|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2020 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: jodebo_beck@gmx.de (Johannes Beck) | 
|  | // | 
|  |  | 
|  | #ifndef CERES_PUBLIC_INTERNAL_LINE_PARAMETERIZATION_H_ | 
|  | #define CERES_PUBLIC_INTERNAL_LINE_PARAMETERIZATION_H_ | 
|  |  | 
|  | #include "householder_vector.h" | 
|  |  | 
|  | namespace ceres { | 
|  |  | 
|  | template <int AmbientSpaceDimension> | 
|  | bool LineParameterization<AmbientSpaceDimension>::Plus( | 
|  | const double* x_ptr, | 
|  | const double* delta_ptr, | 
|  | double* x_plus_delta_ptr) const { | 
|  | // We seek a box plus operator of the form | 
|  | // | 
|  | //   [o*, d*] = Plus([o, d], [delta_o, delta_d]) | 
|  | // | 
|  | // where o is the origin point, d is the direction vector, delta_o is | 
|  | // the delta of the origin point and delta_d the delta of the direction and | 
|  | // o* and d* is the updated origin point and direction. | 
|  | // | 
|  | // We separate the Plus operator into the origin point and directional part | 
|  | //   d* = Plus_d(d, delta_d) | 
|  | //   o* = Plus_o(o, d, delta_o) | 
|  | // | 
|  | // The direction update function Plus_d is the same as for the homogeneous | 
|  | // vector parameterization: | 
|  | // | 
|  | //   d* = H_{v(d)} [0.5 sinc(0.5 |delta_d|) delta_d, cos(0.5 |delta_d|)]^T | 
|  | // | 
|  | // where H is the householder matrix | 
|  | //   H_{v} = I - (2 / |v|^2) v v^T | 
|  | // and | 
|  | //   v(d) = d - sign(d_n) |d| e_n. | 
|  | // | 
|  | // The origin point update function Plus_o is defined as | 
|  | // | 
|  | //   o* = o + H_{v(d)} [0.5 delta_o, 0]^T. | 
|  |  | 
|  | static constexpr int kDim = AmbientSpaceDimension; | 
|  | using AmbientVector = Eigen::Matrix<double, kDim, 1>; | 
|  | using AmbientVectorRef = Eigen::Map<Eigen::Matrix<double, kDim, 1>>; | 
|  | using ConstAmbientVectorRef = | 
|  | Eigen::Map<const Eigen::Matrix<double, kDim, 1>>; | 
|  | using ConstTangentVectorRef = | 
|  | Eigen::Map<const Eigen::Matrix<double, kDim - 1, 1>>; | 
|  |  | 
|  | ConstAmbientVectorRef o(x_ptr); | 
|  | ConstAmbientVectorRef d(x_ptr + kDim); | 
|  |  | 
|  | ConstTangentVectorRef delta_o(delta_ptr); | 
|  | ConstTangentVectorRef delta_d(delta_ptr + kDim - 1); | 
|  | AmbientVectorRef o_plus_delta(x_plus_delta_ptr); | 
|  | AmbientVectorRef d_plus_delta(x_plus_delta_ptr + kDim); | 
|  |  | 
|  | const double norm_delta_d = delta_d.norm(); | 
|  |  | 
|  | o_plus_delta = o; | 
|  |  | 
|  | // Shortcut for zero delta direction. | 
|  | if (norm_delta_d == 0.0) { | 
|  | d_plus_delta = d; | 
|  |  | 
|  | if (delta_o.isZero(0.0)) { | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Calculate the householder transformation which is needed for f_d and f_o. | 
|  | AmbientVector v; | 
|  | double beta; | 
|  |  | 
|  | // NOTE: The explicit template arguments are needed here because | 
|  | // ComputeHouseholderVector is templated and some versions of MSVC | 
|  | // have trouble deducing the type of v automatically. | 
|  | internal::ComputeHouseholderVector<ConstAmbientVectorRef, double, kDim>( | 
|  | d, &v, &beta); | 
|  |  | 
|  | if (norm_delta_d != 0.0) { | 
|  | // Map the delta from the minimum representation to the over parameterized | 
|  | // homogeneous vector. See section A6.9.2 on page 624 of Hartley & Zisserman | 
|  | // (2nd Edition) for a detailed description.  Note there is a typo on Page | 
|  | // 625, line 4 so check the book errata. | 
|  | const double norm_delta_div_2 = 0.5 * norm_delta_d; | 
|  | const double sin_delta_by_delta = | 
|  | std::sin(norm_delta_div_2) / norm_delta_div_2; | 
|  |  | 
|  | // Apply the delta update to remain on the unit sphere. See section A6.9.3 | 
|  | // on page 625 of Hartley & Zisserman (2nd Edition) for a detailed | 
|  | // description. | 
|  | AmbientVector y; | 
|  | y.template head<kDim - 1>() = 0.5 * sin_delta_by_delta * delta_d; | 
|  | y[kDim - 1] = std::cos(norm_delta_div_2); | 
|  |  | 
|  | d_plus_delta = d.norm() * (y - v * (beta * (v.transpose() * y))); | 
|  | } | 
|  |  | 
|  | // The null space is in the direction of the line, so the tangent space is | 
|  | // perpendicular to the line direction. This is achieved by using the | 
|  | // householder matrix of the direction and allow only movements | 
|  | // perpendicular to e_n. | 
|  | // | 
|  | // The factor of 0.5 is used to be consistent with the line direction | 
|  | // update. | 
|  | AmbientVector y; | 
|  | y << 0.5 * delta_o, 0; | 
|  | o_plus_delta += y - v * (beta * (v.transpose() * y)); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | template <int AmbientSpaceDimension> | 
|  | bool LineParameterization<AmbientSpaceDimension>::ComputeJacobian( | 
|  | const double* x_ptr, double* jacobian_ptr) const { | 
|  | static constexpr int kDim = AmbientSpaceDimension; | 
|  | using AmbientVector = Eigen::Matrix<double, kDim, 1>; | 
|  | using ConstAmbientVectorRef = | 
|  | Eigen::Map<const Eigen::Matrix<double, kDim, 1>>; | 
|  | using MatrixRef = Eigen::Map< | 
|  | Eigen::Matrix<double, 2 * kDim, 2 * (kDim - 1), Eigen::RowMajor>>; | 
|  |  | 
|  | ConstAmbientVectorRef d(x_ptr + kDim); | 
|  | MatrixRef jacobian(jacobian_ptr); | 
|  |  | 
|  | // Clear the Jacobian as only half of the matrix is not zero. | 
|  | jacobian.setZero(); | 
|  |  | 
|  | AmbientVector v; | 
|  | double beta; | 
|  |  | 
|  | // NOTE: The explicit template arguments are needed here because | 
|  | // ComputeHouseholderVector is templated and some versions of MSVC | 
|  | // have trouble deducing the type of v automatically. | 
|  | internal::ComputeHouseholderVector<ConstAmbientVectorRef, double, kDim>( | 
|  | d, &v, &beta); | 
|  |  | 
|  | // The Jacobian is equal to J = 0.5 * H.leftCols(kDim - 1) where H is | 
|  | // the Householder matrix (H = I - beta * v * v') for the origin point. For | 
|  | // the line direction part the Jacobian is scaled by the norm of the | 
|  | // direction. | 
|  | for (int i = 0; i < kDim - 1; ++i) { | 
|  | jacobian.block(0, i, kDim, 1) = -0.5 * beta * v(i) * v; | 
|  | jacobian.col(i)(i) += 0.5; | 
|  | } | 
|  |  | 
|  | jacobian.template block<kDim, kDim - 1>(kDim, kDim - 1) = | 
|  | jacobian.template block<kDim, kDim - 1>(0, 0) * d.norm(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | }  // namespace ceres | 
|  |  | 
|  | #endif  // CERES_PUBLIC_INTERNAL_LINE_PARAMETERIZATION_H_ |