |  | 
|  | class SolveUpperTriangularTest : public ::testing::Test { | 
|  | protected: | 
|  | void SetUp() { | 
|  | cols.resize(5); | 
|  | rows.resize(7); | 
|  | values.resize(7); | 
|  |  | 
|  | cols[0] = 0; | 
|  | rows[0] = 0; | 
|  | values[0] = 0.50754; | 
|  |  | 
|  | cols[1] = 1; | 
|  | rows[1] = 1; | 
|  | values[1] = 0.80483; | 
|  |  | 
|  | cols[2] = 2; | 
|  | rows[2] = 1; | 
|  | values[2] = 0.14120; | 
|  | rows[3] = 2; | 
|  | values[3] = 0.3; | 
|  |  | 
|  | cols[3] = 4; | 
|  | rows[4] = 0; | 
|  | values[4] = 0.77696; | 
|  | rows[5] = 1; | 
|  | values[5] = 0.41860; | 
|  | rows[6] = 3; | 
|  | values[6] = 0.88979; | 
|  |  | 
|  | cols[4] = 7; | 
|  | } | 
|  |  | 
|  | vector<int> cols; | 
|  | vector<int> rows; | 
|  | vector<double> values; | 
|  | }; | 
|  |  | 
|  | TEST_F(SolveUpperTriangularTest, SolveInPlace) { | 
|  | double rhs_and_solution[] = {1.0, 1.0, 2.0, 2.0}; | 
|  | const double expected[] = { -1.4706, -1.0962, 6.6667, 2.2477}; | 
|  |  | 
|  | SolveUpperTriangularInPlace<int>(cols.size() - 1, | 
|  | &rows[0], | 
|  | &cols[0], | 
|  | &values[0], | 
|  | rhs_and_solution); | 
|  |  | 
|  | for (int i = 0; i < 4; ++i) { | 
|  | EXPECT_NEAR(rhs_and_solution[i], expected[i], 1e-4) << i; | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_F(SolveUpperTriangularTest, TransposeSolveInPlace) { | 
|  | double rhs_and_solution[] = {1.0, 1.0, 2.0, 2.0}; | 
|  | double expected[] = {1.970288,  1.242498,  6.081864, -0.057255}; | 
|  |  | 
|  | SolveUpperTriangularTransposeInPlace<int>(cols.size() - 1, | 
|  | &rows[0], | 
|  | &cols[0], | 
|  | &values[0], | 
|  | rhs_and_solution); | 
|  |  | 
|  | for (int i = 0; i < 4; ++i) { | 
|  | EXPECT_NEAR(rhs_and_solution[i], expected[i], 1e-4) << i; | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_F(SolveUpperTriangularTest, RTRSolveWithSparseRHS) { | 
|  | double solution[4]; | 
|  | double expected[] = { 6.8420e+00,   1.0057e+00,  -1.4907e-16,  -1.9335e+00, | 
|  | 1.0057e+00,   2.2275e+00,  -1.9493e+00,  -6.5693e-01, | 
|  | -1.4907e-16,  -1.9493e+00,   1.1111e+01,   9.7381e-17, | 
|  | -1.9335e+00,  -6.5693e-01,   9.7381e-17,   1.2631e+00 }; | 
|  |  | 
|  | for (int i = 0; i < 4; ++i) { | 
|  | SolveRTRWithSparseRHS<int>(cols.size() - 1, | 
|  | &rows[0], | 
|  | &cols[0], | 
|  | &values[0], | 
|  | i, | 
|  | solution); | 
|  | for (int j = 0; j < 4; ++j) { | 
|  | EXPECT_NEAR(solution[j], expected[4 * i + j], 1e-3) << i; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | }  // namespace internal | 
|  | }  // namespace ceres |