|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. | 
|  | // http://code.google.com/p/ceres-solver/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  |  | 
|  | #include "ceres/compressed_row_sparse_matrix.h" | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <numeric> | 
|  | #include <vector> | 
|  | #include "ceres/crs_matrix.h" | 
|  | #include "ceres/internal/port.h" | 
|  | #include "ceres/triplet_sparse_matrix.h" | 
|  | #include "glog/logging.h" | 
|  |  | 
|  | namespace ceres { | 
|  | namespace internal { | 
|  | namespace { | 
|  |  | 
|  | // Helper functor used by the constructor for reordering the contents | 
|  | // of a TripletSparseMatrix. This comparator assumes thay there are no | 
|  | // duplicates in the pair of arrays rows and cols, i.e., there is no | 
|  | // indices i and j (not equal to each other) s.t. | 
|  | // | 
|  | //  rows[i] == rows[j] && cols[i] == cols[j] | 
|  | // | 
|  | // If this is the case, this functor will not be a StrictWeakOrdering. | 
|  | struct RowColLessThan { | 
|  | RowColLessThan(const int* rows, const int* cols) | 
|  | : rows(rows), cols(cols) { | 
|  | } | 
|  |  | 
|  | bool operator()(const int x, const int y) const { | 
|  | if (rows[x] == rows[y]) { | 
|  | return (cols[x] < cols[y]); | 
|  | } | 
|  | return (rows[x] < rows[y]); | 
|  | } | 
|  |  | 
|  | const int* rows; | 
|  | const int* cols; | 
|  | }; | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | // This constructor gives you a semi-initialized CompressedRowSparseMatrix. | 
|  | CompressedRowSparseMatrix::CompressedRowSparseMatrix(int num_rows, | 
|  | int num_cols, | 
|  | int max_num_nonzeros) { | 
|  | num_rows_ = num_rows; | 
|  | num_cols_ = num_cols; | 
|  | rows_.resize(num_rows + 1, 0); | 
|  | cols_.resize(max_num_nonzeros, 0); | 
|  | values_.resize(max_num_nonzeros, 0.0); | 
|  |  | 
|  |  | 
|  | VLOG(1) << "# of rows: " << num_rows_ | 
|  | << " # of columns: " << num_cols_ | 
|  | << " max_num_nonzeros: " << cols_.size() | 
|  | << ". Allocating " << (num_rows_ + 1) * sizeof(int) +  // NOLINT | 
|  | cols_.size() * sizeof(int) +  // NOLINT | 
|  | cols_.size() * sizeof(double);  // NOLINT | 
|  | } | 
|  |  | 
|  | CompressedRowSparseMatrix::CompressedRowSparseMatrix( | 
|  | const TripletSparseMatrix& m) { | 
|  | num_rows_ = m.num_rows(); | 
|  | num_cols_ = m.num_cols(); | 
|  |  | 
|  | rows_.resize(num_rows_ + 1, 0); | 
|  | cols_.resize(m.num_nonzeros(), 0); | 
|  | values_.resize(m.max_num_nonzeros(), 0.0); | 
|  |  | 
|  | // index is the list of indices into the TripletSparseMatrix m. | 
|  | vector<int> index(m.num_nonzeros(), 0); | 
|  | for (int i = 0; i < m.num_nonzeros(); ++i) { | 
|  | index[i] = i; | 
|  | } | 
|  |  | 
|  | // Sort index such that the entries of m are ordered by row and ties | 
|  | // are broken by column. | 
|  | sort(index.begin(), index.end(), RowColLessThan(m.rows(), m.cols())); | 
|  |  | 
|  | VLOG(1) << "# of rows: " << num_rows_ | 
|  | << " # of columns: " << num_cols_ | 
|  | << " max_num_nonzeros: " << cols_.size() | 
|  | << ". Allocating " | 
|  | << ((num_rows_ + 1) * sizeof(int) +  // NOLINT | 
|  | cols_.size() * sizeof(int) +     // NOLINT | 
|  | cols_.size() * sizeof(double));  // NOLINT | 
|  |  | 
|  | // Copy the contents of the cols and values array in the order given | 
|  | // by index and count the number of entries in each row. | 
|  | for (int i = 0; i < m.num_nonzeros(); ++i) { | 
|  | const int idx = index[i]; | 
|  | ++rows_[m.rows()[idx] + 1]; | 
|  | cols_[i] = m.cols()[idx]; | 
|  | values_[i] = m.values()[idx]; | 
|  | } | 
|  |  | 
|  | // Find the cumulative sum of the row counts. | 
|  | for (int i = 1; i < num_rows_ + 1; ++i) { | 
|  | rows_[i] += rows_[i - 1]; | 
|  | } | 
|  |  | 
|  | CHECK_EQ(num_nonzeros(), m.num_nonzeros()); | 
|  | } | 
|  |  | 
|  | CompressedRowSparseMatrix::CompressedRowSparseMatrix(const double* diagonal, | 
|  | int num_rows) { | 
|  | CHECK_NOTNULL(diagonal); | 
|  |  | 
|  | num_rows_ = num_rows; | 
|  | num_cols_ = num_rows; | 
|  | rows_.resize(num_rows + 1); | 
|  | cols_.resize(num_rows); | 
|  | values_.resize(num_rows); | 
|  |  | 
|  | rows_[0] = 0; | 
|  | for (int i = 0; i < num_rows_; ++i) { | 
|  | cols_[i] = i; | 
|  | values_[i] = diagonal[i]; | 
|  | rows_[i + 1] = i + 1; | 
|  | } | 
|  |  | 
|  | CHECK_EQ(num_nonzeros(), num_rows); | 
|  | } | 
|  |  | 
|  | CompressedRowSparseMatrix::~CompressedRowSparseMatrix() { | 
|  | } | 
|  |  | 
|  | void CompressedRowSparseMatrix::SetZero() { | 
|  | fill(values_.begin(), values_.end(), 0); | 
|  | } | 
|  |  | 
|  | void CompressedRowSparseMatrix::RightMultiply(const double* x, | 
|  | double* y) const { | 
|  | CHECK_NOTNULL(x); | 
|  | CHECK_NOTNULL(y); | 
|  |  | 
|  | for (int r = 0; r < num_rows_; ++r) { | 
|  | for (int idx = rows_[r]; idx < rows_[r + 1]; ++idx) { | 
|  | y[r] += values_[idx] * x[cols_[idx]]; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void CompressedRowSparseMatrix::LeftMultiply(const double* x, double* y) const { | 
|  | CHECK_NOTNULL(x); | 
|  | CHECK_NOTNULL(y); | 
|  |  | 
|  | for (int r = 0; r < num_rows_; ++r) { | 
|  | for (int idx = rows_[r]; idx < rows_[r + 1]; ++idx) { | 
|  | y[cols_[idx]] += values_[idx] * x[r]; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void CompressedRowSparseMatrix::SquaredColumnNorm(double* x) const { | 
|  | CHECK_NOTNULL(x); | 
|  |  | 
|  | fill(x, x + num_cols_, 0.0); | 
|  | for (int idx = 0; idx < rows_[num_rows_]; ++idx) { | 
|  | x[cols_[idx]] += values_[idx] * values_[idx]; | 
|  | } | 
|  | } | 
|  |  | 
|  | void CompressedRowSparseMatrix::ScaleColumns(const double* scale) { | 
|  | CHECK_NOTNULL(scale); | 
|  |  | 
|  | for (int idx = 0; idx < rows_[num_rows_]; ++idx) { | 
|  | values_[idx] *= scale[cols_[idx]]; | 
|  | } | 
|  | } | 
|  |  | 
|  | void CompressedRowSparseMatrix::ToDenseMatrix(Matrix* dense_matrix) const { | 
|  | CHECK_NOTNULL(dense_matrix); | 
|  | dense_matrix->resize(num_rows_, num_cols_); | 
|  | dense_matrix->setZero(); | 
|  |  | 
|  | for (int r = 0; r < num_rows_; ++r) { | 
|  | for (int idx = rows_[r]; idx < rows_[r + 1]; ++idx) { | 
|  | (*dense_matrix)(r, cols_[idx]) = values_[idx]; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void CompressedRowSparseMatrix::DeleteRows(int delta_rows) { | 
|  | CHECK_GE(delta_rows, 0); | 
|  | CHECK_LE(delta_rows, num_rows_); | 
|  |  | 
|  | num_rows_ -= delta_rows; | 
|  | rows_.resize(num_rows_ + 1); | 
|  |  | 
|  | // Walk the list of row blocks until we reach the new number of rows | 
|  | // and the drop the rest of the row blocks. | 
|  | int num_row_blocks = 0; | 
|  | int num_rows = 0; | 
|  | while (num_row_blocks < row_blocks_.size() && num_rows < num_rows_) { | 
|  | num_rows += row_blocks_[num_row_blocks]; | 
|  | ++num_row_blocks; | 
|  | } | 
|  |  | 
|  | row_blocks_.resize(num_row_blocks); | 
|  | } | 
|  |  | 
|  | void CompressedRowSparseMatrix::AppendRows(const CompressedRowSparseMatrix& m) { | 
|  | CHECK_EQ(m.num_cols(), num_cols_); | 
|  |  | 
|  | CHECK(row_blocks_.size() == 0 || m.row_blocks().size() !=0) | 
|  | << "Cannot append a matrix with row blocks to one without and vice versa." | 
|  | << "This matrix has : " << row_blocks_.size() << " row blocks." | 
|  | << "The matrix being appended has: " << m.row_blocks().size() | 
|  | << " row blocks."; | 
|  |  | 
|  | if (cols_.size() < num_nonzeros() + m.num_nonzeros()) { | 
|  | cols_.resize(num_nonzeros() + m.num_nonzeros()); | 
|  | values_.resize(num_nonzeros() + m.num_nonzeros()); | 
|  | } | 
|  |  | 
|  | // Copy the contents of m into this matrix. | 
|  | copy(m.cols(), m.cols() + m.num_nonzeros(), &cols_[num_nonzeros()]); | 
|  | copy(m.values(), m.values() + m.num_nonzeros(), &values_[num_nonzeros()]); | 
|  | rows_.resize(num_rows_ + m.num_rows() + 1); | 
|  | // new_rows = [rows_, m.row() + rows_[num_rows_]] | 
|  | fill(rows_.begin() + num_rows_, | 
|  | rows_.begin() + num_rows_ + m.num_rows() + 1, | 
|  | rows_[num_rows_]); | 
|  |  | 
|  | for (int r = 0; r < m.num_rows() + 1; ++r) { | 
|  | rows_[num_rows_ + r] += m.rows()[r]; | 
|  | } | 
|  |  | 
|  | num_rows_ += m.num_rows(); | 
|  | row_blocks_.insert(row_blocks_.end(), m.row_blocks().begin(), m.row_blocks().end()); | 
|  | } | 
|  |  | 
|  | void CompressedRowSparseMatrix::ToTextFile(FILE* file) const { | 
|  | CHECK_NOTNULL(file); | 
|  | for (int r = 0; r < num_rows_; ++r) { | 
|  | for (int idx = rows_[r]; idx < rows_[r + 1]; ++idx) { | 
|  | fprintf(file, | 
|  | "% 10d % 10d %17f\n", | 
|  | r, | 
|  | cols_[idx], | 
|  | values_[idx]); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void CompressedRowSparseMatrix::ToCRSMatrix(CRSMatrix* matrix) const { | 
|  | matrix->num_rows = num_rows_; | 
|  | matrix->num_cols = num_cols_; | 
|  | matrix->rows = rows_; | 
|  | matrix->cols = cols_; | 
|  | matrix->values = values_; | 
|  |  | 
|  | // Trim. | 
|  | matrix->rows.resize(matrix->num_rows + 1); | 
|  | matrix->cols.resize(matrix->rows[matrix->num_rows]); | 
|  | matrix->values.resize(matrix->rows[matrix->num_rows]); | 
|  | } | 
|  |  | 
|  | void CompressedRowSparseMatrix::SetMaxNumNonZeros(int num_nonzeros) { | 
|  | CHECK_GE(num_nonzeros, 0); | 
|  |  | 
|  | cols_.resize(num_nonzeros); | 
|  | values_.resize(num_nonzeros); | 
|  | } | 
|  |  | 
|  | void CompressedRowSparseMatrix::SolveLowerTriangularInPlace( | 
|  | double* solution) const { | 
|  | for (int r = 0; r < num_rows_; ++r) { | 
|  | for (int idx = rows_[r]; idx < rows_[r + 1] - 1; ++idx) { | 
|  | solution[r] -= values_[idx] * solution[cols_[idx]]; | 
|  | } | 
|  | solution[r] /=  values_[rows_[r + 1] - 1]; | 
|  | } | 
|  | } | 
|  |  | 
|  | void CompressedRowSparseMatrix::SolveLowerTriangularTransposeInPlace( | 
|  | double* solution) const { | 
|  | for (int r = num_rows_ - 1; r >= 0; --r) { | 
|  | solution[r] /= values_[rows_[r + 1] - 1]; | 
|  | for (int idx = rows_[r + 1] - 2; idx >= rows_[r]; --idx) { | 
|  | solution[cols_[idx]] -= values_[idx] * solution[r]; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | CompressedRowSparseMatrix* CompressedRowSparseMatrix::CreateBlockDiagonalMatrix( | 
|  | const double* diagonal, | 
|  | const vector<int>& blocks) { | 
|  | int num_rows = 0; | 
|  | int num_nonzeros = 0; | 
|  | for (int i = 0; i < blocks.size(); ++i) { | 
|  | num_rows += blocks[i]; | 
|  | num_nonzeros += blocks[i] * blocks[i]; | 
|  | } | 
|  |  | 
|  | CompressedRowSparseMatrix* matrix = | 
|  | new CompressedRowSparseMatrix(num_rows, num_rows, num_nonzeros); | 
|  |  | 
|  | int* rows = matrix->mutable_rows(); | 
|  | int* cols = matrix->mutable_cols(); | 
|  | double* values = matrix->mutable_values(); | 
|  | fill(values, values + num_nonzeros, 0.0); | 
|  |  | 
|  | int idx_cursor = 0; | 
|  | int col_cursor = 0; | 
|  | for (int i = 0; i < blocks.size(); ++i) { | 
|  | const int block_size = blocks[i]; | 
|  | for (int r = 0; r < block_size; ++r) { | 
|  | *(rows++) = idx_cursor; | 
|  | values[idx_cursor + r] = diagonal[col_cursor + r]; | 
|  | for (int c = 0; c < block_size; ++c, ++idx_cursor) { | 
|  | *(cols++) = col_cursor + c; | 
|  | } | 
|  | } | 
|  | col_cursor += block_size; | 
|  | } | 
|  | *rows = idx_cursor; | 
|  |  | 
|  | *matrix->mutable_row_blocks() = blocks; | 
|  | *matrix->mutable_col_blocks() = blocks; | 
|  |  | 
|  | CHECK_EQ(idx_cursor, num_nonzeros); | 
|  | CHECK_EQ(col_cursor, num_rows); | 
|  | return matrix; | 
|  | } | 
|  |  | 
|  | CompressedRowSparseMatrix* CompressedRowSparseMatrix::Transpose() const { | 
|  | CompressedRowSparseMatrix* transpose = | 
|  | new CompressedRowSparseMatrix(num_cols_, num_rows_, num_nonzeros()); | 
|  |  | 
|  | int* transpose_rows = transpose->mutable_rows(); | 
|  | int* transpose_cols = transpose->mutable_cols(); | 
|  | double* transpose_values = transpose->mutable_values(); | 
|  |  | 
|  | for (int idx = 0; idx < num_nonzeros(); ++idx) { | 
|  | ++transpose_rows[cols_[idx] + 1]; | 
|  | } | 
|  |  | 
|  | for (int i = 1; i < transpose->num_rows() + 1; ++i) { | 
|  | transpose_rows[i] += transpose_rows[i - 1]; | 
|  | } | 
|  |  | 
|  | for (int r = 0; r < num_rows(); ++r) { | 
|  | for (int idx = rows_[r]; idx < rows_[r + 1]; ++idx) { | 
|  | const int c = cols_[idx]; | 
|  | const int transpose_idx = transpose_rows[c]++; | 
|  | transpose_cols[transpose_idx] = r; | 
|  | transpose_values[transpose_idx] = values_[idx]; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (int i = transpose->num_rows() - 1; i > 0 ; --i) { | 
|  | transpose_rows[i] = transpose_rows[i - 1]; | 
|  | } | 
|  | transpose_rows[0] = 0; | 
|  |  | 
|  | *(transpose->mutable_row_blocks()) = col_blocks_; | 
|  | *(transpose->mutable_col_blocks()) = row_blocks_; | 
|  |  | 
|  | return transpose; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | // A ProductTerm is a term in the outer product of a matrix with | 
|  | // itself. | 
|  | struct ProductTerm { | 
|  | ProductTerm(const int row, const int col, const int index) | 
|  | : row(row), col(col), index(index) { | 
|  | } | 
|  |  | 
|  | bool operator<(const ProductTerm& right) const { | 
|  | if (row == right.row) { | 
|  | if (col == right.col) { | 
|  | return index < right.index; | 
|  | } | 
|  | return col < right.col; | 
|  | } | 
|  | return row < right.row; | 
|  | } | 
|  |  | 
|  | int row; | 
|  | int col; | 
|  | int index; | 
|  | }; | 
|  |  | 
|  | CompressedRowSparseMatrix* | 
|  | CompressAndFillProgram(const int num_rows, | 
|  | const int num_cols, | 
|  | const vector<ProductTerm>& product, | 
|  | vector<int>* program) { | 
|  | CHECK_GT(product.size(), 0); | 
|  |  | 
|  | // Count the number of unique product term, which in turn is the | 
|  | // number of non-zeros in the outer product. | 
|  | int num_nonzeros = 1; | 
|  | for (int i = 1; i < product.size(); ++i) { | 
|  | if (product[i].row != product[i - 1].row || | 
|  | product[i].col != product[i - 1].col) { | 
|  | ++num_nonzeros; | 
|  | } | 
|  | } | 
|  |  | 
|  | CompressedRowSparseMatrix* matrix = | 
|  | new CompressedRowSparseMatrix(num_rows, num_cols, num_nonzeros); | 
|  |  | 
|  | int* crsm_rows = matrix->mutable_rows(); | 
|  | std::fill(crsm_rows, crsm_rows + num_rows + 1, 0); | 
|  | int* crsm_cols = matrix->mutable_cols(); | 
|  | std::fill(crsm_cols, crsm_cols + num_nonzeros, 0); | 
|  |  | 
|  | CHECK_NOTNULL(program)->clear(); | 
|  | program->resize(product.size()); | 
|  |  | 
|  | // Iterate over the sorted product terms. This means each row is | 
|  | // filled one at a time, and we are able to assign a position in the | 
|  | // values array to each term. | 
|  | // | 
|  | // If terms repeat, i.e., they contribute to the same entry in the | 
|  | // result matrix), then they do not affect the sparsity structure of | 
|  | // the result matrix. | 
|  | int nnz = 0; | 
|  | crsm_cols[0] = product[0].col; | 
|  | crsm_rows[product[0].row + 1]++; | 
|  | (*program)[product[0].index] = nnz; | 
|  | for (int i = 1; i < product.size(); ++i) { | 
|  | const ProductTerm& previous = product[i - 1]; | 
|  | const ProductTerm& current = product[i]; | 
|  |  | 
|  | // Sparsity structure is updated only if the term is not a repeat. | 
|  | if (previous.row != current.row || previous.col != current.col) { | 
|  | crsm_cols[++nnz] = current.col; | 
|  | crsm_rows[current.row + 1]++; | 
|  | } | 
|  |  | 
|  | // All terms get assigned the position in the values array where | 
|  | // their value is accumulated. | 
|  | (*program)[current.index] = nnz; | 
|  | } | 
|  |  | 
|  | for (int i = 1; i < num_rows + 1; ++i) { | 
|  | crsm_rows[i] += crsm_rows[i - 1]; | 
|  | } | 
|  |  | 
|  | return matrix; | 
|  | } | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | CompressedRowSparseMatrix* | 
|  | CompressedRowSparseMatrix::CreateOuterProductMatrixAndProgram( | 
|  | const CompressedRowSparseMatrix& m, | 
|  | vector<int>* program) { | 
|  | CHECK_NOTNULL(program)->clear(); | 
|  | CHECK_GT(m.num_nonzeros(), 0) << "Congratulations, " | 
|  | << "you found a bug in Ceres. Please report it."; | 
|  |  | 
|  | vector<ProductTerm> product; | 
|  | const vector<int>& row_blocks = m.row_blocks(); | 
|  | int row_block_begin = 0; | 
|  | // Iterate over row blocks | 
|  | for (int row_block = 0; row_block < row_blocks.size(); ++row_block) { | 
|  | const int row_block_end = row_block_begin + row_blocks[row_block]; | 
|  | // Compute the outer product terms for just one row per row block. | 
|  | const int r = row_block_begin; | 
|  | // Compute the lower triangular part of the product. | 
|  | for (int idx1 = m.rows()[r]; idx1 < m.rows()[r + 1]; ++idx1) { | 
|  | for (int idx2 = m.rows()[r]; idx2 <= idx1; ++idx2) { | 
|  | product.push_back(ProductTerm(m.cols()[idx1], m.cols()[idx2], product.size())); | 
|  | } | 
|  | } | 
|  | row_block_begin = row_block_end; | 
|  | } | 
|  | CHECK_EQ(row_block_begin, m.num_rows()); | 
|  | sort(product.begin(), product.end()); | 
|  | return CompressAndFillProgram(m.num_cols(), m.num_cols(), product, program); | 
|  | } | 
|  |  | 
|  | void CompressedRowSparseMatrix::ComputeOuterProduct( | 
|  | const CompressedRowSparseMatrix& m, | 
|  | const vector<int>& program, | 
|  | CompressedRowSparseMatrix* result) { | 
|  | result->SetZero(); | 
|  | double* values = result->mutable_values(); | 
|  | const vector<int>& row_blocks = m.row_blocks(); | 
|  |  | 
|  | int cursor = 0; | 
|  | int row_block_begin = 0; | 
|  | const double* m_values = m.values(); | 
|  | const int* m_rows = m.rows(); | 
|  | // Iterate over row blocks. | 
|  | for (int row_block = 0; row_block < row_blocks.size(); ++row_block) { | 
|  | const int row_block_end = row_block_begin + row_blocks[row_block]; | 
|  | const int saved_cursor = cursor; | 
|  | for (int r = row_block_begin; r < row_block_end; ++r) { | 
|  | // Reuse the program segment for each row in this row block. | 
|  | cursor = saved_cursor; | 
|  | const int row_begin = m_rows[r]; | 
|  | const int row_end = m_rows[r + 1]; | 
|  | for (int idx1 = row_begin; idx1 < row_end; ++idx1) { | 
|  | const double v1 =  m_values[idx1]; | 
|  | for (int idx2 = row_begin; idx2 <= idx1; ++idx2, ++cursor) { | 
|  | values[program[cursor]] += v1 * m_values[idx2]; | 
|  | } | 
|  | } | 
|  | } | 
|  | row_block_begin = row_block_end; | 
|  | } | 
|  |  | 
|  | CHECK_EQ(row_block_begin, m.num_rows()); | 
|  | CHECK_EQ(cursor, program.size()); | 
|  | } | 
|  |  | 
|  | }  // namespace internal | 
|  | }  // namespace ceres |