| // Copyright 2007, Google Inc. |
| // All rights reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following disclaimer |
| // in the documentation and/or other materials provided with the |
| // distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| |
| // Google Mock - a framework for writing C++ mock classes. |
| // |
| // This is the main header file a user should include. |
| |
| // GOOGLETEST_CM0002 DO NOT DELETE |
| |
| #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_H_ |
| #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_H_ |
| |
| // This file implements the following syntax: |
| // |
| // ON_CALL(mock_object, Method(...)) |
| // .With(...) ? |
| // .WillByDefault(...); |
| // |
| // where With() is optional and WillByDefault() must appear exactly |
| // once. |
| // |
| // EXPECT_CALL(mock_object, Method(...)) |
| // .With(...) ? |
| // .Times(...) ? |
| // .InSequence(...) * |
| // .WillOnce(...) * |
| // .WillRepeatedly(...) ? |
| // .RetiresOnSaturation() ? ; |
| // |
| // where all clauses are optional and WillOnce() can be repeated. |
| |
| // Copyright 2007, Google Inc. |
| // All rights reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following disclaimer |
| // in the documentation and/or other materials provided with the |
| // distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| |
| // Google Mock - a framework for writing C++ mock classes. |
| // |
| // The ACTION* family of macros can be used in a namespace scope to |
| // define custom actions easily. The syntax: |
| // |
| // ACTION(name) { statements; } |
| // |
| // will define an action with the given name that executes the |
| // statements. The value returned by the statements will be used as |
| // the return value of the action. Inside the statements, you can |
| // refer to the K-th (0-based) argument of the mock function by |
| // 'argK', and refer to its type by 'argK_type'. For example: |
| // |
| // ACTION(IncrementArg1) { |
| // arg1_type temp = arg1; |
| // return ++(*temp); |
| // } |
| // |
| // allows you to write |
| // |
| // ...WillOnce(IncrementArg1()); |
| // |
| // You can also refer to the entire argument tuple and its type by |
| // 'args' and 'args_type', and refer to the mock function type and its |
| // return type by 'function_type' and 'return_type'. |
| // |
| // Note that you don't need to specify the types of the mock function |
| // arguments. However rest assured that your code is still type-safe: |
| // you'll get a compiler error if *arg1 doesn't support the ++ |
| // operator, or if the type of ++(*arg1) isn't compatible with the |
| // mock function's return type, for example. |
| // |
| // Sometimes you'll want to parameterize the action. For that you can use |
| // another macro: |
| // |
| // ACTION_P(name, param_name) { statements; } |
| // |
| // For example: |
| // |
| // ACTION_P(Add, n) { return arg0 + n; } |
| // |
| // will allow you to write: |
| // |
| // ...WillOnce(Add(5)); |
| // |
| // Note that you don't need to provide the type of the parameter |
| // either. If you need to reference the type of a parameter named |
| // 'foo', you can write 'foo_type'. For example, in the body of |
| // ACTION_P(Add, n) above, you can write 'n_type' to refer to the type |
| // of 'n'. |
| // |
| // We also provide ACTION_P2, ACTION_P3, ..., up to ACTION_P10 to support |
| // multi-parameter actions. |
| // |
| // For the purpose of typing, you can view |
| // |
| // ACTION_Pk(Foo, p1, ..., pk) { ... } |
| // |
| // as shorthand for |
| // |
| // template <typename p1_type, ..., typename pk_type> |
| // FooActionPk<p1_type, ..., pk_type> Foo(p1_type p1, ..., pk_type pk) { ... } |
| // |
| // In particular, you can provide the template type arguments |
| // explicitly when invoking Foo(), as in Foo<long, bool>(5, false); |
| // although usually you can rely on the compiler to infer the types |
| // for you automatically. You can assign the result of expression |
| // Foo(p1, ..., pk) to a variable of type FooActionPk<p1_type, ..., |
| // pk_type>. This can be useful when composing actions. |
| // |
| // You can also overload actions with different numbers of parameters: |
| // |
| // ACTION_P(Plus, a) { ... } |
| // ACTION_P2(Plus, a, b) { ... } |
| // |
| // While it's tempting to always use the ACTION* macros when defining |
| // a new action, you should also consider implementing ActionInterface |
| // or using MakePolymorphicAction() instead, especially if you need to |
| // use the action a lot. While these approaches require more work, |
| // they give you more control on the types of the mock function |
| // arguments and the action parameters, which in general leads to |
| // better compiler error messages that pay off in the long run. They |
| // also allow overloading actions based on parameter types (as opposed |
| // to just based on the number of parameters). |
| // |
| // CAVEAT: |
| // |
| // ACTION*() can only be used in a namespace scope as templates cannot be |
| // declared inside of a local class. |
| // Users can, however, define any local functors (e.g. a lambda) that |
| // can be used as actions. |
| // |
| // MORE INFORMATION: |
| // |
| // To learn more about using these macros, please search for 'ACTION' on |
| // https://github.com/google/googletest/blob/master/docs/gmock_cook_book.md |
| |
| // GOOGLETEST_CM0002 DO NOT DELETE |
| |
| #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ |
| #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ |
| |
| #ifndef _WIN32_WCE |
| # include <errno.h> |
| #endif |
| |
| #include <algorithm> |
| #include <functional> |
| #include <memory> |
| #include <string> |
| #include <tuple> |
| #include <type_traits> |
| #include <utility> |
| |
| // Copyright 2007, Google Inc. |
| // All rights reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following disclaimer |
| // in the documentation and/or other materials provided with the |
| // distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| |
| // Google Mock - a framework for writing C++ mock classes. |
| // |
| // This file defines some utilities useful for implementing Google |
| // Mock. They are subject to change without notice, so please DO NOT |
| // USE THEM IN USER CODE. |
| |
| // GOOGLETEST_CM0002 DO NOT DELETE |
| |
| #ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_INTERNAL_UTILS_H_ |
| #define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_INTERNAL_UTILS_H_ |
| |
| #include <stdio.h> |
| #include <ostream> // NOLINT |
| #include <string> |
| #include <type_traits> |
| // Copyright 2008, Google Inc. |
| // All rights reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following disclaimer |
| // in the documentation and/or other materials provided with the |
| // distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| // |
| // Low-level types and utilities for porting Google Mock to various |
| // platforms. All macros ending with _ and symbols defined in an |
| // internal namespace are subject to change without notice. Code |
| // outside Google Mock MUST NOT USE THEM DIRECTLY. Macros that don't |
| // end with _ are part of Google Mock's public API and can be used by |
| // code outside Google Mock. |
| |
| // GOOGLETEST_CM0002 DO NOT DELETE |
| |
| #ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PORT_H_ |
| #define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PORT_H_ |
| |
| #include <assert.h> |
| #include <stdlib.h> |
| #include <cstdint> |
| #include <iostream> |
| |
| // Most of the utilities needed for porting Google Mock are also |
| // required for Google Test and are defined in gtest-port.h. |
| // |
| // Note to maintainers: to reduce code duplication, prefer adding |
| // portability utilities to Google Test's gtest-port.h instead of |
| // here, as Google Mock depends on Google Test. Only add a utility |
| // here if it's truly specific to Google Mock. |
| |
| #include "gtest/gtest.h" |
| // Copyright 2015, Google Inc. |
| // All rights reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following disclaimer |
| // in the documentation and/or other materials provided with the |
| // distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Injection point for custom user configurations. See README for details |
| // |
| // ** Custom implementation starts here ** |
| |
| // GOOGLETEST_CM0002 DO NOT DELETE |
| |
| #ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_PORT_H_ |
| #define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_PORT_H_ |
| |
| #endif // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_PORT_H_ |
| |
| // For MS Visual C++, check the compiler version. At least VS 2015 is |
| // required to compile Google Mock. |
| #if defined(_MSC_VER) && _MSC_VER < 1900 |
| # error "At least Visual C++ 2015 (14.0) is required to compile Google Mock." |
| #endif |
| |
| // Macro for referencing flags. This is public as we want the user to |
| // use this syntax to reference Google Mock flags. |
| #define GMOCK_FLAG(name) FLAGS_gmock_##name |
| |
| #if !defined(GMOCK_DECLARE_bool_) |
| |
| // Macros for declaring flags. |
| # define GMOCK_DECLARE_bool_(name) extern GTEST_API_ bool GMOCK_FLAG(name) |
| # define GMOCK_DECLARE_int32_(name) extern GTEST_API_ int32_t GMOCK_FLAG(name) |
| # define GMOCK_DECLARE_string_(name) \ |
| extern GTEST_API_ ::std::string GMOCK_FLAG(name) |
| |
| // Macros for defining flags. |
| # define GMOCK_DEFINE_bool_(name, default_val, doc) \ |
| GTEST_API_ bool GMOCK_FLAG(name) = (default_val) |
| # define GMOCK_DEFINE_int32_(name, default_val, doc) \ |
| GTEST_API_ int32_t GMOCK_FLAG(name) = (default_val) |
| # define GMOCK_DEFINE_string_(name, default_val, doc) \ |
| GTEST_API_ ::std::string GMOCK_FLAG(name) = (default_val) |
| |
| #endif // !defined(GMOCK_DECLARE_bool_) |
| |
| #endif // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PORT_H_ |
| |
| namespace testing { |
| |
| template <typename> |
| class Matcher; |
| |
| namespace internal { |
| |
| // Silence MSVC C4100 (unreferenced formal parameter) and |
| // C4805('==': unsafe mix of type 'const int' and type 'const bool') |
| #ifdef _MSC_VER |
| # pragma warning(push) |
| # pragma warning(disable:4100) |
| # pragma warning(disable:4805) |
| #endif |
| |
| // Joins a vector of strings as if they are fields of a tuple; returns |
| // the joined string. |
| GTEST_API_ std::string JoinAsTuple(const Strings& fields); |
| |
| // Converts an identifier name to a space-separated list of lower-case |
| // words. Each maximum substring of the form [A-Za-z][a-z]*|\d+ is |
| // treated as one word. For example, both "FooBar123" and |
| // "foo_bar_123" are converted to "foo bar 123". |
| GTEST_API_ std::string ConvertIdentifierNameToWords(const char* id_name); |
| |
| // GetRawPointer(p) returns the raw pointer underlying p when p is a |
| // smart pointer, or returns p itself when p is already a raw pointer. |
| // The following default implementation is for the smart pointer case. |
| template <typename Pointer> |
| inline const typename Pointer::element_type* GetRawPointer(const Pointer& p) { |
| return p.get(); |
| } |
| // This overloaded version is for the raw pointer case. |
| template <typename Element> |
| inline Element* GetRawPointer(Element* p) { return p; } |
| |
| // MSVC treats wchar_t as a native type usually, but treats it as the |
| // same as unsigned short when the compiler option /Zc:wchar_t- is |
| // specified. It defines _NATIVE_WCHAR_T_DEFINED symbol when wchar_t |
| // is a native type. |
| #if defined(_MSC_VER) && !defined(_NATIVE_WCHAR_T_DEFINED) |
| // wchar_t is a typedef. |
| #else |
| # define GMOCK_WCHAR_T_IS_NATIVE_ 1 |
| #endif |
| |
| // In what follows, we use the term "kind" to indicate whether a type |
| // is bool, an integer type (excluding bool), a floating-point type, |
| // or none of them. This categorization is useful for determining |
| // when a matcher argument type can be safely converted to another |
| // type in the implementation of SafeMatcherCast. |
| enum TypeKind { |
| kBool, kInteger, kFloatingPoint, kOther |
| }; |
| |
| // KindOf<T>::value is the kind of type T. |
| template <typename T> struct KindOf { |
| enum { value = kOther }; // The default kind. |
| }; |
| |
| // This macro declares that the kind of 'type' is 'kind'. |
| #define GMOCK_DECLARE_KIND_(type, kind) \ |
| template <> struct KindOf<type> { enum { value = kind }; } |
| |
| GMOCK_DECLARE_KIND_(bool, kBool); |
| |
| // All standard integer types. |
| GMOCK_DECLARE_KIND_(char, kInteger); |
| GMOCK_DECLARE_KIND_(signed char, kInteger); |
| GMOCK_DECLARE_KIND_(unsigned char, kInteger); |
| GMOCK_DECLARE_KIND_(short, kInteger); // NOLINT |
| GMOCK_DECLARE_KIND_(unsigned short, kInteger); // NOLINT |
| GMOCK_DECLARE_KIND_(int, kInteger); |
| GMOCK_DECLARE_KIND_(unsigned int, kInteger); |
| GMOCK_DECLARE_KIND_(long, kInteger); // NOLINT |
| GMOCK_DECLARE_KIND_(unsigned long, kInteger); // NOLINT |
| GMOCK_DECLARE_KIND_(long long, kInteger); // NOLINT |
| GMOCK_DECLARE_KIND_(unsigned long long, kInteger); // NOLINT |
| |
| #if GMOCK_WCHAR_T_IS_NATIVE_ |
| GMOCK_DECLARE_KIND_(wchar_t, kInteger); |
| #endif |
| |
| // All standard floating-point types. |
| GMOCK_DECLARE_KIND_(float, kFloatingPoint); |
| GMOCK_DECLARE_KIND_(double, kFloatingPoint); |
| GMOCK_DECLARE_KIND_(long double, kFloatingPoint); |
| |
| #undef GMOCK_DECLARE_KIND_ |
| |
| // Evaluates to the kind of 'type'. |
| #define GMOCK_KIND_OF_(type) \ |
| static_cast< ::testing::internal::TypeKind>( \ |
| ::testing::internal::KindOf<type>::value) |
| |
| // LosslessArithmeticConvertibleImpl<kFromKind, From, kToKind, To>::value |
| // is true if and only if arithmetic type From can be losslessly converted to |
| // arithmetic type To. |
| // |
| // It's the user's responsibility to ensure that both From and To are |
| // raw (i.e. has no CV modifier, is not a pointer, and is not a |
| // reference) built-in arithmetic types, kFromKind is the kind of |
| // From, and kToKind is the kind of To; the value is |
| // implementation-defined when the above pre-condition is violated. |
| template <TypeKind kFromKind, typename From, TypeKind kToKind, typename To> |
| using LosslessArithmeticConvertibleImpl = std::integral_constant< |
| bool, |
| // clang-format off |
| // Converting from bool is always lossless |
| (kFromKind == kBool) ? true |
| // Converting between any other type kinds will be lossy if the type |
| // kinds are not the same. |
| : (kFromKind != kToKind) ? false |
| : (kFromKind == kInteger && |
| // Converting between integers of different widths is allowed so long |
| // as the conversion does not go from signed to unsigned. |
| (((sizeof(From) < sizeof(To)) && |
| !(std::is_signed<From>::value && !std::is_signed<To>::value)) || |
| // Converting between integers of the same width only requires the |
| // two types to have the same signedness. |
| ((sizeof(From) == sizeof(To)) && |
| (std::is_signed<From>::value == std::is_signed<To>::value))) |
| ) ? true |
| // Floating point conversions are lossless if and only if `To` is at least |
| // as wide as `From`. |
| : (kFromKind == kFloatingPoint && (sizeof(From) <= sizeof(To))) ? true |
| : false |
| // clang-format on |
| >; |
| |
| // LosslessArithmeticConvertible<From, To>::value is true if and only if |
| // arithmetic type From can be losslessly converted to arithmetic type To. |
| // |
| // It's the user's responsibility to ensure that both From and To are |
| // raw (i.e. has no CV modifier, is not a pointer, and is not a |
| // reference) built-in arithmetic types; the value is |
| // implementation-defined when the above pre-condition is violated. |
| template <typename From, typename To> |
| using LosslessArithmeticConvertible = |
| LosslessArithmeticConvertibleImpl<GMOCK_KIND_OF_(From), From, |
| GMOCK_KIND_OF_(To), To>; |
| |
| // This interface knows how to report a Google Mock failure (either |
| // non-fatal or fatal). |
| class FailureReporterInterface { |
| public: |
| // The type of a failure (either non-fatal or fatal). |
| enum FailureType { |
| kNonfatal, kFatal |
| }; |
| |
| virtual ~FailureReporterInterface() {} |
| |
| // Reports a failure that occurred at the given source file location. |
| virtual void ReportFailure(FailureType type, const char* file, int line, |
| const std::string& message) = 0; |
| }; |
| |
| // Returns the failure reporter used by Google Mock. |
| GTEST_API_ FailureReporterInterface* GetFailureReporter(); |
| |
| // Asserts that condition is true; aborts the process with the given |
| // message if condition is false. We cannot use LOG(FATAL) or CHECK() |
| // as Google Mock might be used to mock the log sink itself. We |
| // inline this function to prevent it from showing up in the stack |
| // trace. |
| inline void Assert(bool condition, const char* file, int line, |
| const std::string& msg) { |
| if (!condition) { |
| GetFailureReporter()->ReportFailure(FailureReporterInterface::kFatal, |
| file, line, msg); |
| } |
| } |
| inline void Assert(bool condition, const char* file, int line) { |
| Assert(condition, file, line, "Assertion failed."); |
| } |
| |
| // Verifies that condition is true; generates a non-fatal failure if |
| // condition is false. |
| inline void Expect(bool condition, const char* file, int line, |
| const std::string& msg) { |
| if (!condition) { |
| GetFailureReporter()->ReportFailure(FailureReporterInterface::kNonfatal, |
| file, line, msg); |
| } |
| } |
| inline void Expect(bool condition, const char* file, int line) { |
| Expect(condition, file, line, "Expectation failed."); |
| } |
| |
| // Severity level of a log. |
| enum LogSeverity { |
| kInfo = 0, |
| kWarning = 1 |
| }; |
| |
| // Valid values for the --gmock_verbose flag. |
| |
| // All logs (informational and warnings) are printed. |
| const char kInfoVerbosity[] = "info"; |
| // Only warnings are printed. |
| const char kWarningVerbosity[] = "warning"; |
| // No logs are printed. |
| const char kErrorVerbosity[] = "error"; |
| |
| // Returns true if and only if a log with the given severity is visible |
| // according to the --gmock_verbose flag. |
| GTEST_API_ bool LogIsVisible(LogSeverity severity); |
| |
| // Prints the given message to stdout if and only if 'severity' >= the level |
| // specified by the --gmock_verbose flag. If stack_frames_to_skip >= |
| // 0, also prints the stack trace excluding the top |
| // stack_frames_to_skip frames. In opt mode, any positive |
| // stack_frames_to_skip is treated as 0, since we don't know which |
| // function calls will be inlined by the compiler and need to be |
| // conservative. |
| GTEST_API_ void Log(LogSeverity severity, const std::string& message, |
| int stack_frames_to_skip); |
| |
| // A marker class that is used to resolve parameterless expectations to the |
| // correct overload. This must not be instantiable, to prevent client code from |
| // accidentally resolving to the overload; for example: |
| // |
| // ON_CALL(mock, Method({}, nullptr))... |
| // |
| class WithoutMatchers { |
| private: |
| WithoutMatchers() {} |
| friend GTEST_API_ WithoutMatchers GetWithoutMatchers(); |
| }; |
| |
| // Internal use only: access the singleton instance of WithoutMatchers. |
| GTEST_API_ WithoutMatchers GetWithoutMatchers(); |
| |
| // Disable MSVC warnings for infinite recursion, since in this case the |
| // the recursion is unreachable. |
| #ifdef _MSC_VER |
| # pragma warning(push) |
| # pragma warning(disable:4717) |
| #endif |
| |
| // Invalid<T>() is usable as an expression of type T, but will terminate |
| // the program with an assertion failure if actually run. This is useful |
| // when a value of type T is needed for compilation, but the statement |
| // will not really be executed (or we don't care if the statement |
| // crashes). |
| template <typename T> |
| inline T Invalid() { |
| Assert(false, "", -1, "Internal error: attempt to return invalid value"); |
| // This statement is unreachable, and would never terminate even if it |
| // could be reached. It is provided only to placate compiler warnings |
| // about missing return statements. |
| return Invalid<T>(); |
| } |
| |
| #ifdef _MSC_VER |
| # pragma warning(pop) |
| #endif |
| |
| // Given a raw type (i.e. having no top-level reference or const |
| // modifier) RawContainer that's either an STL-style container or a |
| // native array, class StlContainerView<RawContainer> has the |
| // following members: |
| // |
| // - type is a type that provides an STL-style container view to |
| // (i.e. implements the STL container concept for) RawContainer; |
| // - const_reference is a type that provides a reference to a const |
| // RawContainer; |
| // - ConstReference(raw_container) returns a const reference to an STL-style |
| // container view to raw_container, which is a RawContainer. |
| // - Copy(raw_container) returns an STL-style container view of a |
| // copy of raw_container, which is a RawContainer. |
| // |
| // This generic version is used when RawContainer itself is already an |
| // STL-style container. |
| template <class RawContainer> |
| class StlContainerView { |
| public: |
| typedef RawContainer type; |
| typedef const type& const_reference; |
| |
| static const_reference ConstReference(const RawContainer& container) { |
| static_assert(!std::is_const<RawContainer>::value, |
| "RawContainer type must not be const"); |
| return container; |
| } |
| static type Copy(const RawContainer& container) { return container; } |
| }; |
| |
| // This specialization is used when RawContainer is a native array type. |
| template <typename Element, size_t N> |
| class StlContainerView<Element[N]> { |
| public: |
| typedef typename std::remove_const<Element>::type RawElement; |
| typedef internal::NativeArray<RawElement> type; |
| // NativeArray<T> can represent a native array either by value or by |
| // reference (selected by a constructor argument), so 'const type' |
| // can be used to reference a const native array. We cannot |
| // 'typedef const type& const_reference' here, as that would mean |
| // ConstReference() has to return a reference to a local variable. |
| typedef const type const_reference; |
| |
| static const_reference ConstReference(const Element (&array)[N]) { |
| static_assert(std::is_same<Element, RawElement>::value, |
| "Element type must not be const"); |
| return type(array, N, RelationToSourceReference()); |
| } |
| static type Copy(const Element (&array)[N]) { |
| return type(array, N, RelationToSourceCopy()); |
| } |
| }; |
| |
| // This specialization is used when RawContainer is a native array |
| // represented as a (pointer, size) tuple. |
| template <typename ElementPointer, typename Size> |
| class StlContainerView< ::std::tuple<ElementPointer, Size> > { |
| public: |
| typedef typename std::remove_const< |
| typename std::pointer_traits<ElementPointer>::element_type>::type |
| RawElement; |
| typedef internal::NativeArray<RawElement> type; |
| typedef const type const_reference; |
| |
| static const_reference ConstReference( |
| const ::std::tuple<ElementPointer, Size>& array) { |
| return type(std::get<0>(array), std::get<1>(array), |
| RelationToSourceReference()); |
| } |
| static type Copy(const ::std::tuple<ElementPointer, Size>& array) { |
| return type(std::get<0>(array), std::get<1>(array), RelationToSourceCopy()); |
| } |
| }; |
| |
| // The following specialization prevents the user from instantiating |
| // StlContainer with a reference type. |
| template <typename T> class StlContainerView<T&>; |
| |
| // A type transform to remove constness from the first part of a pair. |
| // Pairs like that are used as the value_type of associative containers, |
| // and this transform produces a similar but assignable pair. |
| template <typename T> |
| struct RemoveConstFromKey { |
| typedef T type; |
| }; |
| |
| // Partially specialized to remove constness from std::pair<const K, V>. |
| template <typename K, typename V> |
| struct RemoveConstFromKey<std::pair<const K, V> > { |
| typedef std::pair<K, V> type; |
| }; |
| |
| // Emit an assertion failure due to incorrect DoDefault() usage. Out-of-lined to |
| // reduce code size. |
| GTEST_API_ void IllegalDoDefault(const char* file, int line); |
| |
| template <typename F, typename Tuple, size_t... Idx> |
| auto ApplyImpl(F&& f, Tuple&& args, IndexSequence<Idx...>) -> decltype( |
| std::forward<F>(f)(std::get<Idx>(std::forward<Tuple>(args))...)) { |
| return std::forward<F>(f)(std::get<Idx>(std::forward<Tuple>(args))...); |
| } |
| |
| // Apply the function to a tuple of arguments. |
| template <typename F, typename Tuple> |
| auto Apply(F&& f, Tuple&& args) -> decltype( |
| ApplyImpl(std::forward<F>(f), std::forward<Tuple>(args), |
| MakeIndexSequence<std::tuple_size< |
| typename std::remove_reference<Tuple>::type>::value>())) { |
| return ApplyImpl(std::forward<F>(f), std::forward<Tuple>(args), |
| MakeIndexSequence<std::tuple_size< |
| typename std::remove_reference<Tuple>::type>::value>()); |
| } |
| |
| // Template struct Function<F>, where F must be a function type, contains |
| // the following typedefs: |
| // |
| // Result: the function's return type. |
| // Arg<N>: the type of the N-th argument, where N starts with 0. |
| // ArgumentTuple: the tuple type consisting of all parameters of F. |
| // ArgumentMatcherTuple: the tuple type consisting of Matchers for all |
| // parameters of F. |
| // MakeResultVoid: the function type obtained by substituting void |
| // for the return type of F. |
| // MakeResultIgnoredValue: |
| // the function type obtained by substituting Something |
| // for the return type of F. |
| template <typename T> |
| struct Function; |
| |
| template <typename R, typename... Args> |
| struct Function<R(Args...)> { |
| using Result = R; |
| static constexpr size_t ArgumentCount = sizeof...(Args); |
| template <size_t I> |
| using Arg = ElemFromList<I, Args...>; |
| using ArgumentTuple = std::tuple<Args...>; |
| using ArgumentMatcherTuple = std::tuple<Matcher<Args>...>; |
| using MakeResultVoid = void(Args...); |
| using MakeResultIgnoredValue = IgnoredValue(Args...); |
| }; |
| |
| template <typename R, typename... Args> |
| constexpr size_t Function<R(Args...)>::ArgumentCount; |
| |
| #ifdef _MSC_VER |
| # pragma warning(pop) |
| #endif |
| |
| } // namespace internal |
| } // namespace testing |
| |
| #endif // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_INTERNAL_UTILS_H_ |
| #ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PP_H_ |
| #define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PP_H_ |
| |
| // Expands and concatenates the arguments. Constructed macros reevaluate. |
| #define GMOCK_PP_CAT(_1, _2) GMOCK_PP_INTERNAL_CAT(_1, _2) |
| |
| // Expands and stringifies the only argument. |
| #define GMOCK_PP_STRINGIZE(...) GMOCK_PP_INTERNAL_STRINGIZE(__VA_ARGS__) |
| |
| // Returns empty. Given a variadic number of arguments. |
| #define GMOCK_PP_EMPTY(...) |
| |
| // Returns a comma. Given a variadic number of arguments. |
| #define GMOCK_PP_COMMA(...) , |
| |
| // Returns the only argument. |
| #define GMOCK_PP_IDENTITY(_1) _1 |
| |
| // Evaluates to the number of arguments after expansion. |
| // |
| // #define PAIR x, y |
| // |
| // GMOCK_PP_NARG() => 1 |
| // GMOCK_PP_NARG(x) => 1 |
| // GMOCK_PP_NARG(x, y) => 2 |
| // GMOCK_PP_NARG(PAIR) => 2 |
| // |
| // Requires: the number of arguments after expansion is at most 15. |
| #define GMOCK_PP_NARG(...) \ |
| GMOCK_PP_INTERNAL_16TH( \ |
| (__VA_ARGS__, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)) |
| |
| // Returns 1 if the expansion of arguments has an unprotected comma. Otherwise |
| // returns 0. Requires no more than 15 unprotected commas. |
| #define GMOCK_PP_HAS_COMMA(...) \ |
| GMOCK_PP_INTERNAL_16TH( \ |
| (__VA_ARGS__, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0)) |
| |
| // Returns the first argument. |
| #define GMOCK_PP_HEAD(...) GMOCK_PP_INTERNAL_HEAD((__VA_ARGS__, unusedArg)) |
| |
| // Returns the tail. A variadic list of all arguments minus the first. Requires |
| // at least one argument. |
| #define GMOCK_PP_TAIL(...) GMOCK_PP_INTERNAL_TAIL((__VA_ARGS__)) |
| |
| // Calls CAT(_Macro, NARG(__VA_ARGS__))(__VA_ARGS__) |
| #define GMOCK_PP_VARIADIC_CALL(_Macro, ...) \ |
| GMOCK_PP_IDENTITY( \ |
| GMOCK_PP_CAT(_Macro, GMOCK_PP_NARG(__VA_ARGS__))(__VA_ARGS__)) |
| |
| // If the arguments after expansion have no tokens, evaluates to `1`. Otherwise |
| // evaluates to `0`. |
| // |
| // Requires: * the number of arguments after expansion is at most 15. |
| // * If the argument is a macro, it must be able to be called with one |
| // argument. |
| // |
| // Implementation details: |
| // |
| // There is one case when it generates a compile error: if the argument is macro |
| // that cannot be called with one argument. |
| // |
| // #define M(a, b) // it doesn't matter what it expands to |
| // |
| // // Expected: expands to `0`. |
| // // Actual: compile error. |
| // GMOCK_PP_IS_EMPTY(M) |
| // |
| // There are 4 cases tested: |
| // |
| // * __VA_ARGS__ possible expansion has no unparen'd commas. Expected 0. |
| // * __VA_ARGS__ possible expansion is not enclosed in parenthesis. Expected 0. |
| // * __VA_ARGS__ possible expansion is not a macro that ()-evaluates to a comma. |
| // Expected 0 |
| // * __VA_ARGS__ is empty, or has unparen'd commas, or is enclosed in |
| // parenthesis, or is a macro that ()-evaluates to comma. Expected 1. |
| // |
| // We trigger detection on '0001', i.e. on empty. |
| #define GMOCK_PP_IS_EMPTY(...) \ |
| GMOCK_PP_INTERNAL_IS_EMPTY(GMOCK_PP_HAS_COMMA(__VA_ARGS__), \ |
| GMOCK_PP_HAS_COMMA(GMOCK_PP_COMMA __VA_ARGS__), \ |
| GMOCK_PP_HAS_COMMA(__VA_ARGS__()), \ |
| GMOCK_PP_HAS_COMMA(GMOCK_PP_COMMA __VA_ARGS__())) |
| |
| // Evaluates to _Then if _Cond is 1 and _Else if _Cond is 0. |
| #define GMOCK_PP_IF(_Cond, _Then, _Else) \ |
| GMOCK_PP_CAT(GMOCK_PP_INTERNAL_IF_, _Cond)(_Then, _Else) |
| |
| // Similar to GMOCK_PP_IF but takes _Then and _Else in parentheses. |
| // |
| // GMOCK_PP_GENERIC_IF(1, (a, b, c), (d, e, f)) => a, b, c |
| // GMOCK_PP_GENERIC_IF(0, (a, b, c), (d, e, f)) => d, e, f |
| // |
| #define GMOCK_PP_GENERIC_IF(_Cond, _Then, _Else) \ |
| GMOCK_PP_REMOVE_PARENS(GMOCK_PP_IF(_Cond, _Then, _Else)) |
| |
| // Evaluates to the number of arguments after expansion. Identifies 'empty' as |
| // 0. |
| // |
| // #define PAIR x, y |
| // |
| // GMOCK_PP_NARG0() => 0 |
| // GMOCK_PP_NARG0(x) => 1 |
| // GMOCK_PP_NARG0(x, y) => 2 |
| // GMOCK_PP_NARG0(PAIR) => 2 |
| // |
| // Requires: * the number of arguments after expansion is at most 15. |
| // * If the argument is a macro, it must be able to be called with one |
| // argument. |
| #define GMOCK_PP_NARG0(...) \ |
| GMOCK_PP_IF(GMOCK_PP_IS_EMPTY(__VA_ARGS__), 0, GMOCK_PP_NARG(__VA_ARGS__)) |
| |
| // Expands to 1 if the first argument starts with something in parentheses, |
| // otherwise to 0. |
| #define GMOCK_PP_IS_BEGIN_PARENS(...) \ |
| GMOCK_PP_HEAD(GMOCK_PP_CAT(GMOCK_PP_INTERNAL_IBP_IS_VARIADIC_R_, \ |
| GMOCK_PP_INTERNAL_IBP_IS_VARIADIC_C __VA_ARGS__)) |
| |
| // Expands to 1 is there is only one argument and it is enclosed in parentheses. |
| #define GMOCK_PP_IS_ENCLOSED_PARENS(...) \ |
| GMOCK_PP_IF(GMOCK_PP_IS_BEGIN_PARENS(__VA_ARGS__), \ |
| GMOCK_PP_IS_EMPTY(GMOCK_PP_EMPTY __VA_ARGS__), 0) |
| |
| // Remove the parens, requires GMOCK_PP_IS_ENCLOSED_PARENS(args) => 1. |
| #define GMOCK_PP_REMOVE_PARENS(...) GMOCK_PP_INTERNAL_REMOVE_PARENS __VA_ARGS__ |
| |
| // Expands to _Macro(0, _Data, e1) _Macro(1, _Data, e2) ... _Macro(K -1, _Data, |
| // eK) as many of GMOCK_INTERNAL_NARG0 _Tuple. |
| // Requires: * |_Macro| can be called with 3 arguments. |
| // * |_Tuple| expansion has no more than 15 elements. |
| #define GMOCK_PP_FOR_EACH(_Macro, _Data, _Tuple) \ |
| GMOCK_PP_CAT(GMOCK_PP_INTERNAL_FOR_EACH_IMPL_, GMOCK_PP_NARG0 _Tuple) \ |
| (0, _Macro, _Data, _Tuple) |
| |
| // Expands to _Macro(0, _Data, ) _Macro(1, _Data, ) ... _Macro(K - 1, _Data, ) |
| // Empty if _K = 0. |
| // Requires: * |_Macro| can be called with 3 arguments. |
| // * |_K| literal between 0 and 15 |
| #define GMOCK_PP_REPEAT(_Macro, _Data, _N) \ |
| GMOCK_PP_CAT(GMOCK_PP_INTERNAL_FOR_EACH_IMPL_, _N) \ |
| (0, _Macro, _Data, GMOCK_PP_INTENRAL_EMPTY_TUPLE) |
| |
| // Increments the argument, requires the argument to be between 0 and 15. |
| #define GMOCK_PP_INC(_i) GMOCK_PP_CAT(GMOCK_PP_INTERNAL_INC_, _i) |
| |
| // Returns comma if _i != 0. Requires _i to be between 0 and 15. |
| #define GMOCK_PP_COMMA_IF(_i) GMOCK_PP_CAT(GMOCK_PP_INTERNAL_COMMA_IF_, _i) |
| |
| // Internal details follow. Do not use any of these symbols outside of this |
| // file or we will break your code. |
| #define GMOCK_PP_INTENRAL_EMPTY_TUPLE (, , , , , , , , , , , , , , , ) |
| #define GMOCK_PP_INTERNAL_CAT(_1, _2) _1##_2 |
| #define GMOCK_PP_INTERNAL_STRINGIZE(...) #__VA_ARGS__ |
| #define GMOCK_PP_INTERNAL_CAT_5(_1, _2, _3, _4, _5) _1##_2##_3##_4##_5 |
| #define GMOCK_PP_INTERNAL_IS_EMPTY(_1, _2, _3, _4) \ |
| GMOCK_PP_HAS_COMMA(GMOCK_PP_INTERNAL_CAT_5(GMOCK_PP_INTERNAL_IS_EMPTY_CASE_, \ |
| _1, _2, _3, _4)) |
| #define GMOCK_PP_INTERNAL_IS_EMPTY_CASE_0001 , |
| #define GMOCK_PP_INTERNAL_IF_1(_Then, _Else) _Then |
| #define GMOCK_PP_INTERNAL_IF_0(_Then, _Else) _Else |
| |
| // Because of MSVC treating a token with a comma in it as a single token when |
| // passed to another macro, we need to force it to evaluate it as multiple |
| // tokens. We do that by using a "IDENTITY(MACRO PARENTHESIZED_ARGS)" macro. We |
| // define one per possible macro that relies on this behavior. Note "_Args" must |
| // be parenthesized. |
| #define GMOCK_PP_INTERNAL_INTERNAL_16TH(_1, _2, _3, _4, _5, _6, _7, _8, _9, \ |
| _10, _11, _12, _13, _14, _15, _16, \ |
| ...) \ |
| _16 |
| #define GMOCK_PP_INTERNAL_16TH(_Args) \ |
| GMOCK_PP_IDENTITY(GMOCK_PP_INTERNAL_INTERNAL_16TH _Args) |
| #define GMOCK_PP_INTERNAL_INTERNAL_HEAD(_1, ...) _1 |
| #define GMOCK_PP_INTERNAL_HEAD(_Args) \ |
| GMOCK_PP_IDENTITY(GMOCK_PP_INTERNAL_INTERNAL_HEAD _Args) |
| #define GMOCK_PP_INTERNAL_INTERNAL_TAIL(_1, ...) __VA_ARGS__ |
| #define GMOCK_PP_INTERNAL_TAIL(_Args) \ |
| GMOCK_PP_IDENTITY(GMOCK_PP_INTERNAL_INTERNAL_TAIL _Args) |
| |
| #define GMOCK_PP_INTERNAL_IBP_IS_VARIADIC_C(...) 1 _ |
| #define GMOCK_PP_INTERNAL_IBP_IS_VARIADIC_R_1 1, |
| #define GMOCK_PP_INTERNAL_IBP_IS_VARIADIC_R_GMOCK_PP_INTERNAL_IBP_IS_VARIADIC_C \ |
| 0, |
| #define GMOCK_PP_INTERNAL_REMOVE_PARENS(...) __VA_ARGS__ |
| #define GMOCK_PP_INTERNAL_INC_0 1 |
| #define GMOCK_PP_INTERNAL_INC_1 2 |
| #define GMOCK_PP_INTERNAL_INC_2 3 |
| #define GMOCK_PP_INTERNAL_INC_3 4 |
| #define GMOCK_PP_INTERNAL_INC_4 5 |
| #define GMOCK_PP_INTERNAL_INC_5 6 |
| #define GMOCK_PP_INTERNAL_INC_6 7 |
| #define GMOCK_PP_INTERNAL_INC_7 8 |
| #define GMOCK_PP_INTERNAL_INC_8 9 |
| #define GMOCK_PP_INTERNAL_INC_9 10 |
| #define GMOCK_PP_INTERNAL_INC_10 11 |
| #define GMOCK_PP_INTERNAL_INC_11 12 |
| #define GMOCK_PP_INTERNAL_INC_12 13 |
| #define GMOCK_PP_INTERNAL_INC_13 14 |
| #define GMOCK_PP_INTERNAL_INC_14 15 |
| #define GMOCK_PP_INTERNAL_INC_15 16 |
| #define GMOCK_PP_INTERNAL_COMMA_IF_0 |
| #define GMOCK_PP_INTERNAL_COMMA_IF_1 , |
| #define GMOCK_PP_INTERNAL_COMMA_IF_2 , |
| #define GMOCK_PP_INTERNAL_COMMA_IF_3 , |
| #define GMOCK_PP_INTERNAL_COMMA_IF_4 , |
| #define GMOCK_PP_INTERNAL_COMMA_IF_5 , |
| #define GMOCK_PP_INTERNAL_COMMA_IF_6 , |
| #define GMOCK_PP_INTERNAL_COMMA_IF_7 , |
| #define GMOCK_PP_INTERNAL_COMMA_IF_8 , |
| #define GMOCK_PP_INTERNAL_COMMA_IF_9 , |
| #define GMOCK_PP_INTERNAL_COMMA_IF_10 , |
| #define GMOCK_PP_INTERNAL_COMMA_IF_11 , |
| #define GMOCK_PP_INTERNAL_COMMA_IF_12 , |
| #define GMOCK_PP_INTERNAL_COMMA_IF_13 , |
| #define GMOCK_PP_INTERNAL_COMMA_IF_14 , |
| #define GMOCK_PP_INTERNAL_COMMA_IF_15 , |
| #define GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, _element) \ |
| _Macro(_i, _Data, _element) |
| #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_0(_i, _Macro, _Data, _Tuple) |
| #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_1(_i, _Macro, _Data, _Tuple) \ |
| GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) |
| #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_2(_i, _Macro, _Data, _Tuple) \ |
| GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ |
| GMOCK_PP_INTERNAL_FOR_EACH_IMPL_1(GMOCK_PP_INC(_i), _Macro, _Data, \ |
| (GMOCK_PP_TAIL _Tuple)) |
| #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_3(_i, _Macro, _Data, _Tuple) \ |
| GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ |
| GMOCK_PP_INTERNAL_FOR_EACH_IMPL_2(GMOCK_PP_INC(_i), _Macro, _Data, \ |
| (GMOCK_PP_TAIL _Tuple)) |
| #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_4(_i, _Macro, _Data, _Tuple) \ |
| GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ |
| GMOCK_PP_INTERNAL_FOR_EACH_IMPL_3(GMOCK_PP_INC(_i), _Macro, _Data, \ |
| (GMOCK_PP_TAIL _Tuple)) |
| #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_5(_i, _Macro, _Data, _Tuple) \ |
| GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ |
| GMOCK_PP_INTERNAL_FOR_EACH_IMPL_4(GMOCK_PP_INC(_i), _Macro, _Data, \ |
| (GMOCK_PP_TAIL _Tuple)) |
| #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_6(_i, _Macro, _Data, _Tuple) \ |
| GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ |
| GMOCK_PP_INTERNAL_FOR_EACH_IMPL_5(GMOCK_PP_INC(_i), _Macro, _Data, \ |
| (GMOCK_PP_TAIL _Tuple)) |
| #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_7(_i, _Macro, _Data, _Tuple) \ |
| GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ |
| GMOCK_PP_INTERNAL_FOR_EACH_IMPL_6(GMOCK_PP_INC(_i), _Macro, _Data, \ |
| (GMOCK_PP_TAIL _Tuple)) |
| #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_8(_i, _Macro, _Data, _Tuple) \ |
| GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ |
| GMOCK_PP_INTERNAL_FOR_EACH_IMPL_7(GMOCK_PP_INC(_i), _Macro, _Data, \ |
| (GMOCK_PP_TAIL _Tuple)) |
| #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_9(_i, _Macro, _Data, _Tuple) \ |
| GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ |
| GMOCK_PP_INTERNAL_FOR_EACH_IMPL_8(GMOCK_PP_INC(_i), _Macro, _Data, \ |
| (GMOCK_PP_TAIL _Tuple)) |
| #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_10(_i, _Macro, _Data, _Tuple) \ |
| GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ |
| GMOCK_PP_INTERNAL_FOR_EACH_IMPL_9(GMOCK_PP_INC(_i), _Macro, _Data, \ |
| (GMOCK_PP_TAIL _Tuple)) |
| #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_11(_i, _Macro, _Data, _Tuple) \ |
| GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ |
| GMOCK_PP_INTERNAL_FOR_EACH_IMPL_10(GMOCK_PP_INC(_i), _Macro, _Data, \ |
| (GMOCK_PP_TAIL _Tuple)) |
| #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_12(_i, _Macro, _Data, _Tuple) \ |
| GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ |
| GMOCK_PP_INTERNAL_FOR_EACH_IMPL_11(GMOCK_PP_INC(_i), _Macro, _Data, \ |
| (GMOCK_PP_TAIL _Tuple)) |
| #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_13(_i, _Macro, _Data, _Tuple) \ |
| GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ |
| GMOCK_PP_INTERNAL_FOR_EACH_IMPL_12(GMOCK_PP_INC(_i), _Macro, _Data, \ |
| (GMOCK_PP_TAIL _Tuple)) |
| #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_14(_i, _Macro, _Data, _Tuple) \ |
| GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ |
| GMOCK_PP_INTERNAL_FOR_EACH_IMPL_13(GMOCK_PP_INC(_i), _Macro, _Data, \ |
| (GMOCK_PP_TAIL _Tuple)) |
| #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_15(_i, _Macro, _Data, _Tuple) \ |
| GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ |
| GMOCK_PP_INTERNAL_FOR_EACH_IMPL_14(GMOCK_PP_INC(_i), _Macro, _Data, \ |
| (GMOCK_PP_TAIL _Tuple)) |
| |
| #endif // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PP_H_ |
| |
| #ifdef _MSC_VER |
| # pragma warning(push) |
| # pragma warning(disable:4100) |
| #endif |
| |
| namespace testing { |
| |
| // To implement an action Foo, define: |
| // 1. a class FooAction that implements the ActionInterface interface, and |
| // 2. a factory function that creates an Action object from a |
| // const FooAction*. |
| // |
| // The two-level delegation design follows that of Matcher, providing |
| // consistency for extension developers. It also eases ownership |
| // management as Action objects can now be copied like plain values. |
| |
| namespace internal { |
| |
| // BuiltInDefaultValueGetter<T, true>::Get() returns a |
| // default-constructed T value. BuiltInDefaultValueGetter<T, |
| // false>::Get() crashes with an error. |
| // |
| // This primary template is used when kDefaultConstructible is true. |
| template <typename T, bool kDefaultConstructible> |
| struct BuiltInDefaultValueGetter { |
| static T Get() { return T(); } |
| }; |
| template <typename T> |
| struct BuiltInDefaultValueGetter<T, false> { |
| static T Get() { |
| Assert(false, __FILE__, __LINE__, |
| "Default action undefined for the function return type."); |
| return internal::Invalid<T>(); |
| // The above statement will never be reached, but is required in |
| // order for this function to compile. |
| } |
| }; |
| |
| // BuiltInDefaultValue<T>::Get() returns the "built-in" default value |
| // for type T, which is NULL when T is a raw pointer type, 0 when T is |
| // a numeric type, false when T is bool, or "" when T is string or |
| // std::string. In addition, in C++11 and above, it turns a |
| // default-constructed T value if T is default constructible. For any |
| // other type T, the built-in default T value is undefined, and the |
| // function will abort the process. |
| template <typename T> |
| class BuiltInDefaultValue { |
| public: |
| // This function returns true if and only if type T has a built-in default |
| // value. |
| static bool Exists() { |
| return ::std::is_default_constructible<T>::value; |
| } |
| |
| static T Get() { |
| return BuiltInDefaultValueGetter< |
| T, ::std::is_default_constructible<T>::value>::Get(); |
| } |
| }; |
| |
| // This partial specialization says that we use the same built-in |
| // default value for T and const T. |
| template <typename T> |
| class BuiltInDefaultValue<const T> { |
| public: |
| static bool Exists() { return BuiltInDefaultValue<T>::Exists(); } |
| static T Get() { return BuiltInDefaultValue<T>::Get(); } |
| }; |
| |
| // This partial specialization defines the default values for pointer |
| // types. |
| template <typename T> |
| class BuiltInDefaultValue<T*> { |
| public: |
| static bool Exists() { return true; } |
| static T* Get() { return nullptr; } |
| }; |
| |
| // The following specializations define the default values for |
| // specific types we care about. |
| #define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \ |
| template <> \ |
| class BuiltInDefaultValue<type> { \ |
| public: \ |
| static bool Exists() { return true; } \ |
| static type Get() { return value; } \ |
| } |
| |
| GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, ); // NOLINT |
| GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string, ""); |
| GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false); |
| GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0'); |
| GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0'); |
| GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0'); |
| |
| // There's no need for a default action for signed wchar_t, as that |
| // type is the same as wchar_t for gcc, and invalid for MSVC. |
| // |
| // There's also no need for a default action for unsigned wchar_t, as |
| // that type is the same as unsigned int for gcc, and invalid for |
| // MSVC. |
| #if GMOCK_WCHAR_T_IS_NATIVE_ |
| GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U); // NOLINT |
| #endif |
| |
| GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U); // NOLINT |
| GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0); // NOLINT |
| GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U); |
| GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0); |
| GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL); // NOLINT |
| GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L); // NOLINT |
| GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long long, 0); // NOLINT |
| GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long long, 0); // NOLINT |
| GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0); |
| GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0); |
| |
| #undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_ |
| |
| // Simple two-arg form of std::disjunction. |
| template <typename P, typename Q> |
| using disjunction = typename ::std::conditional<P::value, P, Q>::type; |
| |
| } // namespace internal |
| |
| // When an unexpected function call is encountered, Google Mock will |
| // let it return a default value if the user has specified one for its |
| // return type, or if the return type has a built-in default value; |
| // otherwise Google Mock won't know what value to return and will have |
| // to abort the process. |
| // |
| // The DefaultValue<T> class allows a user to specify the |
| // default value for a type T that is both copyable and publicly |
| // destructible (i.e. anything that can be used as a function return |
| // type). The usage is: |
| // |
| // // Sets the default value for type T to be foo. |
| // DefaultValue<T>::Set(foo); |
| template <typename T> |
| class DefaultValue { |
| public: |
| // Sets the default value for type T; requires T to be |
| // copy-constructable and have a public destructor. |
| static void Set(T x) { |
| delete producer_; |
| producer_ = new FixedValueProducer(x); |
| } |
| |
| // Provides a factory function to be called to generate the default value. |
| // This method can be used even if T is only move-constructible, but it is not |
| // limited to that case. |
| typedef T (*FactoryFunction)(); |
| static void SetFactory(FactoryFunction factory) { |
| delete producer_; |
| producer_ = new FactoryValueProducer(factory); |
| } |
| |
| // Unsets the default value for type T. |
| static void Clear() { |
| delete producer_; |
| producer_ = nullptr; |
| } |
| |
| // Returns true if and only if the user has set the default value for type T. |
| static bool IsSet() { return producer_ != nullptr; } |
| |
| // Returns true if T has a default return value set by the user or there |
| // exists a built-in default value. |
| static bool Exists() { |
| return IsSet() || internal::BuiltInDefaultValue<T>::Exists(); |
| } |
| |
| // Returns the default value for type T if the user has set one; |
| // otherwise returns the built-in default value. Requires that Exists() |
| // is true, which ensures that the return value is well-defined. |
| static T Get() { |
| return producer_ == nullptr ? internal::BuiltInDefaultValue<T>::Get() |
| : producer_->Produce(); |
| } |
| |
| private: |
| class ValueProducer { |
| public: |
| virtual ~ValueProducer() {} |
| virtual T Produce() = 0; |
| }; |
| |
| class FixedValueProducer : public ValueProducer { |
| public: |
| explicit FixedValueProducer(T value) : value_(value) {} |
| T Produce() override { return value_; } |
| |
| private: |
| const T value_; |
| GTEST_DISALLOW_COPY_AND_ASSIGN_(FixedValueProducer); |
| }; |
| |
| class FactoryValueProducer : public ValueProducer { |
| public: |
| explicit FactoryValueProducer(FactoryFunction factory) |
| : factory_(factory) {} |
| T Produce() override { return factory_(); } |
| |
| private: |
| const FactoryFunction factory_; |
| GTEST_DISALLOW_COPY_AND_ASSIGN_(FactoryValueProducer); |
| }; |
| |
| static ValueProducer* producer_; |
| }; |
| |
| // This partial specialization allows a user to set default values for |
| // reference types. |
| template <typename T> |
| class DefaultValue<T&> { |
| public: |
| // Sets the default value for type T&. |
| static void Set(T& x) { // NOLINT |
| address_ = &x; |
| } |
| |
| // Unsets the default value for type T&. |
| static void Clear() { address_ = nullptr; } |
| |
| // Returns true if and only if the user has set the default value for type T&. |
| static bool IsSet() { return address_ != nullptr; } |
| |
| // Returns true if T has a default return value set by the user or there |
| // exists a built-in default value. |
| static bool Exists() { |
| return IsSet() || internal::BuiltInDefaultValue<T&>::Exists(); |
| } |
| |
| // Returns the default value for type T& if the user has set one; |
| // otherwise returns the built-in default value if there is one; |
| // otherwise aborts the process. |
| static T& Get() { |
| return address_ == nullptr ? internal::BuiltInDefaultValue<T&>::Get() |
| : *address_; |
| } |
| |
| private: |
| static T* address_; |
| }; |
| |
| // This specialization allows DefaultValue<void>::Get() to |
| // compile. |
| template <> |
| class DefaultValue<void> { |
| public: |
| static bool Exists() { return true; } |
| static void Get() {} |
| }; |
| |
| // Points to the user-set default value for type T. |
| template <typename T> |
| typename DefaultValue<T>::ValueProducer* DefaultValue<T>::producer_ = nullptr; |
| |
| // Points to the user-set default value for type T&. |
| template <typename T> |
| T* DefaultValue<T&>::address_ = nullptr; |
| |
| // Implement this interface to define an action for function type F. |
| template <typename F> |
| class ActionInterface { |
| public: |
| typedef typename internal::Function<F>::Result Result; |
| typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; |
| |
| ActionInterface() {} |
| virtual ~ActionInterface() {} |
| |
| // Performs the action. This method is not const, as in general an |
| // action can have side effects and be stateful. For example, a |
| // get-the-next-element-from-the-collection action will need to |
| // remember the current element. |
| virtual Result Perform(const ArgumentTuple& args) = 0; |
| |
| private: |
| GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionInterface); |
| }; |
| |
| // An Action<F> is a copyable and IMMUTABLE (except by assignment) |
| // object that represents an action to be taken when a mock function |
| // of type F is called. The implementation of Action<T> is just a |
| // std::shared_ptr to const ActionInterface<T>. Don't inherit from Action! |
| // You can view an object implementing ActionInterface<F> as a |
| // concrete action (including its current state), and an Action<F> |
| // object as a handle to it. |
| template <typename F> |
| class Action { |
| // Adapter class to allow constructing Action from a legacy ActionInterface. |
| // New code should create Actions from functors instead. |
| struct ActionAdapter { |
| // Adapter must be copyable to satisfy std::function requirements. |
| ::std::shared_ptr<ActionInterface<F>> impl_; |
| |
| template <typename... Args> |
| typename internal::Function<F>::Result operator()(Args&&... args) { |
| return impl_->Perform( |
| ::std::forward_as_tuple(::std::forward<Args>(args)...)); |
| } |
| }; |
| |
| template <typename G> |
| using IsCompatibleFunctor = std::is_constructible<std::function<F>, G>; |
| |
| public: |
| typedef typename internal::Function<F>::Result Result; |
| typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; |
| |
| // Constructs a null Action. Needed for storing Action objects in |
| // STL containers. |
| Action() {} |
| |
| // Construct an Action from a specified callable. |
| // This cannot take std::function directly, because then Action would not be |
| // directly constructible from lambda (it would require two conversions). |
| template < |
| typename G, |
| typename = typename std::enable_if<internal::disjunction< |
| IsCompatibleFunctor<G>, std::is_constructible<std::function<Result()>, |
| G>>::value>::type> |
| Action(G&& fun) { // NOLINT |
| Init(::std::forward<G>(fun), IsCompatibleFunctor<G>()); |
| } |
| |
| // Constructs an Action from its implementation. |
| explicit Action(ActionInterface<F>* impl) |
| : fun_(ActionAdapter{::std::shared_ptr<ActionInterface<F>>(impl)}) {} |
| |
| // This constructor allows us to turn an Action<Func> object into an |
| // Action<F>, as long as F's arguments can be implicitly converted |
| // to Func's and Func's return type can be implicitly converted to F's. |
| template <typename Func> |
| explicit Action(const Action<Func>& action) : fun_(action.fun_) {} |
| |
| // Returns true if and only if this is the DoDefault() action. |
| bool IsDoDefault() const { return fun_ == nullptr; } |
| |
| // Performs the action. Note that this method is const even though |
| // the corresponding method in ActionInterface is not. The reason |
| // is that a const Action<F> means that it cannot be re-bound to |
| // another concrete action, not that the concrete action it binds to |
| // cannot change state. (Think of the difference between a const |
| // pointer and a pointer to const.) |
| Result Perform(ArgumentTuple args) const { |
| if (IsDoDefault()) { |
| internal::IllegalDoDefault(__FILE__, __LINE__); |
| } |
| return internal::Apply(fun_, ::std::move(args)); |
| } |
| |
| private: |
| template <typename G> |
| friend class Action; |
| |
| template <typename G> |
| void Init(G&& g, ::std::true_type) { |
| fun_ = ::std::forward<G>(g); |
| } |
| |
| template <typename G> |
| void Init(G&& g, ::std::false_type) { |
| fun_ = IgnoreArgs<typename ::std::decay<G>::type>{::std::forward<G>(g)}; |
| } |
| |
| template <typename FunctionImpl> |
| struct IgnoreArgs { |
| template <typename... Args> |
| Result operator()(const Args&...) const { |
| return function_impl(); |
| } |
| |
| FunctionImpl function_impl; |
| }; |
| |
| // fun_ is an empty function if and only if this is the DoDefault() action. |
| ::std::function<F> fun_; |
| }; |
| |
| // The PolymorphicAction class template makes it easy to implement a |
| // polymorphic action (i.e. an action that can be used in mock |
| // functions of than one type, e.g. Return()). |
| // |
| // To define a polymorphic action, a user first provides a COPYABLE |
| // implementation class that has a Perform() method template: |
| // |
| // class FooAction { |
| // public: |
| // template <typename Result, typename ArgumentTuple> |
| // Result Perform(const ArgumentTuple& args) const { |
| // // Processes the arguments and returns a result, using |
| // // std::get<N>(args) to get the N-th (0-based) argument in the tuple. |
| // } |
| // ... |
| // }; |
| // |
| // Then the user creates the polymorphic action using |
| // MakePolymorphicAction(object) where object has type FooAction. See |
| // the definition of Return(void) and SetArgumentPointee<N>(value) for |
| // complete examples. |
| template <typename Impl> |
| class PolymorphicAction { |
| public: |
| explicit PolymorphicAction(const Impl& impl) : impl_(impl) {} |
| |
| template <typename F> |
| operator Action<F>() const { |
| return Action<F>(new MonomorphicImpl<F>(impl_)); |
| } |
| |
| private: |
| template <typename F> |
| class MonomorphicImpl : public ActionInterface<F> { |
| public: |
| typedef typename internal::Function<F>::Result Result; |
| typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; |
| |
| explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {} |
| |
| Result Perform(const ArgumentTuple& args) override { |
| return impl_.template Perform<Result>(args); |
| } |
| |
| private: |
| Impl impl_; |
| }; |
| |
| Impl impl_; |
| }; |
| |
| // Creates an Action from its implementation and returns it. The |
| // created Action object owns the implementation. |
| template <typename F> |
| Action<F> MakeAction(ActionInterface<F>* impl) { |
| return Action<F>(impl); |
| } |
| |
| // Creates a polymorphic action from its implementation. This is |
| // easier to use than the PolymorphicAction<Impl> constructor as it |
| // doesn't require you to explicitly write the template argument, e.g. |
| // |
| // MakePolymorphicAction(foo); |
| // vs |
| // PolymorphicAction<TypeOfFoo>(foo); |
| template <typename Impl> |
| inline PolymorphicAction<Impl> MakePolymorphicAction(const Impl& impl) { |
| return PolymorphicAction<Impl>(impl); |
| } |
| |
| namespace internal { |
| |
| // Helper struct to specialize ReturnAction to execute a move instead of a copy |
| // on return. Useful for move-only types, but could be used on any type. |
| template <typename T> |
| struct ByMoveWrapper { |
| explicit ByMoveWrapper(T value) : payload(std::move(value)) {} |
| T payload; |
| }; |
| |
| // Implements the polymorphic Return(x) action, which can be used in |
| // any function that returns the type of x, regardless of the argument |
| // types. |
| // |
| // Note: The value passed into Return must be converted into |
| // Function<F>::Result when this action is cast to Action<F> rather than |
| // when that action is performed. This is important in scenarios like |
| // |
| // MOCK_METHOD1(Method, T(U)); |
| // ... |
| // { |
| // Foo foo; |
| // X x(&foo); |
| // EXPECT_CALL(mock, Method(_)).WillOnce(Return(x)); |
| // } |
| // |
| // In the example above the variable x holds reference to foo which leaves |
| // scope and gets destroyed. If copying X just copies a reference to foo, |
| // that copy will be left with a hanging reference. If conversion to T |
| // makes a copy of foo, the above code is safe. To support that scenario, we |
| // need to make sure that the type conversion happens inside the EXPECT_CALL |
| // statement, and conversion of the result of Return to Action<T(U)> is a |
| // good place for that. |
| // |
| // The real life example of the above scenario happens when an invocation |
| // of gtl::Container() is passed into Return. |
| // |
| template <typename R> |
| class ReturnAction { |
| public: |
| // Constructs a ReturnAction object from the value to be returned. |
| // 'value' is passed by value instead of by const reference in order |
| // to allow Return("string literal") to compile. |
| explicit ReturnAction(R value) : value_(new R(std::move(value))) {} |
| |
| // This template type conversion operator allows Return(x) to be |
| // used in ANY function that returns x's type. |
| template <typename F> |
| operator Action<F>() const { // NOLINT |
| // Assert statement belongs here because this is the best place to verify |
| // conditions on F. It produces the clearest error messages |
| // in most compilers. |
| // Impl really belongs in this scope as a local class but can't |
| // because MSVC produces duplicate symbols in different translation units |
| // in this case. Until MS fixes that bug we put Impl into the class scope |
| // and put the typedef both here (for use in assert statement) and |
| // in the Impl class. But both definitions must be the same. |
| typedef typename Function<F>::Result Result; |
| GTEST_COMPILE_ASSERT_( |
| !std::is_reference<Result>::value, |
| use_ReturnRef_instead_of_Return_to_return_a_reference); |
| static_assert(!std::is_void<Result>::value, |
| "Can't use Return() on an action expected to return `void`."); |
| return Action<F>(new Impl<R, F>(value_)); |
| } |
| |
| private: |
| // Implements the Return(x) action for a particular function type F. |
| template <typename R_, typename F> |
| class Impl : public ActionInterface<F> { |
| public: |
| typedef typename Function<F>::Result Result; |
| typedef typename Function<F>::ArgumentTuple ArgumentTuple; |
| |
| // The implicit cast is necessary when Result has more than one |
| // single-argument constructor (e.g. Result is std::vector<int>) and R |
| // has a type conversion operator template. In that case, value_(value) |
| // won't compile as the compiler doesn't known which constructor of |
| // Result to call. ImplicitCast_ forces the compiler to convert R to |
| // Result without considering explicit constructors, thus resolving the |
| // ambiguity. value_ is then initialized using its copy constructor. |
| explicit Impl(const std::shared_ptr<R>& value) |
| : value_before_cast_(*value), |
| value_(ImplicitCast_<Result>(value_before_cast_)) {} |
| |
| Result Perform(const ArgumentTuple&) override { return value_; } |
| |
| private: |
| GTEST_COMPILE_ASSERT_(!std::is_reference<Result>::value, |
| Result_cannot_be_a_reference_type); |
| // We save the value before casting just in case it is being cast to a |
| // wrapper type. |
| R value_before_cast_; |
| Result value_; |
| |
| GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl); |
| }; |
| |
| // Partially specialize for ByMoveWrapper. This version of ReturnAction will |
| // move its contents instead. |
| template <typename R_, typename F> |
| class Impl<ByMoveWrapper<R_>, F> : public ActionInterface<F> { |
| public: |
| typedef typename Function<F>::Result Result; |
| typedef typename Function<F>::ArgumentTuple ArgumentTuple; |
| |
| explicit Impl(const std::shared_ptr<R>& wrapper) |
| : performed_(false), wrapper_(wrapper) {} |
| |
| Result Perform(const ArgumentTuple&) override { |
| GTEST_CHECK_(!performed_) |
| << "A ByMove() action should only be performed once."; |
| performed_ = true; |
| return std::move(wrapper_->payload); |
| } |
| |
| private: |
| bool performed_; |
| const std::shared_ptr<R> wrapper_; |
| }; |
| |
| const std::shared_ptr<R> value_; |
| }; |
| |
| // Implements the ReturnNull() action. |
| class ReturnNullAction { |
| public: |
| // Allows ReturnNull() to be used in any pointer-returning function. In C++11 |
| // this is enforced by returning nullptr, and in non-C++11 by asserting a |
| // pointer type on compile time. |
| template <typename Result, typename ArgumentTuple> |
| static Result Perform(const ArgumentTuple&) { |
| return nullptr; |
| } |
| }; |
| |
| // Implements the Return() action. |
| class ReturnVoidAction { |
| public: |
| // Allows Return() to be used in any void-returning function. |
| template <typename Result, typename ArgumentTuple> |
| static void Perform(const ArgumentTuple&) { |
| static_assert(std::is_void<Result>::value, "Result should be void."); |
| } |
| }; |
| |
| // Implements the polymorphic ReturnRef(x) action, which can be used |
| // in any function that returns a reference to the type of x, |
| // regardless of the argument types. |
| template <typename T> |
| class ReturnRefAction { |
| public: |
| // Constructs a ReturnRefAction object from the reference to be returned. |
| explicit ReturnRefAction(T& ref) : ref_(ref) {} // NOLINT |
| |
| // This template type conversion operator allows ReturnRef(x) to be |
| // used in ANY function that returns a reference to x's type. |
| template <typename F> |
| operator Action<F>() const { |
| typedef typename Function<F>::Result Result; |
| // Asserts that the function return type is a reference. This |
| // catches the user error of using ReturnRef(x) when Return(x) |
| // should be used, and generates some helpful error message. |
| GTEST_COMPILE_ASSERT_(std::is_reference<Result>::value, |
| use_Return_instead_of_ReturnRef_to_return_a_value); |
| return Action<F>(new Impl<F>(ref_)); |
| } |
| |
| private: |
| // Implements the ReturnRef(x) action for a particular function type F. |
| template <typename F> |
| class Impl : public ActionInterface<F> { |
| public: |
| typedef typename Function<F>::Result Result; |
| typedef typename Function<F>::ArgumentTuple ArgumentTuple; |
| |
| explicit Impl(T& ref) : ref_(ref) {} // NOLINT |
| |
| Result Perform(const ArgumentTuple&) override { return ref_; } |
| |
| private: |
| T& ref_; |
| }; |
| |
| T& ref_; |
| }; |
| |
| // Implements the polymorphic ReturnRefOfCopy(x) action, which can be |
| // used in any function that returns a reference to the type of x, |
| // regardless of the argument types. |
| template <typename T> |
| class ReturnRefOfCopyAction { |
| public: |
| // Constructs a ReturnRefOfCopyAction object from the reference to |
| // be returned. |
| explicit ReturnRefOfCopyAction(const T& value) : value_(value) {} // NOLINT |
| |
| // This template type conversion operator allows ReturnRefOfCopy(x) to be |
| // used in ANY function that returns a reference to x's type. |
| template <typename F> |
| operator Action<F>() const { |
| typedef typename Function<F>::Result Result; |
| // Asserts that the function return type is a reference. This |
| // catches the user error of using ReturnRefOfCopy(x) when Return(x) |
| // should be used, and generates some helpful error message. |
| GTEST_COMPILE_ASSERT_( |
| std::is_reference<Result>::value, |
| use_Return_instead_of_ReturnRefOfCopy_to_return_a_value); |
| return Action<F>(new Impl<F>(value_)); |
| } |
| |
| private: |
| // Implements the ReturnRefOfCopy(x) action for a particular function type F. |
| template <typename F> |
| class Impl : public ActionInterface<F> { |
| public: |
| typedef typename Function<F>::Result Result; |
| typedef typename Function<F>::ArgumentTuple ArgumentTuple; |
| |
| explicit Impl(const T& value) : value_(value) {} // NOLINT |
| |
| Result Perform(const ArgumentTuple&) override { return value_; } |
| |
| private: |
| T value_; |
| }; |
| |
| const T value_; |
| }; |
| |
| // Implements the polymorphic ReturnRoundRobin(v) action, which can be |
| // used in any function that returns the element_type of v. |
| template <typename T> |
| class ReturnRoundRobinAction { |
| public: |
| explicit ReturnRoundRobinAction(std::vector<T> values) { |
| GTEST_CHECK_(!values.empty()) |
| << "ReturnRoundRobin requires at least one element."; |
| state_->values = std::move(values); |
| } |
| |
| template <typename... Args> |
| T operator()(Args&&...) const { |
| return state_->Next(); |
| } |
| |
| private: |
| struct State { |
| T Next() { |
| T ret_val = values[i++]; |
| if (i == values.size()) i = 0; |
| return ret_val; |
| } |
| |
| std::vector<T> values; |
| size_t i = 0; |
| }; |
| std::shared_ptr<State> state_ = std::make_shared<State>(); |
| }; |
| |
| // Implements the polymorphic DoDefault() action. |
| class DoDefaultAction { |
| public: |
| // This template type conversion operator allows DoDefault() to be |
| // used in any function. |
| template <typename F> |
| operator Action<F>() const { return Action<F>(); } // NOLINT |
| }; |
| |
| // Implements the Assign action to set a given pointer referent to a |
| // particular value. |
| template <typename T1, typename T2> |
| class AssignAction { |
| public: |
| AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {} |
| |
| template <typename Result, typename ArgumentTuple> |
| void Perform(const ArgumentTuple& /* args */) const { |
| *ptr_ = value_; |
| } |
| |
| private: |
| T1* const ptr_; |
| const T2 value_; |
| }; |
| |
| #if !GTEST_OS_WINDOWS_MOBILE |
| |
| // Implements the SetErrnoAndReturn action to simulate return from |
| // various system calls and libc functions. |
| template <typename T> |
| class SetErrnoAndReturnAction { |
| public: |
| SetErrnoAndReturnAction(int errno_value, T result) |
| : errno_(errno_value), |
| result_(result) {} |
| template <typename Result, typename ArgumentTuple> |
| Result Perform(const ArgumentTuple& /* args */) const { |
| errno = errno_; |
| return result_; |
| } |
| |
| private: |
| const int errno_; |
| const T result_; |
| }; |
| |
| #endif // !GTEST_OS_WINDOWS_MOBILE |
| |
| // Implements the SetArgumentPointee<N>(x) action for any function |
| // whose N-th argument (0-based) is a pointer to x's type. |
| template <size_t N, typename A, typename = void> |
| struct SetArgumentPointeeAction { |
| A value; |
| |
| template <typename... Args> |
| void operator()(const Args&... args) const { |
| *::std::get<N>(std::tie(args...)) = value; |
| } |
| }; |
| |
| // Implements the Invoke(object_ptr, &Class::Method) action. |
| template <class Class, typename MethodPtr> |
| struct InvokeMethodAction { |
| Class* const obj_ptr; |
| const MethodPtr method_ptr; |
| |
| template <typename... Args> |
| auto operator()(Args&&... args) const |
| -> decltype((obj_ptr->*method_ptr)(std::forward<Args>(args)...)) { |
| return (obj_ptr->*method_ptr)(std::forward<Args>(args)...); |
| } |
| }; |
| |
| // Implements the InvokeWithoutArgs(f) action. The template argument |
| // FunctionImpl is the implementation type of f, which can be either a |
| // function pointer or a functor. InvokeWithoutArgs(f) can be used as an |
| // Action<F> as long as f's type is compatible with F. |
| template <typename FunctionImpl> |
| struct InvokeWithoutArgsAction { |
| FunctionImpl function_impl; |
| |
| // Allows InvokeWithoutArgs(f) to be used as any action whose type is |
| // compatible with f. |
| template <typename... Args> |
| auto operator()(const Args&...) -> decltype(function_impl()) { |
| return function_impl(); |
| } |
| }; |
| |
| // Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action. |
| template <class Class, typename MethodPtr> |
| struct InvokeMethodWithoutArgsAction { |
| Class* const obj_ptr; |
| const MethodPtr method_ptr; |
| |
| using ReturnType = |
| decltype((std::declval<Class*>()->*std::declval<MethodPtr>())()); |
| |
| template <typename... Args> |
| ReturnType operator()(const Args&...) const { |
| return (obj_ptr->*method_ptr)(); |
| } |
| }; |
| |
| // Implements the IgnoreResult(action) action. |
| template <typename A> |
| class IgnoreResultAction { |
| public: |
| explicit IgnoreResultAction(const A& action) : action_(action) {} |
| |
| template <typename F> |
| operator Action<F>() const { |
| // Assert statement belongs here because this is the best place to verify |
| // conditions on F. It produces the clearest error messages |
| // in most compilers. |
| // Impl really belongs in this scope as a local class but can't |
| // because MSVC produces duplicate symbols in different translation units |
| // in this case. Until MS fixes that bug we put Impl into the class scope |
| // and put the typedef both here (for use in assert statement) and |
| // in the Impl class. But both definitions must be the same. |
| typedef typename internal::Function<F>::Result Result; |
| |
| // Asserts at compile time that F returns void. |
| static_assert(std::is_void<Result>::value, "Result type should be void."); |
| |
| return Action<F>(new Impl<F>(action_)); |
| } |
| |
| private: |
| template <typename F> |
| class Impl : public ActionInterface<F> { |
| public: |
| typedef typename internal::Function<F>::Result Result; |
| typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; |
| |
| explicit Impl(const A& action) : action_(action) {} |
| |
| void Perform(const ArgumentTuple& args) override { |
| // Performs the action and ignores its result. |
| action_.Perform(args); |
| } |
| |
| private: |
| // Type OriginalFunction is the same as F except that its return |
| // type is IgnoredValue. |
| typedef typename internal::Function<F>::MakeResultIgnoredValue |
| OriginalFunction; |
| |
| const Action<OriginalFunction> action_; |
| }; |
| |
| const A action_; |
| }; |
| |
| template <typename InnerAction, size_t... I> |
| struct WithArgsAction { |
| InnerAction action; |
| |
| // The inner action could be anything convertible to Action<X>. |
| // We use the conversion operator to detect the signature of the inner Action. |
| template <typename R, typename... Args> |
| operator Action<R(Args...)>() const { // NOLINT |
| using TupleType = std::tuple<Args...>; |
| Action<R(typename std::tuple_element<I, TupleType>::type...)> |
| converted(action); |
| |
| return [converted](Args... args) -> R { |
| return converted.Perform(std::forward_as_tuple( |
| std::get<I>(std::forward_as_tuple(std::forward<Args>(args)...))...)); |
| }; |
| } |
| }; |
| |
| template <typename... Actions> |
| struct DoAllAction { |
| private: |
| template <typename T> |
| using NonFinalType = |
| typename std::conditional<std::is_scalar<T>::value, T, const T&>::type; |
| |
| template <typename ActionT, size_t... I> |
| std::vector<ActionT> Convert(IndexSequence<I...>) const { |
| return {ActionT(std::get<I>(actions))...}; |
| } |
| |
| public: |
| std::tuple<Actions...> actions; |
| |
| template <typename R, typename... Args> |
| operator Action<R(Args...)>() const { // NOLINT |
| struct Op { |
| std::vector<Action<void(NonFinalType<Args>...)>> converted; |
| Action<R(Args...)> last; |
| R operator()(Args... args) const { |
| auto tuple_args = std::forward_as_tuple(std::forward<Args>(args)...); |
| for (auto& a : converted) { |
| a.Perform(tuple_args); |
| } |
| return last.Perform(std::move(tuple_args)); |
| } |
| }; |
| return Op{Convert<Action<void(NonFinalType<Args>...)>>( |
| MakeIndexSequence<sizeof...(Actions) - 1>()), |
| std::get<sizeof...(Actions) - 1>(actions)}; |
| } |
| }; |
| |
| template <typename T, typename... Params> |
| struct ReturnNewAction { |
| T* operator()() const { |
| return internal::Apply( |
| [](const Params&... unpacked_params) { |
| return new T(unpacked_params...); |
| }, |
| params); |
| } |
| std::tuple<Params...> params; |
| }; |
| |
| template <size_t k> |
| struct ReturnArgAction { |
| template <typename... Args> |
| auto operator()(const Args&... args) const -> |
| typename std::tuple_element<k, std::tuple<Args...>>::type { |
| return std::get<k>(std::tie(args...)); |
| } |
| }; |
| |
| template <size_t k, typename Ptr> |
| struct SaveArgAction { |
| Ptr pointer; |
| |
| template <typename... Args> |
| void operator()(const Args&... args) const { |
| *pointer = std::get<k>(std::tie(args...)); |
| } |
| }; |
| |
| template <size_t k, typename Ptr> |
| struct SaveArgPointeeAction { |
| Ptr pointer; |
| |
| template <typename... Args> |
| void operator()(const Args&... args) const { |
| *pointer = *std::get<k>(std::tie(args...)); |
| } |
| }; |
| |
| template <size_t k, typename T> |
| struct SetArgRefereeAction { |
| T value; |
| |
| template <typename... Args> |
| void operator()(Args&&... args) const { |
| using argk_type = |
| typename ::std::tuple_element<k, std::tuple<Args...>>::type; |
| static_assert(std::is_lvalue_reference<argk_type>::value, |
| "Argument must be a reference type."); |
| std::get<k>(std::tie(args...)) = value; |
| } |
| }; |
| |
| template <size_t k, typename I1, typename I2> |
| struct SetArrayArgumentAction { |
| I1 first; |
| I2 last; |
| |
| template <typename... Args> |
| void operator()(const Args&... args) const { |
| auto value = std::get<k>(std::tie(args...)); |
| for (auto it = first; it != last; ++it, (void)++value) { |
| *value = *it; |
| } |
| } |
| }; |
| |
| template <size_t k> |
| struct DeleteArgAction { |
| template <typename... Args> |
| void operator()(const Args&... args) const { |
| delete std::get<k>(std::tie(args...)); |
| } |
| }; |
| |
| template <typename Ptr> |
| struct ReturnPointeeAction { |
| Ptr pointer; |
| template <typename... Args> |
| auto operator()(const Args&...) const -> decltype(*pointer) { |
| return *pointer; |
| } |
| }; |
| |
| #if GTEST_HAS_EXCEPTIONS |
| template <typename T> |
| struct ThrowAction { |
| T exception; |
| // We use a conversion operator to adapt to any return type. |
| template <typename R, typename... Args> |
| operator Action<R(Args...)>() const { // NOLINT |
| T copy = exception; |
| return [copy](Args...) -> R { throw copy; }; |
| } |
| }; |
| #endif // GTEST_HAS_EXCEPTIONS |
| |
| } // namespace internal |
| |
| // An Unused object can be implicitly constructed from ANY value. |
| // This is handy when defining actions that ignore some or all of the |
| // mock function arguments. For example, given |
| // |
| // MOCK_METHOD3(Foo, double(const string& label, double x, double y)); |
| // MOCK_METHOD3(Bar, double(int index, double x, double y)); |
| // |
| // instead of |
| // |
| // double DistanceToOriginWithLabel(const string& label, double x, double y) { |
| // return sqrt(x*x + y*y); |
| // } |
| // double DistanceToOriginWithIndex(int index, double x, double y) { |
| // return sqrt(x*x + y*y); |
| // } |
| // ... |
| // EXPECT_CALL(mock, Foo("abc", _, _)) |
| // .WillOnce(Invoke(DistanceToOriginWithLabel)); |
| // EXPECT_CALL(mock, Bar(5, _, _)) |
| // .WillOnce(Invoke(DistanceToOriginWithIndex)); |
| // |
| // you could write |
| // |
| // // We can declare any uninteresting argument as Unused. |
| // double DistanceToOrigin(Unused, double x, double y) { |
| // return sqrt(x*x + y*y); |
| // } |
| // ... |
| // EXPECT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin)); |
| // EXPECT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin)); |
| typedef internal::IgnoredValue Unused; |
| |
| // Creates an action that does actions a1, a2, ..., sequentially in |
| // each invocation. All but the last action will have a readonly view of the |
| // arguments. |
| template <typename... Action> |
| internal::DoAllAction<typename std::decay<Action>::type...> DoAll( |
| Action&&... action) { |
| return {std::forward_as_tuple(std::forward<Action>(action)...)}; |
| } |
| |
| // WithArg<k>(an_action) creates an action that passes the k-th |
| // (0-based) argument of the mock function to an_action and performs |
| // it. It adapts an action accepting one argument to one that accepts |
| // multiple arguments. For convenience, we also provide |
| // WithArgs<k>(an_action) (defined below) as a synonym. |
| template <size_t k, typename InnerAction> |
| internal::WithArgsAction<typename std::decay<InnerAction>::type, k> |
| WithArg(InnerAction&& action) { |
| return {std::forward<InnerAction>(action)}; |
| } |
| |
| // WithArgs<N1, N2, ..., Nk>(an_action) creates an action that passes |
| // the selected arguments of the mock function to an_action and |
| // performs it. It serves as an adaptor between actions with |
| // different argument lists. |
| template <size_t k, size_t... ks, typename InnerAction> |
| internal::WithArgsAction<typename std::decay<InnerAction>::type, k, ks...> |
| WithArgs(InnerAction&& action) { |
| return {std::forward<InnerAction>(action)}; |
| } |
| |
| // WithoutArgs(inner_action) can be used in a mock function with a |
| // non-empty argument list to perform inner_action, which takes no |
| // argument. In other words, it adapts an action accepting no |
| // argument to one that accepts (and ignores) arguments. |
| template <typename InnerAction> |
| internal::WithArgsAction<typename std::decay<InnerAction>::type> |
| WithoutArgs(InnerAction&& action) { |
| return {std::forward<InnerAction>(action)}; |
| } |
| |
| // Creates an action that returns 'value'. 'value' is passed by value |
| // instead of const reference - otherwise Return("string literal") |
| // will trigger a compiler error about using array as initializer. |
| template <typename R> |
| internal::ReturnAction<R> Return(R value) { |
| return internal::ReturnAction<R>(std::move(value)); |
| } |
| |
| // Creates an action that returns NULL. |
| inline PolymorphicAction<internal::ReturnNullAction> ReturnNull() { |
| return MakePolymorphicAction(internal::ReturnNullAction()); |
| } |
| |
| // Creates an action that returns from a void function. |
| inline PolymorphicAction<internal::ReturnVoidAction> Return() { |
| return MakePolymorphicAction(internal::ReturnVoidAction()); |
| } |
| |
| // Creates an action that returns the reference to a variable. |
| template <typename R> |
| inline internal::ReturnRefAction<R> ReturnRef(R& x) { // NOLINT |
| return internal::ReturnRefAction<R>(x); |
| } |
| |
| // Prevent using ReturnRef on reference to temporary. |
| template <typename R, R* = nullptr> |
| internal::ReturnRefAction<R> ReturnRef(R&&) = delete; |
| |
| // Creates an action that returns the reference to a copy of the |
| // argument. The copy is created when the action is constructed and |
| // lives as long as the action. |
| template <typename R> |
| inline internal::ReturnRefOfCopyAction<R> ReturnRefOfCopy(const R& x) { |
| return internal::ReturnRefOfCopyAction<R>(x); |
| } |
| |
| // Modifies the parent action (a Return() action) to perform a move of the |
| // argument instead of a copy. |
| // Return(ByMove()) actions can only be executed once and will assert this |
| // invariant. |
| template <typename R> |
| internal::ByMoveWrapper<R> ByMove(R x) { |
| return internal::ByMoveWrapper<R>(std::move(x)); |
| } |
| |
| // Creates an action that returns an element of `vals`. Calling this action will |
| // repeatedly return the next value from `vals` until it reaches the end and |
| // will restart from the beginning. |
| template <typename T> |
| internal::ReturnRoundRobinAction<T> ReturnRoundRobin(std::vector<T> vals) { |
| return internal::ReturnRoundRobinAction<T>(std::move(vals)); |
| } |
| |
| // Creates an action that returns an element of `vals`. Calling this action will |
| // repeatedly return the next value from `vals` until it reaches the end and |
| // will restart from the beginning. |
| template <typename T> |
| internal::ReturnRoundRobinAction<T> ReturnRoundRobin( |
| std::initializer_list<T> vals) { |
| return internal::ReturnRoundRobinAction<T>(std::vector<T>(vals)); |
| } |
| |
| // Creates an action that does the default action for the give mock function. |
| inline internal::DoDefaultAction DoDefault() { |
| return internal::DoDefaultAction(); |
| } |
| |
| // Creates an action that sets the variable pointed by the N-th |
| // (0-based) function argument to 'value'. |
| template <size_t N, typename T> |
| internal::SetArgumentPointeeAction<N, T> SetArgPointee(T value) { |
| return {std::move(value)}; |
| } |
| |
| // The following version is DEPRECATED. |
| template <size_t N, typename T> |
| internal::SetArgumentPointeeAction<N, T> SetArgumentPointee(T value) { |
| return {std::move(value)}; |
| } |
| |
| // Creates an action that sets a pointer referent to a given value. |
| template <typename T1, typename T2> |
| PolymorphicAction<internal::AssignAction<T1, T2> > Assign(T1* ptr, T2 val) { |
| return MakePolymorphicAction(internal::AssignAction<T1, T2>(ptr, val)); |
| } |
| |
| #if !GTEST_OS_WINDOWS_MOBILE |
| |
| // Creates an action that sets errno and returns the appropriate error. |
| template <typename T> |
| PolymorphicAction<internal::SetErrnoAndReturnAction<T> > |
| SetErrnoAndReturn(int errval, T result) { |
| return MakePolymorphicAction( |
| internal::SetErrnoAndReturnAction<T>(errval, result)); |
| } |
| |
| #endif // !GTEST_OS_WINDOWS_MOBILE |
| |
| // Various overloads for Invoke(). |
| |
| // Legacy function. |
| // Actions can now be implicitly constructed from callables. No need to create |
| // wrapper objects. |
| // This function exists for backwards compatibility. |
| template <typename FunctionImpl> |
| typename std::decay<FunctionImpl>::type Invoke(FunctionImpl&& function_impl) { |
| return std::forward<FunctionImpl>(function_impl); |
| } |
| |
| // Creates an action that invokes the given method on the given object |
| // with the mock function's arguments. |
| template <class Class, typename MethodPtr> |
| internal::InvokeMethodAction<Class, MethodPtr> Invoke(Class* obj_ptr, |
| MethodPtr method_ptr) { |
| return {obj_ptr, method_ptr}; |
| } |
| |
| // Creates an action that invokes 'function_impl' with no argument. |
| template <typename FunctionImpl> |
| internal::InvokeWithoutArgsAction<typename std::decay<FunctionImpl>::type> |
| InvokeWithoutArgs(FunctionImpl function_impl) { |
| return {std::move(function_impl)}; |
| } |
| |
| // Creates an action that invokes the given method on the given object |
| // with no argument. |
| template <class Class, typename MethodPtr> |
| internal::InvokeMethodWithoutArgsAction<Class, MethodPtr> InvokeWithoutArgs( |
| Class* obj_ptr, MethodPtr method_ptr) { |
| return {obj_ptr, method_ptr}; |
| } |
| |
| // Creates an action that performs an_action and throws away its |
| // result. In other words, it changes the return type of an_action to |
| // void. an_action MUST NOT return void, or the code won't compile. |
| template <typename A> |
| inline internal::IgnoreResultAction<A> IgnoreResult(const A& an_action) { |
| return internal::IgnoreResultAction<A>(an_action); |
| } |
| |
| // Creates a reference wrapper for the given L-value. If necessary, |
| // you can explicitly specify the type of the reference. For example, |
| // suppose 'derived' is an object of type Derived, ByRef(derived) |
| // would wrap a Derived&. If you want to wrap a const Base& instead, |
| // where Base is a base class of Derived, just write: |
| // |
| // ByRef<const Base>(derived) |
| // |
| // N.B. ByRef is redundant with std::ref, std::cref and std::reference_wrapper. |
| // However, it may still be used for consistency with ByMove(). |
| template <typename T> |
| inline ::std::reference_wrapper<T> ByRef(T& l_value) { // NOLINT |
| return ::std::reference_wrapper<T>(l_value); |
| } |
| |
| // The ReturnNew<T>(a1, a2, ..., a_k) action returns a pointer to a new |
| // instance of type T, constructed on the heap with constructor arguments |
| // a1, a2, ..., and a_k. The caller assumes ownership of the returned value. |
| template <typename T, typename... Params> |
| internal::ReturnNewAction<T, typename std::decay<Params>::type...> ReturnNew( |
| Params&&... params) { |
| return {std::forward_as_tuple(std::forward<Params>(params)...)}; |
| } |
| |
| // Action ReturnArg<k>() returns the k-th argument of the mock function. |
| template <size_t k> |
| internal::ReturnArgAction<k> ReturnArg() { |
| return {}; |
| } |
| |
| // Action SaveArg<k>(pointer) saves the k-th (0-based) argument of the |
| // mock function to *pointer. |
| template <size_t k, typename Ptr> |
| internal::SaveArgAction<k, Ptr> SaveArg(Ptr pointer) { |
| return {pointer}; |
| } |
| |
| // Action SaveArgPointee<k>(pointer) saves the value pointed to |
| // by the k-th (0-based) argument of the mock function to *pointer. |
| template <size_t k, typename Ptr> |
| internal::SaveArgPointeeAction<k, Ptr> SaveArgPointee(Ptr pointer) { |
| return {pointer}; |
| } |
| |
| // Action SetArgReferee<k>(value) assigns 'value' to the variable |
| // referenced by the k-th (0-based) argument of the mock function. |
| template <size_t k, typename T> |
| internal::SetArgRefereeAction<k, typename std::decay<T>::type> SetArgReferee( |
| T&& value) { |
| return {std::forward<T>(value)}; |
| } |
| |
| // Action SetArrayArgument<k>(first, last) copies the elements in |
| // source range [first, last) to the array pointed to by the k-th |
| // (0-based) argument, which can be either a pointer or an |
| // iterator. The action does not take ownership of the elements in the |
| // source range. |
| template <size_t k, typename I1, typename I2> |
| internal::SetArrayArgumentAction<k, I1, I2> SetArrayArgument(I1 first, |
| I2 last) { |
| return {first, last}; |
| } |
| |
| // Action DeleteArg<k>() deletes the k-th (0-based) argument of the mock |
| // function. |
| template <size_t k> |
| internal::DeleteArgAction<k> DeleteArg() { |
| return {}; |
| } |
| |
| // This action returns the value pointed to by 'pointer'. |
| template <typename Ptr> |
| internal::ReturnPointeeAction<Ptr> ReturnPointee(Ptr pointer) { |
| return {pointer}; |
| } |
| |
| // Action Throw(exception) can be used in a mock function of any type |
| // to throw the given exception. Any copyable value can be thrown. |
| #if GTEST_HAS_EXCEPTIONS |
| template <typename T> |
| internal::ThrowAction<typename std::decay<T>::type> Throw(T&& exception) { |
| return {std::forward<T>(exception)}; |
| } |
| #endif // GTEST_HAS_EXCEPTIONS |
| |
| namespace internal { |
| |
| // A macro from the ACTION* family (defined later in gmock-generated-actions.h) |
| // defines an action that can be used in a mock function. Typically, |
| // these actions only care about a subset of the arguments of the mock |
| // function. For example, if such an action only uses the second |
| // argument, it can be used in any mock function that takes >= 2 |
| // arguments where the type of the second argument is compatible. |
| // |
| // Therefore, the action implementation must be prepared to take more |
| // arguments than it needs. The ExcessiveArg type is used to |
| // represent those excessive arguments. In order to keep the compiler |
| // error messages tractable, we define it in the testing namespace |
| // instead of testing::internal. However, this is an INTERNAL TYPE |
| // and subject to change without notice, so a user MUST NOT USE THIS |
| // TYPE DIRECTLY. |
| struct ExcessiveArg {}; |
| |
| // Builds an implementation of an Action<> for some particular signature, using |
| // a class defined by an ACTION* macro. |
| template <typename F, typename Impl> struct ActionImpl; |
| |
| template <typename Impl> |
| struct ImplBase { |
| struct Holder { |
| // Allows each copy of the Action<> to get to the Impl. |
| explicit operator const Impl&() const { return *ptr; } |
| std::shared_ptr<Impl> ptr; |
| }; |
| using type = typename std::conditional<std::is_constructible<Impl>::value, |
| Impl, Holder>::type; |
| }; |
| |
| template <typename R, typename... Args, typename Impl> |
| struct ActionImpl<R(Args...), Impl> : ImplBase<Impl>::type { |
| using Base = typename ImplBase<Impl>::type; |
| using function_type = R(Args...); |
| using args_type = std::tuple<Args...>; |
| |
| ActionImpl() = default; // Only defined if appropriate for Base. |
| explicit ActionImpl(std::shared_ptr<Impl> impl) : Base{std::move(impl)} { } |
| |
| R operator()(Args&&... arg) const { |
| static constexpr size_t kMaxArgs = |
| sizeof...(Args) <= 10 ? sizeof...(Args) : 10; |
| return Apply(MakeIndexSequence<kMaxArgs>{}, |
| MakeIndexSequence<10 - kMaxArgs>{}, |
| args_type{std::forward<Args>(arg)...}); |
| } |
| |
| template <std::size_t... arg_id, std::size_t... excess_id> |
| R Apply(IndexSequence<arg_id...>, IndexSequence<excess_id...>, |
| const args_type& args) const { |
| // Impl need not be specific to the signature of action being implemented; |
| // only the implementing function body needs to have all of the specific |
| // types instantiated. Up to 10 of the args that are provided by the |
| // args_type get passed, followed by a dummy of unspecified type for the |
| // remainder up to 10 explicit args. |
| static constexpr ExcessiveArg kExcessArg{}; |
| return static_cast<const Impl&>(*this).template gmock_PerformImpl< |
| /*function_type=*/function_type, /*return_type=*/R, |
| /*args_type=*/args_type, |
| /*argN_type=*/typename std::tuple_element<arg_id, args_type>::type...>( |
| /*args=*/args, std::get<arg_id>(args)..., |
| ((void)excess_id, kExcessArg)...); |
| } |
| }; |
| |
| // Stores a default-constructed Impl as part of the Action<>'s |
| // std::function<>. The Impl should be trivial to copy. |
| template <typename F, typename Impl> |
| ::testing::Action<F> MakeAction() { |
| return ::testing::Action<F>(ActionImpl<F, Impl>()); |
| } |
| |
| // Stores just the one given instance of Impl. |
| template <typename F, typename Impl> |
| ::testing::Action<F> MakeAction(std::shared_ptr<Impl> impl) { |
| return ::testing::Action<F>(ActionImpl<F, Impl>(std::move(impl))); |
| } |
| |
| #define GMOCK_INTERNAL_ARG_UNUSED(i, data, el) \ |
| , const arg##i##_type& arg##i GTEST_ATTRIBUTE_UNUSED_ |
| #define GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_ \ |
| const args_type& args GTEST_ATTRIBUTE_UNUSED_ GMOCK_PP_REPEAT( \ |
| GMOCK_INTERNAL_ARG_UNUSED, , 10) |
| |
| #define GMOCK_INTERNAL_ARG(i, data, el) , const arg##i##_type& arg##i |
| #define GMOCK_ACTION_ARG_TYPES_AND_NAMES_ \ |
| const args_type& args GMOCK_PP_REPEAT(GMOCK_INTERNAL_ARG, , 10) |
| |
| #define GMOCK_INTERNAL_TEMPLATE_ARG(i, data, el) , typename arg##i##_type |
| #define GMOCK_ACTION_TEMPLATE_ARGS_NAMES_ \ |
| GMOCK_PP_TAIL(GMOCK_PP_REPEAT(GMOCK_INTERNAL_TEMPLATE_ARG, , 10)) |
| |
| #define GMOCK_INTERNAL_TYPENAME_PARAM(i, data, param) , typename param##_type |
| #define GMOCK_ACTION_TYPENAME_PARAMS_(params) \ |
| GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPENAME_PARAM, , params)) |
| |
| #define GMOCK_INTERNAL_TYPE_PARAM(i, data, param) , param##_type |
| #define GMOCK_ACTION_TYPE_PARAMS_(params) \ |
| GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_PARAM, , params)) |
| |
| #define GMOCK_INTERNAL_TYPE_GVALUE_PARAM(i, data, param) \ |
| , param##_type gmock_p##i |
| #define GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params) \ |
| GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_GVALUE_PARAM, , params)) |
| |
| #define GMOCK_INTERNAL_GVALUE_PARAM(i, data, param) \ |
| , std::forward<param##_type>(gmock_p##i) |
| #define GMOCK_ACTION_GVALUE_PARAMS_(params) \ |
| GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_GVALUE_PARAM, , params)) |
| |
| #define GMOCK_INTERNAL_INIT_PARAM(i, data, param) \ |
| , param(::std::forward<param##_type>(gmock_p##i)) |
| #define GMOCK_ACTION_INIT_PARAMS_(params) \ |
| GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_INIT_PARAM, , params)) |
| |
| #define GMOCK_INTERNAL_FIELD_PARAM(i, data, param) param##_type param; |
| #define GMOCK_ACTION_FIELD_PARAMS_(params) \ |
| GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_FIELD_PARAM, , params) |
| |
| #define GMOCK_INTERNAL_ACTION(name, full_name, params) \ |
| template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \ |
| class full_name { \ |
| public: \ |
| explicit full_name(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) \ |
| : impl_(std::make_shared<gmock_Impl>( \ |
| GMOCK_ACTION_GVALUE_PARAMS_(params))) { } \ |
| full_name(const full_name&) = default; \ |
| full_name(full_name&&) noexcept = default; \ |
| template <typename F> \ |
| operator ::testing::Action<F>() const { \ |
| return ::testing::internal::MakeAction<F>(impl_); \ |
| } \ |
| private: \ |
| class gmock_Impl { \ |
| public: \ |
| explicit gmock_Impl(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) \ |
| : GMOCK_ACTION_INIT_PARAMS_(params) {} \ |
| template <typename function_type, typename return_type, \ |
| typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \ |
| return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \ |
| GMOCK_ACTION_FIELD_PARAMS_(params) \ |
| }; \ |
| std::shared_ptr<const gmock_Impl> impl_; \ |
| }; \ |
| template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \ |
| inline full_name<GMOCK_ACTION_TYPE_PARAMS_(params)> name( \ |
| GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) { \ |
| return full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>( \ |
| GMOCK_ACTION_GVALUE_PARAMS_(params)); \ |
| } \ |
| template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \ |
| template <typename function_type, typename return_type, typename args_type, \ |
| GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \ |
| return_type full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>::gmock_Impl:: \ |
| gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const |
| |
| } // namespace internal |
| |
| // Similar to GMOCK_INTERNAL_ACTION, but no bound parameters are stored. |
| #define ACTION(name) \ |
| class name##Action { \ |
| public: \ |
| explicit name##Action() noexcept {} \ |
| name##Action(const name##Action&) noexcept {} \ |
| template <typename F> \ |
| operator ::testing::Action<F>() const { \ |
| return ::testing::internal::MakeAction<F, gmock_Impl>(); \ |
| } \ |
| private: \ |
| class gmock_Impl { \ |
| public: \ |
| template <typename function_type, typename return_type, \ |
| typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \ |
| return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \ |
| }; \ |
| }; \ |
| inline name##Action name() GTEST_MUST_USE_RESULT_; \ |
| inline name##Action name() { return name##Action(); } \ |
| template <typename function_type, typename return_type, typename args_type, \ |
| GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \ |
| return_type name##Action::gmock_Impl::gmock_PerformImpl( \ |
| GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const |
| |
| #define ACTION_P(name, ...) \ |
| GMOCK_INTERNAL_ACTION(name, name##ActionP, (__VA_ARGS__)) |
| |
| #define ACTION_P2(name, ...) \ |
| GMOCK_INTERNAL_ACTION(name, name##ActionP2, (__VA_ARGS__)) |
| |
| #define ACTION_P3(name, ...) \ |
| GMOCK_INTERNAL_ACTION(name, name##ActionP3, (__VA_ARGS__)) |
| |
| #define ACTION_P4(name, ...) \ |
| GMOCK_INTERNAL_ACTION(name, name##ActionP4, (__VA_ARGS__)) |
| |
| #define ACTION_P5(name, ...) \ |
| GMOCK_INTERNAL_ACTION(name, name##ActionP5, (__VA_ARGS__)) |
| |
| #define ACTION_P6(name, ...) \ |
| GMOCK_INTERNAL_ACTION(name, name##ActionP6, (__VA_ARGS__)) |
| |
| #define ACTION_P7(name, ...) \ |
| GMOCK_INTERNAL_ACTION(name, name##ActionP7, (__VA_ARGS__)) |
| |
| #define ACTION_P8(name, ...) \ |
| GMOCK_INTERNAL_ACTION(name, name##ActionP8, (__VA_ARGS__)) |
| |
| #define ACTION_P9(name, ...) \ |
| GMOCK_INTERNAL_ACTION(name, name##ActionP9, (__VA_ARGS__)) |
| |
| #define ACTION_P10(name, ...) \ |
| GMOCK_INTERNAL_ACTION(name, name##ActionP10, (__VA_ARGS__)) |
| |
| } // namespace testing |
| |
| #ifdef _MSC_VER |
| # pragma warning(pop) |
| #endif |
| |
| #endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ |
| // Copyright 2007, Google Inc. |
| // All rights reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following disclaimer |
| // in the documentation and/or other materials provided with the |
| // distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| |
| // Google Mock - a framework for writing C++ mock classes. |
| // |
| // This file implements some commonly used cardinalities. More |
| // cardinalities can be defined by the user implementing the |
| // CardinalityInterface interface if necessary. |
| |
| // GOOGLETEST_CM0002 DO NOT DELETE |
| |
| #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_CARDINALITIES_H_ |
| #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_CARDINALITIES_H_ |
| |
| #include <limits.h> |
| #include <memory> |
| #include <ostream> // NOLINT |
| |
| GTEST_DISABLE_MSC_WARNINGS_PUSH_(4251 \ |
| /* class A needs to have dll-interface to be used by clients of class B */) |
| |
| namespace testing { |
| |
| // To implement a cardinality Foo, define: |
| // 1. a class FooCardinality that implements the |
| // CardinalityInterface interface, and |
| // 2. a factory function that creates a Cardinality object from a |
| // const FooCardinality*. |
| // |
| // The two-level delegation design follows that of Matcher, providing |
| // consistency for extension developers. It also eases ownership |
| // management as Cardinality objects can now be copied like plain values. |
| |
| // The implementation of a cardinality. |
| class CardinalityInterface { |
| public: |
| virtual ~CardinalityInterface() {} |
| |
| // Conservative estimate on the lower/upper bound of the number of |
| // calls allowed. |
| virtual int ConservativeLowerBound() const { return 0; } |
| virtual int ConservativeUpperBound() const { return INT_MAX; } |
| |
| // Returns true if and only if call_count calls will satisfy this |
| // cardinality. |
| virtual bool IsSatisfiedByCallCount(int call_count) const = 0; |
| |
| // Returns true if and only if call_count calls will saturate this |
| // cardinality. |
| virtual bool IsSaturatedByCallCount(int call_count) const = 0; |
| |
| // Describes self to an ostream. |
| virtual void DescribeTo(::std::ostream* os) const = 0; |
| }; |
| |
| // A Cardinality is a copyable and IMMUTABLE (except by assignment) |
| // object that specifies how many times a mock function is expected to |
| // be called. The implementation of Cardinality is just a std::shared_ptr |
| // to const CardinalityInterface. Don't inherit from Cardinality! |
| class GTEST_API_ Cardinality { |
| public: |
| // Constructs a null cardinality. Needed for storing Cardinality |
| // objects in STL containers. |
| Cardinality() {} |
| |
| // Constructs a Cardinality from its implementation. |
| explicit Cardinality(const CardinalityInterface* impl) : impl_(impl) {} |
| |
| // Conservative estimate on the lower/upper bound of the number of |
| // calls allowed. |
| int ConservativeLowerBound() const { return impl_->ConservativeLowerBound(); } |
| int ConservativeUpperBound() const { return impl_->ConservativeUpperBound(); } |
| |
| // Returns true if and only if call_count calls will satisfy this |
| // cardinality. |
| bool IsSatisfiedByCallCount(int call_count) const { |
| return impl_->IsSatisfiedByCallCount(call_count); |
| } |
| |
| // Returns true if and only if call_count calls will saturate this |
| // cardinality. |
| bool IsSaturatedByCallCount(int call_count) const { |
| return impl_->IsSaturatedByCallCount(call_count); |
| } |
| |
| // Returns true if and only if call_count calls will over-saturate this |
| // cardinality, i.e. exceed the maximum number of allowed calls. |
| bool IsOverSaturatedByCallCount(int call_count) const { |
| return impl_->IsSaturatedByCallCount(call_count) && |
| !impl_->IsSatisfiedByCallCount(call_count); |
| } |
| |
| // Describes self to an ostream |
| void DescribeTo(::std::ostream* os) const { impl_->DescribeTo(os); } |
| |
| // Describes the given actual call count to an ostream. |
| static void DescribeActualCallCountTo(int actual_call_count, |
| ::std::ostream* os); |
| |
| private: |
| std::shared_ptr<const CardinalityInterface> impl_; |
| }; |
| |
| // Creates a cardinality that allows at least n calls. |
| GTEST_API_ Cardinality AtLeast(int n); |
| |
| // Creates a cardinality that allows at most n calls. |
| GTEST_API_ Cardinality AtMost(int n); |
| |
| // Creates a cardinality that allows any number of calls. |
| GTEST_API_ Cardinality AnyNumber(); |
| |
| // Creates a cardinality that allows between min and max calls. |
| GTEST_API_ Cardinality Between(int min, int max); |
| |
| // Creates a cardinality that allows exactly n calls. |
| GTEST_API_ Cardinality Exactly(int n); |
| |
| // Creates a cardinality from its implementation. |
| inline Cardinality MakeCardinality(const CardinalityInterface* c) { |
| return Cardinality(c); |
| } |
| |
| } // namespace testing |
| |
| GTEST_DISABLE_MSC_WARNINGS_POP_() // 4251 |
| |
| #endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_CARDINALITIES_H_ |
| // Copyright 2007, Google Inc. |
| // All rights reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following disclaimer |
| // in the documentation and/or other materials provided with the |
| // distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| // Google Mock - a framework for writing C++ mock classes. |
| // |
| // This file implements MOCK_METHOD. |
| |
| // GOOGLETEST_CM0002 DO NOT DELETE |
| |
| #ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_FUNCTION_MOCKER_H_ // NOLINT |
| #define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_FUNCTION_MOCKER_H_ // NOLINT |
| |
| #include <type_traits> // IWYU pragma: keep |
| #include <utility> // IWYU pragma: keep |
| |
| // Copyright 2007, Google Inc. |
| // All rights reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following disclaimer |
| // in the documentation and/or other materials provided with the |
| // distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| |
| // Google Mock - a framework for writing C++ mock classes. |
| // |
| // This file implements the ON_CALL() and EXPECT_CALL() macros. |
| // |
| // A user can use the ON_CALL() macro to specify the default action of |
| // a mock method. The syntax is: |
| // |
| // ON_CALL(mock_object, Method(argument-matchers)) |
| // .With(multi-argument-matcher) |
| // .WillByDefault(action); |
| // |
| // where the .With() clause is optional. |
| // |
| // A user can use the EXPECT_CALL() macro to specify an expectation on |
| // a mock method. The syntax is: |
| // |
| // EXPECT_CALL(mock_object, Method(argument-matchers)) |
| // .With(multi-argument-matchers) |
| // .Times(cardinality) |
| // .InSequence(sequences) |
| // .After(expectations) |
| // .WillOnce(action) |
| // .WillRepeatedly(action) |
| // .RetiresOnSaturation(); |
| // |
| // where all clauses are optional, and .InSequence()/.After()/ |
| // .WillOnce() can appear any number of times. |
| |
| // GOOGLETEST_CM0002 DO NOT DELETE |
| |
| #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_SPEC_BUILDERS_H_ |
| #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_SPEC_BUILDERS_H_ |
| |
| #include <functional> |
| #include <map> |
| #include <memory> |
| #include <set> |
| #include <sstream> |
| #include <string> |
| #include <type_traits> |
| #include <utility> |
| #include <vector> |
| // Copyright 2007, Google Inc. |
| // All rights reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following disclaimer |
| // in the documentation and/or other materials provided with the |
| // distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| |
| // Google Mock - a framework for writing C++ mock classes. |
| // |
| // The MATCHER* family of macros can be used in a namespace scope to |
| // define custom matchers easily. |
| // |
| // Basic Usage |
| // =========== |
| // |
| // The syntax |
| // |
| // MATCHER(name, description_string) { statements; } |
| // |
| // defines a matcher with the given name that executes the statements, |
| // which must return a bool to indicate if the match succeeds. Inside |
| // the statements, you can refer to the value being matched by 'arg', |
| // and refer to its type by 'arg_type'. |
| // |
| // The description string documents what the matcher does, and is used |
| // to generate the failure message when the match fails. Since a |
| // MATCHER() is usually defined in a header file shared by multiple |
| // C++ source files, we require the description to be a C-string |
| // literal to avoid possible side effects. It can be empty, in which |
| // case we'll use the sequence of words in the matcher name as the |
| // description. |
| // |
| // For example: |
| // |
| // MATCHER(IsEven, "") { return (arg % 2) == 0; } |
| // |
| // allows you to write |
| // |
| // // Expects mock_foo.Bar(n) to be called where n is even. |
| // EXPECT_CALL(mock_foo, Bar(IsEven())); |
| // |
| // or, |
| // |
| // // Verifies that the value of some_expression is even. |
| // EXPECT_THAT(some_expression, IsEven()); |
| // |
| // If the above assertion fails, it will print something like: |
| // |
| // Value of: some_expression |
| // Expected: is even |
| // Actual: 7 |
| // |
| // where the description "is even" is automatically calculated from the |
| // matcher name IsEven. |
| // |
| // Argument Type |
| // ============= |
| // |
| // Note that the type of the value being matched (arg_type) is |
| // determined by the context in which you use the matcher and is |
| // supplied to you by the compiler, so you don't need to worry about |
| // declaring it (nor can you). This allows the matcher to be |
| // polymorphic. For example, IsEven() can be used to match any type |
| // where the value of "(arg % 2) == 0" can be implicitly converted to |
| // a bool. In the "Bar(IsEven())" example above, if method Bar() |
| // takes an int, 'arg_type' will be int; if it takes an unsigned long, |
| // 'arg_type' will be unsigned long; and so on. |
| // |
| // Parameterizing Matchers |
| // ======================= |
| // |
| // Sometimes you'll want to parameterize the matcher. For that you |
| // can use another macro: |
| // |
| // MATCHER_P(name, param_name, description_string) { statements; } |
| // |
| // For example: |
| // |
| // MATCHER_P(HasAbsoluteValue, value, "") { return abs(arg) == value; } |
| // |
| // will allow you to write: |
| // |
| // EXPECT_THAT(Blah("a"), HasAbsoluteValue(n)); |
| // |
| // which may lead to this message (assuming n is 10): |
| // |
| // Value of: Blah("a") |
| // Expected: has absolute value 10 |
| // Actual: -9 |
| // |
| // Note that both the matcher description and its parameter are |
| // printed, making the message human-friendly. |
| // |
| // In the matcher definition body, you can write 'foo_type' to |
| // reference the type of a parameter named 'foo'. For example, in the |
| // body of MATCHER_P(HasAbsoluteValue, value) above, you can write |
| // 'value_type' to refer to the type of 'value'. |
| // |
| // We also provide MATCHER_P2, MATCHER_P3, ..., up to MATCHER_P$n to |
| // support multi-parameter matchers. |
| // |
| // Describing Parameterized Matchers |
| // ================================= |
| // |
| // The last argument to MATCHER*() is a string-typed expression. The |
| // expression can reference all of the matcher's parameters and a |
| // special bool-typed variable named 'negation'. When 'negation' is |
| // false, the expression should evaluate to the matcher's description; |
| // otherwise it should evaluate to the description of the negation of |
| // the matcher. For example, |
| // |
| // using testing::PrintToString; |
| // |
| // MATCHER_P2(InClosedRange, low, hi, |
| // std::string(negation ? "is not" : "is") + " in range [" + |
| // PrintToString(low) + ", " + PrintToString(hi) + "]") { |
| // return low <= arg && arg <= hi; |
| // } |
| // ... |
| // EXPECT_THAT(3, InClosedRange(4, 6)); |
| // EXPECT_THAT(3, Not(InClosedRange(2, 4))); |
| // |
| // would generate two failures that contain the text: |
| // |
| // Expected: is in range [4, 6] |
| // ... |
| // Expected: is not in range [2, 4] |
| // |
| // If you specify "" as the description, the failure message will |
| // contain the sequence of words in the matcher name followed by the |
| // parameter values printed as a tuple. For example, |
| // |
| // MATCHER_P2(InClosedRange, low, hi, "") { ... } |
| // ... |
| // EXPECT_THAT(3, InClosedRange(4, 6)); |
| // EXPECT_THAT(3, Not(InClosedRange(2, 4))); |
| // |
| // would generate two failures that contain the text: |
| // |
| // Expected: in closed range (4, 6) |
| // ... |
| // Expected: not (in closed range (2, 4)) |
| // |
| // Types of Matcher Parameters |
| // =========================== |
| // |
| // For the purpose of typing, you can view |
| // |
| // MATCHER_Pk(Foo, p1, ..., pk, description_string) { ... } |
| // |
| // as shorthand for |
| // |
| // template <typename p1_type, ..., typename pk_type> |
| // FooMatcherPk<p1_type, ..., pk_type> |
| // Foo(p1_type p1, ..., pk_type pk) { ... } |
| // |
| // When you write Foo(v1, ..., vk), the compiler infers the types of |
| // the parameters v1, ..., and vk for you. If you are not happy with |
| // the result of the type inference, you can specify the types by |
| // explicitly instantiating the template, as in Foo<long, bool>(5, |
| // false). As said earlier, you don't get to (or need to) specify |
| // 'arg_type' as that's determined by the context in which the matcher |
| // is used. You can assign the result of expression Foo(p1, ..., pk) |
| // to a variable of type FooMatcherPk<p1_type, ..., pk_type>. This |
| // can be useful when composing matchers. |
| // |
| // While you can instantiate a matcher template with reference types, |
| // passing the parameters by pointer usually makes your code more |
| // readable. If, however, you still want to pass a parameter by |
| // reference, be aware that in the failure message generated by the |
| // matcher you will see the value of the referenced object but not its |
| // address. |
| // |
| // Explaining Match Results |
| // ======================== |
| // |
| // Sometimes the matcher description alone isn't enough to explain why |
| // the match has failed or succeeded. For example, when expecting a |
| // long string, it can be very helpful to also print the diff between |
| // the expected string and the actual one. To achieve that, you can |
| // optionally stream additional information to a special variable |
| // named result_listener, whose type is a pointer to class |
| // MatchResultListener: |
| // |
| // MATCHER_P(EqualsLongString, str, "") { |
| // if (arg == str) return true; |
| // |
| // *result_listener << "the difference: " |
| /// << DiffStrings(str, arg); |
| // return false; |
| // } |
| // |
| // Overloading Matchers |
| // ==================== |
| // |
| // You can overload matchers with different numbers of parameters: |
| // |
| // MATCHER_P(Blah, a, description_string1) { ... } |
| // MATCHER_P2(Blah, a, b, description_string2) { ... } |
| // |
| // Caveats |
| // ======= |
| // |
| // When defining a new matcher, you should also consider implementing |
| // MatcherInterface or using MakePolymorphicMatcher(). These |
| // approaches require more work than the MATCHER* macros, but also |
| // give you more control on the types of the value being matched and |
| // the matcher parameters, which may leads to better compiler error |
| // messages when the matcher is used wrong. They also allow |
| // overloading matchers based on parameter types (as opposed to just |
| // based on the number of parameters). |
| // |
| // MATCHER*() can only be used in a namespace scope as templates cannot be |
| // declared inside of a local class. |
| // |
| // More Information |
| // ================ |
| // |
| // To learn more about using these macros, please search for 'MATCHER' |
| // on |
| // https://github.com/google/googletest/blob/master/docs/gmock_cook_book.md |
| // |
| // This file also implements some commonly used argument matchers. More |
| // matchers can be defined by the user implementing the |
| // MatcherInterface<T> interface if necessary. |
| // |
| // See googletest/include/gtest/gtest-matchers.h for the definition of class |
| // Matcher, class MatcherInterface, and others. |
| |
| // GOOGLETEST_CM0002 DO NOT DELETE |
| |
| #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ |
| #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ |
| |
| #include <algorithm> |
| #include <cmath> |
| #include <initializer_list> |
| #include <iterator> |
| #include <limits> |
| #include <memory> |
| #include <ostream> // NOLINT |
| #include <sstream> |
| #include <string> |
| #include <type_traits> |
| #include <utility> |
| #include <vector> |
| |
| |
| // MSVC warning C5046 is new as of VS2017 version 15.8. |
| #if defined(_MSC_VER) && _MSC_VER >= 1915 |
| #define GMOCK_MAYBE_5046_ 5046 |
| #else |
| #define GMOCK_MAYBE_5046_ |
| #endif |
| |
| GTEST_DISABLE_MSC_WARNINGS_PUSH_( |
| 4251 GMOCK_MAYBE_5046_ /* class A needs to have dll-interface to be used by |
| clients of class B */ |
| /* Symbol involving type with internal linkage not defined */) |
| |
| namespace testing { |
| |
| // To implement a matcher Foo for type T, define: |
| // 1. a class FooMatcherImpl that implements the |
| // MatcherInterface<T> interface, and |
| // 2. a factory function that creates a Matcher<T> object from a |
| // FooMatcherImpl*. |
| // |
| // The two-level delegation design makes it possible to allow a user |
| // to write "v" instead of "Eq(v)" where a Matcher is expected, which |
| // is impossible if we pass matchers by pointers. It also eases |
| // ownership management as Matcher objects can now be copied like |
| // plain values. |
| |
| // A match result listener that stores the explanation in a string. |
| class StringMatchResultListener : public MatchResultListener { |
| public: |
| StringMatchResultListener() : MatchResultListener(&ss_) {} |
| |
| // Returns the explanation accumulated so far. |
| std::string str() const { return ss_.str(); } |
| |
| // Clears the explanation accumulated so far. |
| void Clear() { ss_.str(""); } |
| |
| private: |
| ::std::stringstream ss_; |
| |
| GTEST_DISALLOW_COPY_AND_ASSIGN_(StringMatchResultListener); |
| }; |
| |
| // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION |
| // and MUST NOT BE USED IN USER CODE!!! |
| namespace internal { |
| |
| // The MatcherCastImpl class template is a helper for implementing |
| // MatcherCast(). We need this helper in order to partially |
| // specialize the implementation of MatcherCast() (C++ allows |
| // class/struct templates to be partially specialized, but not |
| // function templates.). |
| |
| // This general version is used when MatcherCast()'s argument is a |
| // polymorphic matcher (i.e. something that can be converted to a |
| // Matcher but is not one yet; for example, Eq(value)) or a value (for |
| // example, "hello"). |
| template <typename T, typename M> |
| class MatcherCastImpl { |
| public: |
| static Matcher<T> Cast(const M& polymorphic_matcher_or_value) { |
| // M can be a polymorphic matcher, in which case we want to use |
| // its conversion operator to create Matcher<T>. Or it can be a value |
| // that should be passed to the Matcher<T>'s constructor. |
| // |
| // We can't call Matcher<T>(polymorphic_matcher_or_value) when M is a |
| // polymorphic matcher because it'll be ambiguous if T has an implicit |
| // constructor from M (this usually happens when T has an implicit |
| // constructor from any type). |
| // |
| // It won't work to unconditionally implicit_cast |
| // polymorphic_matcher_or_value to Matcher<T> because it won't trigger |
| // a user-defined conversion from M to T if one exists (assuming M is |
| // a value). |
| return CastImpl(polymorphic_matcher_or_value, |
| std::is_convertible<M, Matcher<T>>{}, |
| std::is_convertible<M, T>{}); |
| } |
| |
| private: |
| template <bool Ignore> |
| static Matcher<T> CastImpl(const M& polymorphic_matcher_or_value, |
| std::true_type /* convertible_to_matcher */, |
| std::integral_constant<bool, Ignore>) { |
| // M is implicitly convertible to Matcher<T>, which means that either |
| // M is a polymorphic matcher or Matcher<T> has an implicit constructor |
| // from M. In both cases using the implicit conversion will produce a |
| // matcher. |
| // |
| // Even if T has an implicit constructor from M, it won't be called because |
| // creating Matcher<T> would require a chain of two user-defined conversions |
| // (first to create T from M and then to create Matcher<T> from T). |
| return polymorphic_matcher_or_value; |
| } |
| |
| // M can't be implicitly converted to Matcher<T>, so M isn't a polymorphic |
| // matcher. It's a value of a type implicitly convertible to T. Use direct |
| // initialization to create a matcher. |
| static Matcher<T> CastImpl(const M& value, |
| std::false_type /* convertible_to_matcher */, |
| std::true_type /* convertible_to_T */) { |
| return Matcher<T>(ImplicitCast_<T>(value)); |
| } |
| |
| // M can't be implicitly converted to either Matcher<T> or T. Attempt to use |
| // polymorphic matcher Eq(value) in this case. |
| // |
| // Note that we first attempt to perform an implicit cast on the value and |
| // only fall back to the polymorphic Eq() matcher afterwards because the |
| // latter calls bool operator==(const Lhs& lhs, const Rhs& rhs) in the end |
| // which might be undefined even when Rhs is implicitly convertible to Lhs |
| // (e.g. std::pair<const int, int> vs. std::pair<int, int>). |
| // |
| // We don't define this method inline as we need the declaration of Eq(). |
| static Matcher<T> CastImpl(const M& value, |
| std::false_type /* convertible_to_matcher */, |
| std::false_type /* convertible_to_T */); |
| }; |
| |
| // This more specialized version is used when MatcherCast()'s argument |
| // is already a Matcher. This only compiles when type T can be |
| // statically converted to type U. |
| template <typename T, typename U> |
| class MatcherCastImpl<T, Matcher<U> > { |
| public: |
| static Matcher<T> Cast(const Matcher<U>& source_matcher) { |
| return Matcher<T>(new Impl(source_matcher)); |
| } |
| |
| private: |
| class Impl : public MatcherInterface<T> { |
| public: |
| explicit Impl(const Matcher<U>& source_matcher) |
| : source_matcher_(source_matcher) {} |
| |
| // We delegate the matching logic to the source matcher. |
| bool MatchAndExplain(T x, MatchResultListener* listener) const override { |
| using FromType = typename std::remove_cv<typename std::remove_pointer< |
| typename std::remove_reference<T>::type>::type>::type; |
| using ToType = typename std::remove_cv<typename std::remove_pointer< |
| typename std::remove_reference<U>::type>::type>::type; |
| // Do not allow implicitly converting base*/& to derived*/&. |
| static_assert( |
| // Do not trigger if only one of them is a pointer. That implies a |
| // regular conversion and not a down_cast. |
| (std::is_pointer<typename std::remove_reference<T>::type>::value != |
| std::is_pointer<typename std::remove_reference<U>::type>::value) || |
| std::is_same<FromType, ToType>::value || |
| !std::is_base_of<FromType, ToType>::value, |
| "Can't implicitly convert from <base> to <derived>"); |
| |
| // Do the cast to `U` explicitly if necessary. |
| // Otherwise, let implicit conversions do the trick. |
| using CastType = |
| typename std::conditional<std::is_convertible<T&, const U&>::value, |
| T&, U>::type; |
| |
| return source_matcher_.MatchAndExplain(static_cast<CastType>(x), |
| listener); |
| } |
| |
| void DescribeTo(::std::ostream* os) const override { |
| source_matcher_.DescribeTo(os); |
| } |
| |
| void DescribeNegationTo(::std::ostream* os) const override { |
| source_matcher_.DescribeNegationTo(os); |
| } |
| |
| private: |
| const Matcher<U> source_matcher_; |
| }; |
| }; |
| |
| // This even more specialized version is used for efficiently casting |
| // a matcher to its own type. |
| template <typename T> |
| class MatcherCastImpl<T, Matcher<T> > { |
| public: |
| static Matcher<T> Cast(const Matcher<T>& matcher) { return matcher; } |
| }; |
| |
| // Template specialization for parameterless Matcher. |
| template <typename Derived> |
| class MatcherBaseImpl { |
| public: |
| MatcherBaseImpl() = default; |
| |
| template <typename T> |
| operator ::testing::Matcher<T>() const { // NOLINT(runtime/explicit) |
| return ::testing::Matcher<T>(new |
| typename Derived::template gmock_Impl<T>()); |
| } |
| }; |
| |
| // Template specialization for Matcher with parameters. |
| template <template <typename...> class Derived, typename... Ts> |
| class MatcherBaseImpl<Derived<Ts...>> { |
| public: |
| // Mark the constructor explicit for single argument T to avoid implicit |
| // conversions. |
| template <typename E = std::enable_if<sizeof...(Ts) == 1>, |
| typename E::type* = nullptr> |
| explicit MatcherBaseImpl(Ts... params) |
| : params_(std::forward<Ts>(params)...) {} |
| template <typename E = std::enable_if<sizeof...(Ts) != 1>, |
| typename = typename E::type> |
| MatcherBaseImpl(Ts... params) // NOLINT |
| : params_(std::forward<Ts>(params)...) {} |
| |
| template <typename F> |
| operator ::testing::Matcher<F>() const { // NOLINT(runtime/explicit) |
| return Apply<F>(MakeIndexSequence<sizeof...(Ts)>{}); |
| } |
| |
| private: |
| template <typename F, std::size_t... tuple_ids> |
| ::testing::Matcher<F> Apply(IndexSequence<tuple_ids...>) const { |
| return ::testing::Matcher<F>( |
| new typename Derived<Ts...>::template gmock_Impl<F>( |
| std::get<tuple_ids>(params_)...)); |
| } |
| |
| const std::tuple<Ts...> params_; |
| }; |
| |
| } // namespace internal |
| |
| // In order to be safe and clear, casting between different matcher |
| // types is done explicitly via MatcherCast<T>(m), which takes a |
| // matcher m and returns a Matcher<T>. It compiles only when T can be |
| // statically converted to the argument type of m. |
| template <typename T, typename M> |
| inline Matcher<T> MatcherCast(const M& matcher) { |
| return internal::MatcherCastImpl<T, M>::Cast(matcher); |
| } |
| |
| // This overload handles polymorphic matchers and values only since |
| // monomorphic matchers are handled by the next one. |
| template <typename T, typename M> |
| inline Matcher<T> SafeMatcherCast(const M& polymorphic_matcher_or_value) { |
| return MatcherCast<T>(polymorphic_matcher_or_value); |
| } |
| |
| // This overload handles monomorphic matchers. |
| // |
| // In general, if type T can be implicitly converted to type U, we can |
| // safely convert a Matcher<U> to a Matcher<T> (i.e. Matcher is |
| // contravariant): just keep a copy of the original Matcher<U>, convert the |
| // argument from type T to U, and then pass it to the underlying Matcher<U>. |
| // The only exception is when U is a reference and T is not, as the |
| // underlying Matcher<U> may be interested in the argument's address, which |
| // is not preserved in the conversion from T to U. |
| template <typename T, typename U> |
| inline Matcher<T> SafeMatcherCast(const Matcher<U>& matcher) { |
| // Enforce that T can be implicitly converted to U. |
| static_assert(std::is_convertible<const T&, const U&>::value, |
| "T must be implicitly convertible to U"); |
| // Enforce that we are not converting a non-reference type T to a reference |
| // type U. |
| GTEST_COMPILE_ASSERT_( |
| std::is_reference<T>::value || !std::is_reference<U>::value, |
| cannot_convert_non_reference_arg_to_reference); |
| // In case both T and U are arithmetic types, enforce that the |
| // conversion is not lossy. |
| typedef GTEST_REMOVE_REFERENCE_AND_CONST_(T) RawT; |
| typedef GTEST_REMOVE_REFERENCE_AND_CONST_(U) RawU; |
| constexpr bool kTIsOther = GMOCK_KIND_OF_(RawT) == internal::kOther; |
| constexpr bool kUIsOther = GMOCK_KIND_OF_(RawU) == internal::kOther; |
| GTEST_COMPILE_ASSERT_( |
| kTIsOther || kUIsOther || |
| (internal::LosslessArithmeticConvertible<RawT, RawU>::value), |
| conversion_of_arithmetic_types_must_be_lossless); |
| return MatcherCast<T>(matcher); |
| } |
| |
| // A<T>() returns a matcher that matches any value of type T. |
| template <typename T> |
| Matcher<T> A(); |
| |
| // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION |
| // and MUST NOT BE USED IN USER CODE!!! |
| namespace internal { |
| |
| // If the explanation is not empty, prints it to the ostream. |
| inline void PrintIfNotEmpty(const std::string& explanation, |
| ::std::ostream* os) { |
| if (explanation != "" && os != nullptr) { |
| *os << ", " << explanation; |
| } |
| } |
| |
| // Returns true if the given type name is easy to read by a human. |
| // This is used to decide whether printing the type of a value might |
| // be helpful. |
| inline bool IsReadableTypeName(const std::string& type_name) { |
| // We consider a type name readable if it's short or doesn't contain |
| // a template or function type. |
| return (type_name.length() <= 20 || |
| type_name.find_first_of("<(") == std::string::npos); |
| } |
| |
| // Matches the value against the given matcher, prints the value and explains |
| // the match result to the listener. Returns the match result. |
| // 'listener' must not be NULL. |
| // Value cannot be passed by const reference, because some matchers take a |
| // non-const argument. |
| template <typename Value, typename T> |
| bool MatchPrintAndExplain(Value& value, const Matcher<T>& matcher, |
| MatchResultListener* listener) { |
| if (!listener->IsInterested()) { |
| // If the listener is not interested, we do not need to construct the |
| // inner explanation. |
| return matcher.Matches(value); |
| } |
| |
| StringMatchResultListener inner_listener; |
| const bool match = matcher.MatchAndExplain(value, &inner_listener); |
| |
| UniversalPrint(value, listener->stream()); |
| #if GTEST_HAS_RTTI |
| const std::string& type_name = GetTypeName<Value>(); |
| if (IsReadableTypeName(type_name)) |
| *listener->stream() << " (of type " << type_name << ")"; |
| #endif |
| PrintIfNotEmpty(inner_listener.str(), listener->stream()); |
| |
| return match; |
| } |
| |
| // An internal helper class for doing compile-time loop on a tuple's |
| // fields. |
| template <size_t N> |
| class TuplePrefix { |
| public: |
| // TuplePrefix<N>::Matches(matcher_tuple, value_tuple) returns true |
| // if and only if the first N fields of matcher_tuple matches |
| // the first N fields of value_tuple, respectively. |
| template <typename MatcherTuple, typename ValueTuple> |
| static bool Matches(const MatcherTuple& matcher_tuple, |
| const ValueTuple& value_tuple) { |
| return TuplePrefix<N - 1>::Matches(matcher_tuple, value_tuple) && |
| std::get<N - 1>(matcher_tuple).Matches(std::get<N - 1>(value_tuple)); |
| } |
| |
| // TuplePrefix<N>::ExplainMatchFailuresTo(matchers, values, os) |
| // describes failures in matching the first N fields of matchers |
| // against the first N fields of values. If there is no failure, |
| // nothing will be streamed to os. |
| template <typename MatcherTuple, typename ValueTuple> |
| static void ExplainMatchFailuresTo(const MatcherTuple& matchers, |
| const ValueTuple& values, |
| ::std::ostream* os) { |
| // First, describes failures in the first N - 1 fields. |
| TuplePrefix<N - 1>::ExplainMatchFailuresTo(matchers, values, os); |
| |
| // Then describes the failure (if any) in the (N - 1)-th (0-based) |
| // field. |
| typename std::tuple_element<N - 1, MatcherTuple>::type matcher = |
| std::get<N - 1>(matchers); |
| typedef typename std::tuple_element<N - 1, ValueTuple>::type Value; |
| const Value& value = std::get<N - 1>(values); |
| StringMatchResultListener listener; |
| if (!matcher.MatchAndExplain(value, &listener)) { |
| *os << " Expected arg #" << N - 1 << ": "; |
| std::get<N - 1>(matchers).DescribeTo(os); |
| *os << "\n Actual: "; |
| // We remove the reference in type Value to prevent the |
| // universal printer from printing the address of value, which |
| // isn't interesting to the user most of the time. The |
| // matcher's MatchAndExplain() method handles the case when |
| // the address is interesting. |
| internal::UniversalPrint(value, os); |
| PrintIfNotEmpty(listener.str(), os); |
| *os << "\n"; |
| } |
| } |
| }; |
| |
| // The base case. |
| template <> |
| class TuplePrefix<0> { |
| public: |
| template <typename MatcherTuple, typename ValueTuple> |
| static bool Matches(const MatcherTuple& /* matcher_tuple */, |
| const ValueTuple& /* value_tuple */) { |
| return true; |
| } |
| |
| template <typename MatcherTuple, typename ValueTuple> |
| static void ExplainMatchFailuresTo(const MatcherTuple& /* matchers */, |
| const ValueTuple& /* values */, |
| ::std::ostream* /* os */) {} |
| }; |
| |
| // TupleMatches(matcher_tuple, value_tuple) returns true if and only if |
| // all matchers in matcher_tuple match the corresponding fields in |
| // value_tuple. It is a compiler error if matcher_tuple and |
| // value_tuple have different number of fields or incompatible field |
| // types. |
| template <typename MatcherTuple, typename ValueTuple> |
| bool TupleMatches(const MatcherTuple& matcher_tuple, |
| const ValueTuple& value_tuple) { |
| // Makes sure that matcher_tuple and value_tuple have the same |
| // number of fields. |
| GTEST_COMPILE_ASSERT_(std::tuple_size<MatcherTuple>::value == |
| std::tuple_size<ValueTuple>::value, |
| matcher_and_value_have_different_numbers_of_fields); |
| return TuplePrefix<std::tuple_size<ValueTuple>::value>::Matches(matcher_tuple, |
| value_tuple); |
| } |
| |
| // Describes failures in matching matchers against values. If there |
| // is no failure, nothing will be streamed to os. |
| template <typename MatcherTuple, typename ValueTuple> |
| void ExplainMatchFailureTupleTo(const MatcherTuple& matchers, |
| const ValueTuple& values, |
| ::std::ostream* os) { |
| TuplePrefix<std::tuple_size<MatcherTuple>::value>::ExplainMatchFailuresTo( |
| matchers, values, os); |
| } |
| |
| // TransformTupleValues and its helper. |
| // |
| // TransformTupleValuesHelper hides the internal machinery that |
| // TransformTupleValues uses to implement a tuple traversal. |
| template <typename Tuple, typename Func, typename OutIter> |
| class TransformTupleValuesHelper { |
| private: |
| typedef ::std::tuple_size<Tuple> TupleSize; |
| |
| public: |
| // For each member of tuple 't', taken in order, evaluates '*out++ = f(t)'. |
| // Returns the final value of 'out' in case the caller needs it. |
| static OutIter Run(Func f, const Tuple& t, OutIter out) { |
| return IterateOverTuple<Tuple, TupleSize::value>()(f, t, out); |
| } |
| |
| private: |
| template <typename Tup, size_t kRemainingSize> |
| struct IterateOverTuple { |
| OutIter operator() (Func f, const Tup& t, OutIter out) const { |
| *out++ = f(::std::get<TupleSize::value - kRemainingSize>(t)); |
| return IterateOverTuple<Tup, kRemainingSize - 1>()(f, t, out); |
| } |
| }; |
| template <typename Tup> |
| struct IterateOverTuple<Tup, 0> { |
| OutIter operator() (Func /* f */, const Tup& /* t */, OutIter out) const { |
| return out; |
| } |
| }; |
| }; |
| |
| // Successively invokes 'f(element)' on each element of the tuple 't', |
| // appending each result to the 'out' iterator. Returns the final value |
| // of 'out'. |
| template <typename Tuple, typename Func, typename OutIter> |
| OutIter TransformTupleValues(Func f, const Tuple& t, OutIter out) { |
| return TransformTupleValuesHelper<Tuple, Func, OutIter>::Run(f, t, out); |
| } |
| |
| // Implements _, a matcher that matches any value of any |
| // type. This is a polymorphic matcher, so we need a template type |
| // conversion operator to make it appearing as a Matcher<T> for any |
| // type T. |
| class AnythingMatcher { |
| public: |
| using is_gtest_matcher = void; |
| |
| template <typename T> |
| bool MatchAndExplain(const T& /* x */, std::ostream* /* listener */) const { |
| return true; |
| } |
| void DescribeTo(std::ostream* os) const { *os << "is anything"; } |
| void DescribeNegationTo(::std::ostream* os) const { |
| // This is mostly for completeness' sake, as it's not very useful |
| // to write Not(A<bool>()). However we cannot completely rule out |
| // such a possibility, and it doesn't hurt to be prepared. |
| *os << "never matches"; |
| } |
| }; |
| |
| // Implements the polymorphic IsNull() matcher, which matches any raw or smart |
| // pointer that is NULL. |
| class IsNullMatcher { |
| public: |
| template <typename Pointer> |
| bool MatchAndExplain(const Pointer& p, |
| MatchResultListener* /* listener */) const { |
| return p == nullptr; |
| } |
| |
| void DescribeTo(::std::ostream* os) const { *os << "is NULL"; } |
| void DescribeNegationTo(::std::ostream* os) const { |
| *os << "isn't NULL"; |
| } |
| }; |
| |
| // Implements the polymorphic NotNull() matcher, which matches any raw or smart |
| // pointer that is not NULL. |
| class NotNullMatcher { |
| public: |
| template <typename Pointer> |
| bool MatchAndExplain(const Pointer& p, |
| MatchResultListener* /* listener */) const { |
| return p != nullptr; |
| } |
| |
| void DescribeTo(::std::ostream* os) const { *os << "isn't NULL"; } |
| void DescribeNegationTo(::std::ostream* os) const { |
| *os << "is NULL"; |
| } |
| }; |
| |
| // Ref(variable) matches any argument that is a reference to |
| // 'variable'. This matcher is polymorphic as it can match any |
| // super type of the type of 'variable'. |
| // |
| // The RefMatcher template class implements Ref(variable). It can |
| // only be instantiated with a reference type. This prevents a user |
| // from mistakenly using Ref(x) to match a non-reference function |
| // argument. For example, the following will righteously cause a |
| // compiler error: |
| // |
| // int n; |
| // Matcher<int> m1 = Ref(n); // This won't compile. |
| // Matcher<int&> m2 = Ref(n); // This will compile. |
| template <typename T> |
| class RefMatcher; |
| |
| template <typename T> |
| class RefMatcher<T&> { |
| // Google Mock is a generic framework and thus needs to support |
| // mocking any function types, including those that take non-const |
| // reference arguments. Therefore the template parameter T (and |
| // Super below) can be instantiated to either a const type or a |
| // non-const type. |
| public: |
| // RefMatcher() takes a T& instead of const T&, as we want the |
| // compiler to catch using Ref(const_value) as a matcher for a |
| // non-const reference. |
| explicit RefMatcher(T& x) : object_(x) {} // NOLINT |
| |
| template <typename Super> |
| operator Matcher<Super&>() const { |
| // By passing object_ (type T&) to Impl(), which expects a Super&, |
| // we make sure that Super is a super type of T. In particular, |
| // this catches using Ref(const_value) as a matcher for a |
| // non-const reference, as you cannot implicitly convert a const |
| // reference to a non-const reference. |
| return MakeMatcher(new Impl<Super>(object_)); |
| } |
| |
| private: |
| template <typename Super> |
| class Impl : public MatcherInterface<Super&> { |
| public: |
| explicit Impl(Super& x) : object_(x) {} // NOLINT |
| |
| // MatchAndExplain() takes a Super& (as opposed to const Super&) |
| // in order to match the interface MatcherInterface<Super&>. |
| bool MatchAndExplain(Super& x, |
| MatchResultListener* listener) const override { |
| *listener << "which is located @" << static_cast<const void*>(&x); |
| return &x == &object_; |
| } |
| |
| void DescribeTo(::std::ostream* os) const override { |
| *os << "references the variable "; |
| UniversalPrinter<Super&>::Print(object_, os); |
| } |
| |
| void DescribeNegationTo(::std::ostream* os) const override { |
| *os << "does not reference the variable "; |
| UniversalPrinter<Super&>::Print(object_, os); |
| } |
| |
| private: |
| const Super& object_; |
| }; |
| |
| T& object_; |
| }; |
| |
| // Polymorphic helper functions for narrow and wide string matchers. |
| inline bool CaseInsensitiveCStringEquals(const char* lhs, const char* rhs) { |
| return String::CaseInsensitiveCStringEquals(lhs, rhs); |
| } |
| |
| inline bool CaseInsensitiveCStringEquals(const wchar_t* lhs, |
| const wchar_t* rhs) { |
| return String::CaseInsensitiveWideCStringEquals(lhs, rhs); |
| } |
| |
| // String comparison for narrow or wide strings that can have embedded NUL |
| // characters. |
| template <typename StringType> |
| bool CaseInsensitiveStringEquals(const StringType& s1, |
| const StringType& s2) { |
| // Are the heads equal? |
| if (!CaseInsensitiveCStringEquals(s1.c_str(), s2.c_str())) { |
| return false; |
| } |
| |
| // Skip the equal heads. |
| const typename StringType::value_type nul = 0; |
| const size_t i1 = s1.find(nul), i2 = s2.find(nul); |
| |
| // Are we at the end of either s1 or s2? |
| if (i1 == StringType::npos || i2 == StringType::npos) { |
| return i1 == i2; |
| } |
| |
| // Are the tails equal? |
| return CaseInsensitiveStringEquals(s1.substr(i1 + 1), s2.substr(i2 + 1)); |
| } |
| |
| // String matchers. |
| |
| // Implements equality-based string matchers like StrEq, StrCaseNe, and etc. |
| template <typename StringType> |
| class StrEqualityMatcher { |
| public: |
| StrEqualityMatcher(StringType str, bool expect_eq, bool case_sensitive) |
| : string_(std::move(str)), |
| expect_eq_(expect_eq), |
| case_sensitive_(case_sensitive) {} |
| |
| #if GTEST_INTERNAL_HAS_STRING_VIEW |
| bool MatchAndExplain(const internal::StringView& s, |
| MatchResultListener* listener) const { |
| // This should fail to compile if StringView is used with wide |
| // strings. |
| const StringType& str = std::string(s); |
| return MatchAndExplain(str, listener); |
| } |
| #endif // GTEST_INTERNAL_HAS_STRING_VIEW |
| |
| // Accepts pointer types, particularly: |
| // const char* |
| // char* |
| // const wchar_t* |
| // wchar_t* |
| template <typename CharType> |
| bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { |
| if (s == nullptr) { |
| return !expect_eq_; |
| } |
| return MatchAndExplain(StringType(s), listener); |
| } |
| |
| // Matches anything that can convert to StringType. |
| // |
| // This is a template, not just a plain function with const StringType&, |
| // because StringView has some interfering non-explicit constructors. |
| template <typename MatcheeStringType> |
| bool MatchAndExplain(const MatcheeStringType& s, |
| MatchResultListener* /* listener */) const { |
| const StringType s2(s); |
| const bool eq = case_sensitive_ ? s2 == string_ : |
| CaseInsensitiveStringEquals(s2, string_); |
| return expect_eq_ == eq; |
| } |
| |
| void DescribeTo(::std::ostream* os) const { |
| DescribeToHelper(expect_eq_, os); |
| } |
| |
| void DescribeNegationTo(::std::ostream* os) const { |
| DescribeToHelper(!expect_eq_, os); |
| } |
| |
| private: |
| void DescribeToHelper(bool expect_eq, ::std::ostream* os) const { |
| *os << (expect_eq ? "is " : "isn't "); |
| *os << "equal to "; |
| if (!case_sensitive_) { |
| *os << "(ignoring case) "; |
| } |
| UniversalPrint(string_, os); |
| } |
| |
| const StringType string_; |
| const bool expect_eq_; |
| const bool case_sensitive_; |
| }; |
| |
| // Implements the polymorphic HasSubstr(substring) matcher, which |
| // can be used as a Matcher<T> as long as T can be converted to a |
| // string. |
| template <typename StringType> |
| class HasSubstrMatcher { |
| public: |
| explicit HasSubstrMatcher(const StringType& substring) |
| : substring_(substring) {} |
| |
| #if GTEST_INTERNAL_HAS_STRING_VIEW |
| bool MatchAndExplain(const internal::StringView& s, |
| MatchResultListener* listener) const { |
| // This should fail to compile if StringView is used with wide |
| // strings. |
| const StringType& str = std::string(s); |
| return MatchAndExplain(str, listener); |
| } |
| #endif // GTEST_INTERNAL_HAS_STRING_VIEW |
| |
| // Accepts pointer types, particularly: |
| // const char* |
| // char* |
| // const wchar_t* |
| // wchar_t* |
| template <typename CharType> |
| bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { |
| return s != nullptr && MatchAndExplain(StringType(s), listener); |
| } |
| |
| // Matches anything that can convert to StringType. |
| // |
| // This is a template, not just a plain function with const StringType&, |
| // because StringView has some interfering non-explicit constructors. |
| template <typename MatcheeStringType> |
| bool MatchAndExplain(const MatcheeStringType& s, |
| MatchResultListener* /* listener */) const { |
| return StringType(s).find(substring_) != StringType::npos; |
| } |
| |
| // Describes what this matcher matches. |
| void DescribeTo(::std::ostream* os) const { |
| *os << "has substring "; |
| UniversalPrint(substring_, os); |
| } |
| |
| void DescribeNegationTo(::std::ostream* os) const { |
| *os << "has no substring "; |
| UniversalPrint(substring_, os); |
| } |
| |
| private: |
| const StringType substring_; |
| }; |
| |
| // Implements the polymorphic StartsWith(substring) matcher, which |
| // can be used as a Matcher<T> as long as T can be converted to a |
| // string. |
| template <typename StringType> |
| class StartsWithMatcher { |
| public: |
| explicit StartsWithMatcher(const StringType& prefix) : prefix_(prefix) { |
| } |
| |
| #if GTEST_INTERNAL_HAS_STRING_VIEW |
| bool MatchAndExplain(const internal::StringView& s, |
| MatchResultListener* listener) const { |
| // This should fail to compile if StringView is used with wide |
| // strings. |
| const StringType& str = std::string(s); |
| return MatchAndExplain(str, listener); |
| } |
| #endif // GTEST_INTERNAL_HAS_STRING_VIEW |
| |
| // Accepts pointer types, particularly: |
| // const char* |
| // char* |
| // const wchar_t* |
| // wchar_t* |
| template <typename CharType> |
| bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { |
| return s != nullptr && MatchAndExplain(StringType(s), listener); |
| } |
| |
| // Matches anything that can convert to StringType. |
| // |
| // This is a template, not just a plain function with const StringType&, |
| // because StringView has some interfering non-explicit constructors. |
| template <typename MatcheeStringType> |
| bool MatchAndExplain(const MatcheeStringType& s, |
| MatchResultListener* /* listener */) const { |
| const StringType& s2(s); |
| return s2.length() >= prefix_.length() && |
| s2.substr(0, prefix_.length()) == prefix_; |
| } |
| |
| void DescribeTo(::std::ostream* os) const { |
| *os << "starts with "; |
| UniversalPrint(prefix_, os); |
| } |
| |
| void DescribeNegationTo(::std::ostream* os) const { |
| *os << "doesn't start with "; |
| UniversalPrint(prefix_, os); |
| } |
| |
| private: |
| const StringType prefix_; |
| }; |
| |
| // Implements the polymorphic EndsWith(substring) matcher, which |
| // can be used as a Matcher<T> as long as T can be converted to a |
| // string. |
| template <typename StringType> |
| class EndsWithMatcher { |
| public: |
| explicit EndsWithMatcher(const StringType& suffix) : suffix_(suffix) {} |
| |
| #if GTEST_INTERNAL_HAS_STRING_VIEW |
| bool MatchAndExplain(const internal::StringView& s, |
| MatchResultListener* listener) const { |
| // This should fail to compile if StringView is used with wide |
| // strings. |
| const StringType& str = std::string(s); |
| return MatchAndExplain(str, listener); |
| } |
| #endif // GTEST_INTERNAL_HAS_STRING_VIEW |
| |
| // Accepts pointer types, particularly: |
| // const char* |
| // char* |
| // const wchar_t* |
| // wchar_t* |
| template <typename CharType> |
| bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { |
| return s != nullptr && MatchAndExplain(StringType(s), listener); |
| } |
| |
| // Matches anything that can convert to StringType. |
| // |
| // This is a template, not just a plain function with const StringType&, |
| // because StringView has some interfering non-explicit constructors. |
| template <typename MatcheeStringType> |
| bool MatchAndExplain(const MatcheeStringType& s, |
| MatchResultListener* /* listener */) const { |
| const StringType& s2(s); |
| return s2.length() >= suffix_.length() && |
| s2.substr(s2.length() - suffix_.length()) == suffix_; |
| } |
| |
| void DescribeTo(::std::ostream* os) const { |
| *os << "ends with "; |
| UniversalPrint(suffix_, os); |
| } |
| |
| void DescribeNegationTo(::std::ostream* os) const { |
| *os << "doesn't end with "; |
| UniversalPrint(suffix_, os); |
| } |
| |
| private: |
| const StringType suffix_; |
| }; |
| |
| // Implements a matcher that compares the two fields of a 2-tuple |
| // using one of the ==, <=, <, etc, operators. The two fields being |
| // compared don't have to have the same type. |
| // |
| // The matcher defined here is polymorphic (for example, Eq() can be |
| // used to match a std::tuple<int, short>, a std::tuple<const long&, double>, |
| // etc). Therefore we use a template type conversion operator in the |
| // implementation. |
| template <typename D, typename Op> |
| class PairMatchBase { |
| public: |
| template <typename T1, typename T2> |
| operator Matcher<::std::tuple<T1, T2>>() const { |
| return Matcher<::std::tuple<T1, T2>>(new Impl<const ::std::tuple<T1, T2>&>); |
| } |
| template <typename T1, typename T2> |
| operator Matcher<const ::std::tuple<T1, T2>&>() const { |
| return MakeMatcher(new Impl<const ::std::tuple<T1, T2>&>); |
| } |
| |
| private: |
| static ::std::ostream& GetDesc(::std::ostream& os) { // NOLINT |
| return os << D::Desc(); |
| } |
| |
| template <typename Tuple> |
| class Impl : public MatcherInterface<Tuple> { |
| public: |
| bool MatchAndExplain(Tuple args, |
| MatchResultListener* /* listener */) const override { |
| return Op()(::std::get<0>(args), ::std::get<1>(args)); |
| } |
| void DescribeTo(::std::ostream* os) const override { |
| *os << "are " << GetDesc; |
| } |
| void DescribeNegationTo(::std::ostream* os) const override { |
| *os << "aren't " << GetDesc; |
| } |
| }; |
| }; |
| |
| class Eq2Matcher : public PairMatchBase<Eq2Matcher, AnyEq> { |
| public: |
| static const char* Desc() { return "an equal pair"; } |
| }; |
| class Ne2Matcher : public PairMatchBase<Ne2Matcher, AnyNe> { |
| public: |
| static const char* Desc() { return "an unequal pair"; } |
| }; |
| class Lt2Matcher : public PairMatchBase<Lt2Matcher, AnyLt> { |
| public: |
| static const char* Desc() { return "a pair where the first < the second"; } |
| }; |
| class Gt2Matcher : public PairMatchBase<Gt2Matcher, AnyGt> { |
| public: |
| static const char* Desc() { return "a pair where the first > the second"; } |
| }; |
| class Le2Matcher : public PairMatchBase<Le2Matcher, AnyLe> { |
| public: |
| static const char* Desc() { return "a pair where the first <= the second"; } |
| }; |
| class Ge2Matcher : public PairMatchBase<Ge2Matcher, AnyGe> { |
| public: |
| static const char* Desc() { return "a pair where the first >= the second"; } |
| }; |
| |
| // Implements the Not(...) matcher for a particular argument type T. |
| // We do not nest it inside the NotMatcher class template, as that |
| // will prevent different instantiations of NotMatcher from sharing |
| // the same NotMatcherImpl<T> class. |
| template <typename T> |
| class NotMatcherImpl : public MatcherInterface<const T&> { |
| public: |
| explicit NotMatcherImpl(const Matcher<T>& matcher) |
| : matcher_(matcher) {} |
| |
| bool MatchAndExplain(const T& x, |
| MatchResultListener* listener) const override { |
| return !matcher_.MatchAndExplain(x, listener); |
| } |
| |
| void DescribeTo(::std::ostream* os) const override { |
| matcher_.DescribeNegationTo(os); |
| } |
| |
| void DescribeNegationTo(::std::ostream* os) const override { |
| matcher_.DescribeTo(os); |
| } |
| |
| private: |
| const Matcher<T> matcher_; |
| }; |
| |
| // Implements the Not(m) matcher, which matches a value that doesn't |
| // match matcher m. |
| template <typename InnerMatcher> |
| class NotMatcher { |
| public: |
| explicit NotMatcher(InnerMatcher matcher) : matcher_(matcher) {} |
| |
| // This template type conversion operator allows Not(m) to be used |
| // to match any type m can match. |
| template <typename T> |
| operator Matcher<T>() const { |
| return Matcher<T>(new NotMatcherImpl<T>(SafeMatcherCast<T>(matcher_))); |
| } |
| |
| private: |
| InnerMatcher matcher_; |
| }; |
| |
| // Implements the AllOf(m1, m2) matcher for a particular argument type |
| // T. We do not nest it inside the BothOfMatcher class template, as |
| // that will prevent different instantiations of BothOfMatcher from |
| // sharing the same BothOfMatcherImpl<T> class. |
| template <typename T> |
| class AllOfMatcherImpl : public MatcherInterface<const T&> { |
| public: |
| explicit AllOfMatcherImpl(std::vector<Matcher<T> > matchers) |
| : matchers_(std::move(matchers)) {} |
| |
| void DescribeTo(::std::ostream* os) const override { |
| *os << "("; |
| for (size_t i = 0; i < matchers_.size(); ++i) { |
| if (i != 0) *os << ") and ("; |
| matchers_[i].DescribeTo(os); |
| } |
| *os << ")"; |
| } |
| |
| void DescribeNegationTo(::std::ostream* os) const override { |
| *os << "("; |
| for (size_t i = 0; i < matchers_.size(); ++i) { |
| if (i != 0) *os << ") or ("; |
| matchers_[i].DescribeNegationTo(os); |
| } |
| *os << ")"; |
| } |
| |
| bool MatchAndExplain(const T& x, |
| MatchResultListener* listener) const override { |
| // If either matcher1_ or matcher2_ doesn't match x, we only need |
| // to explain why one of them fails. |
| std::string all_match_result; |
| |
| for (size_t i = 0; i < matchers_.size(); ++i) { |
| StringMatchResultListener slistener; |
| if (matchers_[i].MatchAndExplain(x, &slistener)) { |
| if (all_match_result.empty()) { |
| all_match_result = slistener.str(); |
| } else { |
| std::string result = slistener.str(); |
| if (!result.empty()) { |
| all_match_result += ", and "; |
| all_match_result += result; |
| } |
| } |
| } else { |
| *listener << slistener.str(); |
| return false; |
| } |
| } |
| |
| // Otherwise we need to explain why *both* of them match. |
| *listener << all_match_result; |
| return true; |
| } |
| |
| private: |
| const std::vector<Matcher<T> > matchers_; |
| }; |
| |
| // VariadicMatcher is used for the variadic implementation of |
| // AllOf(m_1, m_2, ...) and AnyOf(m_1, m_2, ...). |
| // CombiningMatcher<T> is used to recursively combine the provided matchers |
| // (of type Args...). |
| template <template <typename T> class CombiningMatcher, typename... Args> |
| class VariadicMatcher { |
| public: |
| VariadicMatcher(const Args&... matchers) // NOLINT |
| : matchers_(matchers...) { |
| static_assert(sizeof...(Args) > 0, "Must have at least one matcher."); |
| } |
| |
| VariadicMatcher(const VariadicMatcher&) = default; |
| VariadicMatcher& operator=(const VariadicMatcher&) = delete; |
| |
| // This template type conversion operator allows an |
| // VariadicMatcher<Matcher1, Matcher2...> object to match any type that |
| // all of the provided matchers (Matcher1, Matcher2, ...) can match. |
| template <typename T> |
| operator Matcher<T>() const { |
| std::vector<Matcher<T> > values; |
| CreateVariadicMatcher<T>(&values, std::integral_constant<size_t, 0>()); |
| return Matcher<T>(new CombiningMatcher<T>(std::move(values))); |
| } |
| |
| private: |
| template <typename T, size_t I> |
| void CreateVariadicMatcher(std::vector<Matcher<T> >* values, |
| std::integral_constant<size_t, I>) const { |
| values->push_back(SafeMatcherCast<T>(std::get<I>(matchers_))); |
| CreateVariadicMatcher<T>(values, std::integral_constant<size_t, I + 1>()); |
| } |
| |
| template <typename T> |
| void CreateVariadicMatcher( |
| std::vector<Matcher<T> >*, |
| std::integral_constant<size_t, sizeof...(Args)>) const {} |
| |
| std::tuple<Args...> matchers_; |
| }; |
| |
| template <typename... Args> |
| using AllOfMatcher = VariadicMatcher<AllOfMatcherImpl, Args...>; |
| |
| // Implements the AnyOf(m1, m2) matcher for a particular argument type |
| // T. We do not nest it inside the AnyOfMatcher class template, as |
| // that will prevent different instantiations of AnyOfMatcher from |
| // sharing the same EitherOfMatcherImpl<T> class. |
| template <typename T> |
| class AnyOfMatcherImpl : public MatcherInterface<const T&> { |
| public: |
| explicit AnyOfMatcherImpl(std::vector<Matcher<T> > matchers) |
| : matchers_(std::move(matchers)) {} |
| |
| void DescribeTo(::std::ostream* os) const override { |
| *os << "("; |
| for (size_t i = 0; i < matchers_.size(); ++i) { |
| if (i != 0) *os << ") or ("; |
| matchers_[i].DescribeTo(os); |
| } |
| *os << ")"; |
| } |
| |
| void DescribeNegationTo(::std::ostream* os) const override { |
| *os << "("; |
| for (size_t i = 0; i < matchers_.size(); ++i) { |
| if (i != 0) *os << ") and ("; |
| matchers_[i].DescribeNegationTo(os); |
| } |
| *os << ")"; |
| } |
| |
| bool MatchAndExplain(const T& x, |
| MatchResultListener* listener) const override { |
| std::string no_match_result; |
| |
| // If either matcher1_ or matcher2_ matches x, we just need to |
| // explain why *one* of them matches. |
| for (size_t i = 0; i < matchers_.size(); ++i) { |
| StringMatchResultListener slistener; |
| if (matchers_[i].MatchAndExplain(x, &slistener)) { |
| *listener << slistener.str(); |
| return true; |
| } else { |
| if (no_match_result.empty()) { |
| no_match_result = slistener.str(); |
| } else { |
| std::string result = slistener.str(); |
| if (!result.empty()) { |
| no_match_result += ", and "; |
| no_match_result += result; |
| } |
| } |
| } |
| } |
| |
| // Otherwise we need to explain why *both* of them fail. |
| *listener << no_match_result; |
| return false; |
| } |
| |
| private: |
| const std::vector<Matcher<T> > matchers_; |
| }; |
| |
| // AnyOfMatcher is used for the variadic implementation of AnyOf(m_1, m_2, ...). |
| template <typename... Args> |
| using AnyOfMatcher = VariadicMatcher<AnyOfMatcherImpl, Args...>; |
| |
| // Wrapper for implementation of Any/AllOfArray(). |
| template <template <class> class MatcherImpl, typename T> |
| class SomeOfArrayMatcher { |
| public: |
| // Constructs the matcher from a sequence of element values or |
| // element matchers. |
| template <typename Iter> |
| SomeOfArrayMatcher(Iter first, Iter last) : matchers_(first, last) {} |
| |
| template <typename U> |
| operator Matcher<U>() const { // NOLINT |
| using RawU = typename std::decay<U>::type; |
| std::vector<Matcher<RawU>> matchers; |
| for (const auto& matcher : matchers_) { |
| matchers.push_back(MatcherCast<RawU>(matcher)); |
| } |
| return Matcher<U>(new MatcherImpl<RawU>(std::move(matchers))); |
| } |
| |
| private: |
| const ::std::vector<T> matchers_; |
| }; |
| |
| template <typename T> |
| using AllOfArrayMatcher = SomeOfArrayMatcher<AllOfMatcherImpl, T>; |
| |
| template <typename T> |
| using AnyOfArrayMatcher = SomeOfArrayMatcher<AnyOfMatcherImpl, T>; |
| |
| // Used for implementing Truly(pred), which turns a predicate into a |
| // matcher. |
| template <typename Predicate> |
| class TrulyMatcher { |
| public: |
| explicit TrulyMatcher(Predicate pred) : predicate_(pred) {} |
| |
| // This method template allows Truly(pred) to be used as a matcher |
| // for type T where T is the argument type of predicate 'pred'. The |
| // argument is passed by reference as the predicate may be |
| // interested in the address of the argument. |
| template <typename T> |
| bool MatchAndExplain(T& x, // NOLINT |
| MatchResultListener* listener) const { |
| // Without the if-statement, MSVC sometimes warns about converting |
| // a value to bool (warning 4800). |
| // |
| // We cannot write 'return !!predicate_(x);' as that doesn't work |
| // when predicate_(x) returns a class convertible to bool but |
| // having no operator!(). |
| if (predicate_(x)) |
| return true; |
| *listener << "didn't satisfy the given predicate"; |
| return false; |
| } |
| |
| void DescribeTo(::std::ostream* os) const { |
| *os << "satisfies the given predicate"; |
| } |
| |
| void DescribeNegationTo(::std::ostream* os) const { |
| *os << "doesn't satisfy the given predicate"; |
| } |
| |
| private: |
| Predicate predicate_; |
| }; |
| |
| // Used for implementing Matches(matcher), which turns a matcher into |
| // a predicate. |
| template <typename M> |
| class MatcherAsPredicate { |
| public: |
| explicit MatcherAsPredicate(M matcher) : matcher_(matcher) {} |
| |
| // This template operator() allows Matches(m) to be used as a |
| // predicate on type T where m is a matcher on type T. |
| // |
| // The argument x is passed by reference instead of by value, as |
| // some matcher may be interested in its address (e.g. as in |
| // Matches(Ref(n))(x)). |
| template <typename T> |
| bool operator()(const T& x) const { |
| // We let matcher_ commit to a particular type here instead of |
| // when the MatcherAsPredicate object was constructed. This |
| // allows us to write Matches(m) where m is a polymorphic matcher |
| // (e.g. Eq(5)). |
| // |
| // If we write Matcher<T>(matcher_).Matches(x) here, it won't |
| // compile when matcher_ has type Matcher<const T&>; if we write |
| // Matcher<const T&>(matcher_).Matches(x) here, it won't compile |
| // when matcher_ has type Matcher<T>; if we just write |
| // matcher_.Matches(x), it won't compile when matcher_ is |
| // polymorphic, e.g. Eq(5). |
| // |
| // MatcherCast<const T&>() is necessary for making the code work |
| // in all of the above situations. |
| return MatcherCast<const T&>(matcher_).Matches(x); |
| } |
| |
| private: |
| M matcher_; |
| }; |
| |
| // For implementing ASSERT_THAT() and EXPECT_THAT(). The template |
| // argument M must be a type that can be converted to a matcher. |
| template <typename M> |
| class PredicateFormatterFromMatcher { |
| public: |
| explicit PredicateFormatterFromMatcher(M m) : matcher_(std::move(m)) {} |
| |
| // This template () operator allows a PredicateFormatterFromMatcher |
| // object to act as a predicate-formatter suitable for using with |
| // Google Test's EXPECT_PRED_FORMAT1() macro. |
| template <typename T> |
| AssertionResult operator()(const char* value_text, const T& x) const { |
| // We convert matcher_ to a Matcher<const T&> *now* instead of |
| // when the PredicateFormatterFromMatcher object was constructed, |
| // as matcher_ may be polymorphic (e.g. NotNull()) and we won't |
| // know which type to instantiate it to until we actually see the |
| // type of x here. |
| // |
| // We write SafeMatcherCast<const T&>(matcher_) instead of |
| // Matcher<const T&>(matcher_), as the latter won't compile when |
| // matcher_ has type Matcher<T> (e.g. An<int>()). |
| // We don't write MatcherCast<const T&> either, as that allows |
| // potentially unsafe downcasting of the matcher argument. |
| const Matcher<const T&> matcher = SafeMatcherCast<const T&>(matcher_); |
| |
| // The expected path here is that the matcher should match (i.e. that most |
| // tests pass) so optimize for this case. |
| if (matcher.Matches(x)) { |
| return AssertionSuccess(); |
| } |
| |
| ::std::stringstream ss; |
| ss << "Value of: " << value_text << "\n" |
| << "Expected: "; |
| matcher.DescribeTo(&ss); |
| |
| // Rerun the matcher to "PrintAndExplain" the failure. |
| StringMatchResultListener listener; |
| if (MatchPrintAndExplain(x, matcher, &listener)) { |
| ss << "\n The matcher failed on the initial attempt; but passed when " |
| "rerun to generate the explanation."; |
| } |
| ss << "\n Actual: " << listener.str(); |
| return AssertionFailure() << ss.str(); |
| } |
| |
| private: |
| const M matcher_; |
| }; |
| |
| // A helper function for converting a matcher to a predicate-formatter |
| // without the user needing to explicitly write the type. This is |
| // used for implementing ASSERT_THAT() and EXPECT_THAT(). |
| // Implementation detail: 'matcher' is received by-value to force decaying. |
| template <typename M> |
| inline PredicateFormatterFromMatcher<M> |
| MakePredicateFormatterFromMatcher(M matcher) { |
| return PredicateFormatterFromMatcher<M>(std::move(matcher)); |
| } |
| |
| // Implements the polymorphic IsNan() matcher, which matches any floating type |
| // value that is Nan. |
| class IsNanMatcher { |
| public: |
| template <typename FloatType> |
| bool MatchAndExplain(const FloatType& f, |
| MatchResultListener* /* listener */) const { |
| return (::std::isnan)(f); |
| } |
| |
| void DescribeTo(::std::ostream* os) const { *os << "is NaN"; } |
| void DescribeNegationTo(::std::ostream* os) const { |
| *os << "isn't NaN"; |
| } |
| }; |
| |
| // Implements the polymorphic floating point equality matcher, which matches |
| // two float values using ULP-based approximation or, optionally, a |
| // user-specified epsilon. The template is meant to be instantiated with |
| // FloatType being either float or double. |
| template <typename FloatType> |
| class FloatingEqMatcher { |
| public: |
| // Constructor for FloatingEqMatcher. |
| // The matcher's input will be compared with expected. The matcher treats two |
| // NANs as equal if nan_eq_nan is true. Otherwise, under IEEE standards, |
| // equality comparisons between NANs will always return false. We specify a |
| // negative max_abs_error_ term to indicate that ULP-based approximation will |
| // be used for comparison. |
| FloatingEqMatcher(FloatType expected, bool nan_eq_nan) : |
| expected_(expected), nan_eq_nan_(nan_eq_nan), max_abs_error_(-1) { |
| } |
| |
| // Constructor that supports a user-specified max_abs_error that will be used |
| // for comparison instead of ULP-based approximation. The max absolute |
| // should be non-negative. |
| FloatingEqMatcher(FloatType expected, bool nan_eq_nan, |
| FloatType max_abs_error) |
| : expected_(expected), |
| nan_eq_nan_(nan_eq_nan), |
| max_abs_error_(max_abs_error) { |
| GTEST_CHECK_(max_abs_error >= 0) |
| << ", where max_abs_error is" << max_abs_error; |
| } |
| |
| // Implements floating point equality matcher as a Matcher<T>. |
| template <typename T> |
| class Impl : public MatcherInterface<T> { |
| public: |
| Impl(FloatType expected, bool nan_eq_nan, FloatType max_abs_error) |
| : expected_(expected), |
| nan_eq_nan_(nan_eq_nan), |
| max_abs_error_(max_abs_error) {} |
| |
| bool MatchAndExplain(T value, |
| MatchResultListener* listener) const override { |
| const FloatingPoint<FloatType> actual(value), expected(expected_); |
| |
| // Compares NaNs first, if nan_eq_nan_ is true. |
| if (actual.is_nan() || expected.is_nan()) { |
| if (actual.is_nan() && expected.is_nan()) { |
| return nan_eq_nan_; |
| } |
| // One is nan; the other is not nan. |
| return false; |
| } |
| if (HasMaxAbsError()) { |
| // We perform an equality check so that inf will match inf, regardless |
| // of error bounds. If the result of value - expected_ would result in |
| // overflow or if either value is inf, the default result is infinity, |
| // which should only match if max_abs_error_ is also infinity. |
| if (value == expected_) { |
| return true; |
| } |
| |
| const FloatType diff = value - expected_; |
| if (::std::fabs(diff) <= max_abs_error_) { |
| return true; |
| } |
| |
| if (listener->IsInterested()) { |
| *listener << "which is " << diff << " from " << expected_; |
| } |
| return false; |
| } else { |
| return actual.AlmostEquals(expected); |
| } |
| } |
| |
| void DescribeTo(::std::ostream* os) const override { |
| // os->precision() returns the previously set precision, which we |
| // store to restore the ostream to its original configuration |
| // after outputting. |
| const ::std::streamsize old_precision = os->precision( |
| ::std::numeric_limits<FloatType>::digits10 + 2); |
| if (FloatingPoint<FloatType>(expected_).is_nan()) { |
| if (nan_eq_nan_) { |
| *os << "is NaN"; |
| } else { |
| *os << "never matches"; |
| } |
| } else { |
| *os << "is approximately " << expected_; |
| if (HasMaxAbsError()) { |
| *os << " (absolute error <= " << max_abs_error_ << ")"; |
| } |
| } |
| os->precision(old_precision); |
| } |
| |
| void DescribeNegationTo(::std::ostream* os) const override { |
| // As before, get original precision. |
| const ::std::streamsize old_precision = os->precision( |
| ::std::numeric_limits<FloatType>::digits10 + 2); |
| if (FloatingPoint<FloatType>(expected_).is_nan()) { |
| if (nan_eq_nan_) { |
| *os << "isn't NaN"; |
| } else { |
| *os << "is anything"; |
| } |
| } else { |
| *os << "isn't approximately " << expected_; |
| if (HasMaxAbsError()) { |
| *os << " (absolute error > " << max_abs_error_ << ")"; |
| } |
| } |
| // Restore original precision. |
| os->precision(old_precision); |
| } |
| |
| private: |
| bool HasMaxAbsError() const { |
| return max_abs_error_ >= 0; |
| } |
| |
| const FloatType expected_; |
| const bool nan_eq_nan_; |
| // max_abs_error will be used for value comparison when >= 0. |
| const FloatType max_abs_error_; |
| }; |
| |
| // The following 3 type conversion operators allow FloatEq(expected) and |
| // NanSensitiveFloatEq(expected) to be used as a Matcher<float>, a |
| // Matcher<const float&>, or a Matcher<float&>, but nothing else. |
| operator Matcher<FloatType>() const { |
| return MakeMatcher( |
| new Impl<FloatType>(expected_, nan_eq_nan_, max_abs_error_)); |
| } |
| |
| operator Matcher<const FloatType&>() const { |
| return MakeMatcher( |
| new Impl<const FloatType&>(expected_, nan_eq_nan_, max_abs_error_)); |
| } |
| |
| operator Matcher<FloatType&>() const { |
| return MakeMatcher( |
| new Impl<FloatType&>(expected_, nan_eq_nan_, max_abs_error_)); |
| } |
| |
| private: |
| const FloatType expected_; |
| const bool nan_eq_nan_; |
| // max_abs_error will be used for value comparison when >= 0. |
| const FloatType max_abs_error_; |
| }; |
| |
| // A 2-tuple ("binary") wrapper around FloatingEqMatcher: |
| // FloatingEq2Matcher() matches (x, y) by matching FloatingEqMatcher(x, false) |
| // against y, and FloatingEq2Matcher(e) matches FloatingEqMatcher(x, false, e) |
| // against y. The former implements "Eq", the latter "Near". At present, there |
| // is no version that compares NaNs as equal. |
| template <typename FloatType> |
| class FloatingEq2Matcher { |
| public: |
| FloatingEq2Matcher() { Init(-1, false); } |
| |
| explicit FloatingEq2Matcher(bool nan_eq_nan) { Init(-1, nan_eq_nan); } |
| |
| explicit FloatingEq2Matcher(FloatType max_abs_error) { |
| Init(max_abs_error, false); |
| } |
| |
| FloatingEq2Matcher(FloatType max_abs_error, bool nan_eq_nan) { |
| Init(max_abs_error, nan_eq_nan); |
| } |
| |
| template <typename T1, typename T2> |
| operator Matcher<::std::tuple<T1, T2>>() const { |
| return MakeMatcher( |
| new Impl<::std::tuple<T1, T2>>(max_abs_error_, nan_eq_nan_)); |
| } |
| template <typename T1, typename T2> |
| operator Matcher<const ::std::tuple<T1, T2>&>() const { |
| return MakeMatcher( |
| new Impl<const ::std::tuple<T1, T2>&>(max_abs_error_, nan_eq_nan_)); |
| } |
| |
| private: |
| static ::std::ostream& GetDesc(::std::ostream& os) { // NOLINT |
| return os << "an almost-equal pair"; |
| } |
| |
| template <typename Tuple> |
| class Impl : public MatcherInterface<Tuple> { |
| public: |
| Impl(FloatType max_abs_error, bool nan_eq_nan) : |
| max_abs_error_(max_abs_error), |
| nan_eq_nan_(nan_eq_nan) {} |
| |
| bool MatchAndExplain(Tuple args, |
| MatchResultListener* listener) const override { |
| if (max_abs_error_ == -1) { |
| FloatingEqMatcher<FloatType> fm(::std::get<0>(args), nan_eq_nan_); |
| return static_cast<Matcher<FloatType>>(fm).MatchAndExplain( |
| ::std::get<1>(args), listener); |
| } else { |
| FloatingEqMatcher<FloatType> fm(::std::get<0>(args), nan_eq_nan_, |
| max_abs_error_); |
| return static_cast<Matcher<FloatType>>(fm).MatchAndExplain( |
| ::std::get<1>(args), listener); |
| } |
| } |
| void DescribeTo(::std::ostream* os) const override { |
| *os << "are " << GetDesc; |
| } |
| void DescribeNegationTo(::std::ostream* os) const override { |
| *os << "aren't " << GetDesc; |
| } |
| |
| private: |
| FloatType max_abs_error_; |
| const bool nan_eq_nan_; |
| }; |
| |
| void Init(FloatType max_abs_error_val, bool nan_eq_nan_val) { |
| max_abs_error_ = max_abs_error_val; |
| nan_eq_nan_ = nan_eq_nan_val; |
| } |
| FloatType max_abs_error_; |
| bool nan_eq_nan_; |
| }; |
| |
| // Implements the Pointee(m) matcher for matching a pointer whose |
| // pointee matches matcher m. The pointer can be either raw or smart. |
| template <typename InnerMatcher> |
| class PointeeMatcher { |
| public: |
| explicit PointeeMatcher(const InnerMatcher& matcher) : matcher_(matcher) {} |
| |
| // This type conversion operator template allows Pointee(m) to be |
| // used as a matcher for any pointer type whose pointee type is |
| // compatible with the inner matcher, where type Pointer can be |
| // either a raw pointer or a smart pointer. |
| // |
| // The reason we do this instead of relying on |
| // MakePolymorphicMatcher() is that the latter is not flexible |
| // enough for implementing the DescribeTo() method of Pointee(). |
| template <typename Pointer> |
| operator Matcher<Pointer>() const { |
| return Matcher<Pointer>(new Impl<const Pointer&>(matcher_)); |
| } |
| |
| private: |
| // The monomorphic implementation that works for a particular pointer type. |
| template <typename Pointer> |
| class Impl : public MatcherInterface<Pointer> { |
| public: |
| using Pointee = |
| typename std::pointer_traits<GTEST_REMOVE_REFERENCE_AND_CONST_( |
| Pointer)>::element_type; |
| |
| explicit Impl(const InnerMatcher& matcher) |
| : matcher_(MatcherCast<const Pointee&>(matcher)) {} |
| |
| void DescribeTo(::std::ostream* os) const override { |
| *os << "points to a value that "; |
| matcher_.DescribeTo(os); |
| } |
| |
| void DescribeNegationTo(::std::ostream* os) const override { |
| *os << "does not point to a value that "; |
| matcher_.DescribeTo(os); |
| } |
| |
| bool MatchAndExplain(Pointer pointer, |
| MatchResultListener* listener) const override { |
| if (GetRawPointer(pointer) == nullptr) return false; |
| |
| *listener << "which points to "; |
| return MatchPrintAndExplain(*pointer, matcher_, listener); |
| } |
| |
| private: |
| const Matcher<const Pointee&> matcher_; |
| }; |
| |
| const InnerMatcher matcher_; |
| }; |
| |
| // Implements the Pointer(m) matcher |
| // Implements the Pointer(m) matcher for matching a pointer that matches matcher |
| // m. The pointer can be either raw or smart, and will match `m` against the |
| // raw pointer. |
| template <typename InnerMatcher> |
| class PointerMatcher { |
| public: |
| explicit PointerMatcher(const InnerMatcher& matcher) : matcher_(matcher) {} |
| |
| // This type conversion operator template allows Pointer(m) to be |
| // used as a matcher for any pointer type whose pointer type is |
| // compatible with the inner matcher, where type PointerType can be |
| // either a raw pointer or a smart pointer. |
| // |
| // The reason we do this instead of relying on |
| // MakePolymorphicMatcher() is that the latter is not flexible |
| // enough for implementing the DescribeTo() method of Pointer(). |
| template <typename PointerType> |
| operator Matcher<PointerType>() const { // NOLINT |
| return Matcher<PointerType>(new Impl<const PointerType&>(matcher_)); |
| } |
| |
| private: |
| // The monomorphic implementation that works for a particular pointer type. |
| template <typename PointerType> |
| class Impl : public MatcherInterface<PointerType> { |
| public: |
| using Pointer = |
| const typename std::pointer_traits<GTEST_REMOVE_REFERENCE_AND_CONST_( |
| PointerType)>::element_type*; |
| |
| explicit Impl(const InnerMatcher& matcher) |
| : matcher_(MatcherCast<Pointer>(matcher)) {} |
| |
| void DescribeTo(::std::ostream* os) const override { |
| *os << "is a pointer that "; |
| matcher_.DescribeTo(os); |
| } |
| |
| void DescribeNegationTo(::std::ostream* os) const override { |
| *os << "is not a pointer that "; |
| matcher_.DescribeTo(os); |
| } |
| |
| bool MatchAndExplain(PointerType pointer, |
| MatchResultListener* listener) const override { |
| *listener << "which is a pointer that "; |
| Pointer p = GetRawPointer(pointer); |
| return MatchPrintAndExplain(p, matcher_, listener); |
| } |
| |
| private: |
| Matcher<Pointer> matcher_; |
| }; |
| |
| const InnerMatcher matcher_; |
| }; |
| |
| #if GTEST_HAS_RTTI |
| // Implements the WhenDynamicCastTo<T>(m) matcher that matches a pointer or |
| // reference that matches inner_matcher when dynamic_cast<T> is applied. |
| // The result of dynamic_cast<To> is forwarded to the inner matcher. |
| // If To is a pointer and the cast fails, the inner matcher will receive NULL. |
| // If To is a reference and the cast fails, this matcher returns false |
| // immediately. |
| template <typename To> |
| class WhenDynamicCastToMatcherBase { |
| public: |
| explicit WhenDynamicCastToMatcherBase(const Matcher<To>& matcher) |
| : matcher_(matcher) {} |
| |
| void DescribeTo(::std::ostream* os) const { |
| GetCastTypeDescription(os); |
| matcher_.DescribeTo(os); |
| } |
| |
| void DescribeNegationTo(::std::ostream* os) const { |
| GetCastTypeDescription(os); |
| matcher_.DescribeNegationTo(os); |
| } |
| |
| protected: |
| const Matcher<To> matcher_; |
| |
| static std::string GetToName() { |
| return GetTypeName<To>(); |
| } |
| |
| private: |
| static void GetCastTypeDescription(::std::ostream* os) { |
| *os << "when dynamic_cast to " << GetToName() << ", "; |
| } |
| }; |
| |
| // Primary template. |
| // To is a pointer. Cast and forward the result. |
| template <typename To> |
| class WhenDynamicCastToMatcher : public WhenDynamicCastToMatcherBase<To> { |
| public: |
| explicit WhenDynamicCastToMatcher(const Matcher<To>& matcher) |
| : WhenDynamicCastToMatcherBase<To>(matcher) {} |
| |
| template <typename From> |
| bool MatchAndExplain(From from, MatchResultListener* listener) const { |
| To to = dynamic_cast<To>(from); |
| return MatchPrintAndExplain(to, this->matcher_, listener); |
| } |
| }; |
| |
| // Specialize for references. |
| // In this case we return false if the dynamic_cast fails. |
| template <typename To> |
| class WhenDynamicCastToMatcher<To&> : public WhenDynamicCastToMatcherBase<To&> { |
| public: |
| explicit WhenDynamicCastToMatcher(const Matcher<To&>& matcher) |
| : WhenDynamicCastToMatcherBase<To&>(matcher) {} |
| |
| template <typename From> |
| bool MatchAndExplain(From& from, MatchResultListener* listener) const { |
| // We don't want an std::bad_cast here, so do the cast with pointers. |
| To* to = dynamic_cast<To*>(&from); |
| if (to == nullptr) { |
| *listener << "which cannot be dynamic_cast to " << this->GetToName(); |
| return false; |
| } |
| return MatchPrintAndExplain(*to, this->matcher_, listener); |
| } |
| }; |
| #endif // GTEST_HAS_RTTI |
| |
| // Implements the Field() matcher for matching a field (i.e. member |
| // variable) of an object. |
| template <typename Class, typename FieldType> |
| class FieldMatcher { |
| public: |
| FieldMatcher(FieldType Class::*field, |
| const Matcher<const FieldType&>& matcher) |
| : field_(field), matcher_(matcher), whose_field_("whose given field ") {} |
| |
| FieldMatcher(const std::string& field_name, FieldType Class::*field, |
| const Matcher<const FieldType&>& matcher) |
| : field_(field), |
| matcher_(matcher), |
| whose_field_("whose field `" + field_name + "` ") {} |
| |
| void DescribeTo(::std::ostream* os) const { |
| *os << "is an object " << whose_field_; |
| matcher_.DescribeTo(os); |
| } |
| |
| void DescribeNegationTo(::std::ostream* os) const { |
| *os << "is an object " << whose_field_; |
| matcher_.DescribeNegationTo(os); |
| } |
| |
| template <typename T> |
| bool MatchAndExplain(const T& value, MatchResultListener* listener) const { |
| // FIXME: The dispatch on std::is_pointer was introduced as a workaround for |
| // a compiler bug, and can now be removed. |
| return MatchAndExplainImpl( |
| typename std::is_pointer<typename std::remove_const<T>::type>::type(), |
| value, listener); |
| } |
| |
| private: |
| bool MatchAndExplainImpl(std::false_type /* is_not_pointer */, |
| const Class& obj, |
| MatchResultListener* listener) const { |
| *listener << whose_field_ << "is "; |
| return MatchPrintAndExplain(obj.*field_, matcher_, listener); |
| } |
| |
| bool MatchAndExplainImpl(std::true_type /* is_pointer */, const Class* p, |
| MatchResultListener* listener) const { |
| if (p == nullptr) return false; |
| |
| *listener << "which points to an object "; |
| // Since *p has a field, it must be a class/struct/union type and |
| // thus cannot be a pointer. Therefore we pass false_type() as |
| // the first argument. |
| return MatchAndExplainImpl(std::false_type(), *p, listener); |
| } |
| |
| const FieldType Class::*field_; |
| const Matcher<const FieldType&> matcher_; |
| |
| // Contains either "whose given field " if the name of the field is unknown |
| // or "whose field `name_of_field` " if the name is known. |
| const std::string whose_field_; |
| }; |
| |
| // Implements the Property() matcher for matching a property |
| // (i.e. return value of a getter method) of an object. |
| // |
| // Property is a const-qualified member function of Class returning |
| // PropertyType. |
| template <typename Class, typename PropertyType, typename Property> |
| class PropertyMatcher { |
| public: |
| typedef const PropertyType& RefToConstProperty; |
| |
| PropertyMatcher(Property property, const Matcher<RefToConstProperty>& matcher) |
| : property_(property), |
| matcher_(matcher), |
| whose_property_("whose given property ") {} |
| |
| PropertyMatcher(const std::string& property_name, Property property, |
| const Matcher<RefToConstProperty>& matcher) |
| : property_(property), |
| matcher_(matcher), |
| whose_property_("whose property `" + property_name + "` ") {} |
| |
| void DescribeTo(::std::ostream* os) const { |
| *os << "is an object " << whose_property_; |
| matcher_.DescribeTo(os); |
| } |
| |
| void DescribeNegationTo(::std::ostream* os) const { |
| *os << "is an object " << whose_property_; |
| matcher_.DescribeNegationTo(os); |
| } |
| |
| template <typename T> |
| bool MatchAndExplain(const T&value, MatchResultListener* listener) const { |
| return MatchAndExplainImpl( |
| typename std::is_pointer<typename std::remove_const<T>::type>::type(), |
| value, listener); |
| } |
| |
| private: |
| bool MatchAndExplainImpl(std::false_type /* is_not_pointer */, |
| const Class& obj, |
| MatchResultListener* listener) const { |
| *listener << whose_property_ << "is "; |
| // Cannot pass the return value (for example, int) to MatchPrintAndExplain, |
| // which takes a non-const reference as argument. |
| RefToConstProperty result = (obj.*property_)(); |
| return MatchPrintAndExplain(result, matcher_, listener); |
| } |
| |
| bool MatchAndExplainImpl(std::true_type /* is_pointer */, const Class* p, |
| MatchResultListener* listener) const { |
| if (p == nullptr) return false; |
| |
| *listener << "which points to an object "; |
| // Since *p has a property method, it must be a class/struct/union |
| // type and thus cannot be a pointer. Therefore we pass |
| // false_type() as the first argument. |
| return MatchAndExplainImpl(std::false_type(), *p, listener); |
| } |
| |
| Property property_; |
| const Matcher<RefToConstProperty> matcher_; |
| |
| // Contains either "whose given property " if the name of the property is |
| // unknown or "whose property `name_of_property` " if the name is known. |
| const std::string whose_property_; |
| }; |
| |
| // Type traits specifying various features of different functors for ResultOf. |
| // The default template specifies features for functor objects. |
| template <typename Functor> |
| struct CallableTraits { |
| typedef Functor StorageType; |
| |
| static void CheckIsValid(Functor /* functor */) {} |
| |
| template <typename T> |
| static auto Invoke(Functor f, const T& arg) -> decltype(f(arg)) { |
| return f(arg); |
| } |
| }; |
| |
| // Specialization for function pointers. |
| template <typename ArgType, typename ResType> |
| struct CallableTraits<ResType(*)(ArgType)> { |
| typedef ResType ResultType; |
| typedef ResType(*StorageType)(ArgType); |
| |
| static void CheckIsValid(ResType(*f)(ArgType)) { |
| GTEST_CHECK_(f != nullptr) |
| << "NULL function pointer is passed into ResultOf()."; |
| } |
| template <typename T> |
| static ResType Invoke(ResType(*f)(ArgType), T arg) { |
| return (*f)(arg); |
| } |
| }; |
| |
| // Implements the ResultOf() matcher for matching a return value of a |
| // unary function of an object. |
| template <typename Callable, typename InnerMatcher> |
| class ResultOfMatcher { |
| public: |
| ResultOfMatcher(Callable callable, InnerMatcher matcher) |
| : callable_(std::move(callable)), matcher_(std::move(matcher)) { |
| CallableTraits<Callable>::CheckIsValid(callable_); |
| } |
| |
| template <typename T> |
| operator Matcher<T>() const { |
| return Matcher<T>(new Impl<const T&>(callable_, matcher_)); |
| } |
| |
| private: |
| typedef typename CallableTraits<Callable>::StorageType CallableStorageType; |
| |
| template <typename T> |
| class Impl : public MatcherInterface<T> { |
| using ResultType = decltype(CallableTraits<Callable>::template Invoke<T>( |
| std::declval<CallableStorageType>(), std::declval<T>())); |
| |
| public: |
| template <typename M> |
| Impl(const CallableStorageType& callable, const M& matcher) |
| : callable_(callable), matcher_(MatcherCast<ResultType>(matcher)) {} |
| |
| void DescribeTo(::std::ostream* os) const override { |
| *os << "is mapped by the given callable to a value that "; |
| matcher_.DescribeTo(os); |
| } |
| |
| void DescribeNegationTo(::std::ostream* os) const override { |
| *os << "is mapped by the given callable to a value that "; |
| matcher_.DescribeNegationTo(os); |
| } |
| |
| bool MatchAndExplain(T obj, MatchResultListener* listener) const override { |
| *listener << "which is mapped by the given callable to "; |
| // Cannot pass the return value directly to MatchPrintAndExplain, which |
| // takes a non-const reference as argument. |
| // Also, specifying template argument explicitly is needed because T could |
| // be a non-const reference (e.g. Matcher<Uncopyable&>). |
| ResultType result = |
| CallableTraits<Callable>::template Invoke<T>(callable_, obj); |
| return MatchPrintAndExplain(result, matcher_, listener); |
| } |
| |
| private: |
| // Functors often define operator() as non-const method even though |
| // they are actually stateless. But we need to use them even when |
| // 'this' is a const pointer. It's the user's responsibility not to |
| // use stateful callables with ResultOf(), which doesn't guarantee |
| // how many times the callable will be invoked. |
| mutable CallableStorageType callable_; |
| const Matcher<ResultType> matcher_; |
| }; // class Impl |
| |
| const CallableStorageType callable_; |
| const InnerMatcher matcher_; |
| }; |
| |
| // Implements a matcher that checks the size of an STL-style container. |
| template <typename SizeMatcher> |
| class SizeIsMatcher { |
| public: |
| explicit SizeIsMatcher(const SizeMatcher& size_matcher) |
| : size_matcher_(size_matcher) { |
| } |
| |
| template <typename Container> |
| operator Matcher<Container>() const { |
| return Matcher<Container>(new Impl<const Container&>(size_matcher_)); |
| } |
| |
| template <typename Container> |
| class Impl : public MatcherInterface<Container> { |
| public: |
| using SizeType = decltype(std::declval<Container>().size()); |
| explicit Impl(const SizeMatcher& size_matcher) |
| : size_matcher_(MatcherCast<SizeType>(size_matcher)) {} |
| |
| void DescribeTo(::std::ostream* os) const override { |
| *os << "size "; |
| size_matcher_.DescribeTo(os); |
| } |
| void DescribeNegationTo(::std::ostream* os) const override { |
| *os << "size "; |
| size_matcher_.DescribeNegationTo(os); |
| } |
| |
| bool MatchAndExplain(Container container, |
| MatchResultListener* listener) const override { |
| SizeType size = container.size(); |
| StringMatchResultListener size_listener; |
| const bool result = size_matcher_.MatchAndExplain(size, &size_listener); |
| *listener |
| << "whose size " << size << (result ? " matches" : " doesn't match"); |
| PrintIfNotEmpty(size_listener.str(), listener->stream()); |
| return result; |
| } |
| |
| private: |
| const Matcher<SizeType> size_matcher_; |
| }; |
| |
| private: |
| const SizeMatcher size_matcher_; |
| }; |
| |
| // Implements a matcher that checks the begin()..end() distance of an STL-style |
| // container. |
| template <typename DistanceMatcher> |
| class BeginEndDistanceIsMatcher { |
| public: |
| explicit BeginEndDistanceIsMatcher(const DistanceMatcher& distance_matcher) |
| : distance_matcher_(distance_matcher) {} |
| |
| template <typename Container> |
| operator Matcher<Container>() const { |
| return Matcher<Container>(new Impl<const Container&>(distance_matcher_)); |
| } |
| |
| template <typename Container> |
| class Impl : public MatcherInterface<Container> { |
| public: |
| typedef internal::StlContainerView< |
| GTEST_REMOVE_REFERENCE_AND_CONST_(Container)> ContainerView; |
| typedef typename std::iterator_traits< |
| typename ContainerView::type::const_iterator>::difference_type |
| DistanceType; |
| explicit Impl(const DistanceMatcher& distance_matcher) |
| : distance_matcher_(MatcherCast<DistanceType>(distance_matcher)) {} |
| |
| void DescribeTo(::std::ostream* os) const override { |
| *os << "distance between begin() and end() "; |
| distance_matcher_.DescribeTo(os); |
| } |
| void DescribeNegationTo(::std::ostream* os) const override { |
| *os << "distance between begin() and end() "; |
| distance_matcher_.DescribeNegationTo(os); |
| } |
| |
| bool MatchAndExplain(Container container, |
| MatchResultListener* listener) const override { |
| using std::begin; |
| using std::end; |
| DistanceType distance = std::distance(begin(container), end(container)); |
| StringMatchResultListener distance_listener; |
| const bool result = |
| distance_matcher_.MatchAndExplain(distance, &distance_listener); |
| *listener << "whose distance between begin() and end() " << distance |
| << (result ? " matches" : " doesn't match"); |
| PrintIfNotEmpty(distance_listener.str(), listener->stream()); |
| return result; |
| } |
| |
| private: |
| const Matcher<DistanceType> distance_matcher_; |
| }; |
| |
| private: |
| const DistanceMatcher distance_matcher_; |
| }; |
| |
| // Implements an equality matcher for any STL-style container whose elements |
| // support ==. This matcher is like Eq(), but its failure explanations provide |
| // more detailed information that is useful when the container is used as a set. |
| // The failure message reports elements that are in one of the operands but not |
| // the other. The failure messages do not report duplicate or out-of-order |
| // elements in the containers (which don't properly matter to sets, but can |
| // occur if the containers are vectors or lists, for example). |
| // |
| // Uses the container's const_iterator, value_type, operator ==, |
| // begin(), and end(). |
| template <typename Container> |
| class ContainerEqMatcher { |
| public: |
| typedef internal::StlContainerView<Container> View; |
| typedef typename View::type StlContainer; |
| typedef typename View::const_reference StlContainerReference; |
| |
| static_assert(!std::is_const<Container>::value, |
| "Container type must not be const"); |
| static_assert(!std::is_reference<Container>::value, |
| "Container type must not be a reference"); |
| |
| // We make a copy of expected in case the elements in it are modified |
| // after this matcher is created. |
| explicit ContainerEqMatcher(const Container& expected) |
| : expected_(View::Copy(expected)) {} |
| |
| void DescribeTo(::std::ostream* os) const { |
| *os << "equals "; |
| UniversalPrint(expected_, os); |
| } |
| void DescribeNegationTo(::std::ostream* os) const { |
| *os << "does not equal "; |
| UniversalPrint(expected_, os); |
| } |
| |
| template <typename LhsContainer> |
| bool MatchAndExplain(const LhsContainer& lhs, |
| MatchResultListener* listener) const { |
| typedef internal::StlContainerView< |
| typename std::remove_const<LhsContainer>::type> |
| LhsView; |
| typedef typename LhsView::type LhsStlContainer; |
| StlContainerReference lhs_stl_container = LhsView::ConstReference(lhs); |
| if (lhs_stl_container == expected_) |
| return true; |
| |
| ::std::ostream* const os = listener->stream(); |
| if (os != nullptr) { |
| // Something is different. Check for extra values first. |
| bool printed_header = false; |
| for (typename LhsStlContainer::const_iterator it = |
| lhs_stl_container.begin(); |
| it != lhs_stl_container.end(); ++it) { |
| if (internal::ArrayAwareFind(expected_.begin(), expected_.end(), *it) == |
| expected_.end()) { |
| if (printed_header) { |
| *os << ", "; |
| } else { |
| *os << "which has these unexpected elements: "; |
| printed_header = true; |
| } |
| UniversalPrint(*it, os); |
| } |
| } |
| |
| // Now check for missing values. |
| bool printed_header2 = false; |
| for (typename StlContainer::const_iterator it = expected_.begin(); |
| it != expected_.end(); ++it) { |
| if (internal::ArrayAwareFind( |
| lhs_stl_container.begin(), lhs_stl_container.end(), *it) == |
| lhs_stl_container.end()) { |
| if (printed_header2) { |
| *os << ", "; |
| } else { |
| *os << (printed_header ? ",\nand" : "which") |
| << " doesn't have these expected elements: "; |
| printed_header2 = true; |
| } |
| UniversalPrint(*it, os); |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| private: |
| const StlContainer expected_; |
| }; |
| |
| // A comparator functor that uses the < operator to compare two values. |
| struct LessComparator { |
| template <typename T, typename U> |
| bool operator()(const T& lhs, const U& rhs) const { return lhs < rhs; } |
| }; |
| |
| // Implements WhenSortedBy(comparator, container_matcher). |
| template <typename Comparator, typename ContainerMatcher> |
| class WhenSortedByMatcher { |
| public: |
| WhenSortedByMatcher(const Comparator& comparator, |
| const ContainerMatcher& matcher) |
| : comparator_(comparator), matcher_(matcher) {} |
| |
| template <typename LhsContainer> |
| operator Matcher<LhsContainer>() const { |
| return MakeMatcher(new Impl<LhsContainer>(comparator_, matcher_)); |
| } |
| |
| template <typename LhsContainer> |
| class Impl : public MatcherInterface<LhsContainer> { |
| public: |
| typedef internal::StlContainerView< |
| GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)> LhsView; |
| typedef typename LhsView::type LhsStlContainer; |
| typedef typename LhsView::const_reference LhsStlContainerReference; |
| // Transforms std::pair<const Key, Value> into std::pair<Key, Value> |
| // so that we can match associative containers. |
| typedef typename RemoveConstFromKey< |
| typename LhsStlContainer::value_type>::type LhsValue; |
| |
| Impl(const Comparator& comparator, const ContainerMatcher& matcher) |
| : comparator_(comparator), matcher_(matcher) {} |
| |
| void DescribeTo(::std::ostream* os) const override { |
| *os << "(when sorted) "; |
| matcher_.DescribeTo(os); |
| } |
| |
| void DescribeNegationTo(::std::ostream* os) const override { |
| *os << "(when sorted) "; |
| matcher_.DescribeNegationTo(os); |
| } |
| |
| bool MatchAndExplain(LhsContainer lhs, |
| MatchResultListener* listener) const override { |
| LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs); |
| ::std::vector<LhsValue> sorted_container(lhs_stl_container.begin(), |
| lhs_stl_container.end()); |
| ::std::sort( |
| sorted_container.begin(), sorted_container.end(), comparator_); |
| |
| if (!listener->IsInterested()) { |
| // If the listener is not interested, we do not need to |
| // construct the inner explanation. |
| return matcher_.Matches(sorted_container); |
| } |
| |
| *listener << "which is "; |
| UniversalPrint(sorted_container, listener->stream()); |
| *listener << " when sorted"; |
| |
| StringMatchResultListener inner_listener; |
| const bool match = matcher_.MatchAndExplain(sorted_container, |
| &inner_listener); |
| PrintIfNotEmpty(inner_listener.str(), listener->stream()); |
| return match; |
| } |
| |
| private: |
| const Comparator comparator_; |
| const Matcher<const ::std::vector<LhsValue>&> matcher_; |
| |
| GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl); |
| }; |
| |
| private: |
| const Comparator comparator_; |
| const ContainerMatcher matcher_; |
| }; |
| |
| // Implements Pointwise(tuple_matcher, rhs_container). tuple_matcher |
| // must be able to be safely cast to Matcher<std::tuple<const T1&, const |
| // T2&> >, where T1 and T2 are the types of elements in the LHS |
| // container and the RHS container respectively. |
| template <typename TupleMatcher, typename RhsContainer> |
| class PointwiseMatcher { |
| GTEST_COMPILE_ASSERT_( |
| !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(RhsContainer)>::value, |
| use_UnorderedPointwise_with_hash_tables); |
| |
| public: |
| typedef internal::StlContainerView<RhsContainer> RhsView; |
| typedef typename RhsView::type RhsStlContainer; |
| typedef typename RhsStlContainer::value_type RhsValue; |
| |
| static_assert(!std::is_const<RhsContainer>::value, |
| "RhsContainer type must not be const"); |
| static_assert(!std::is_reference<RhsContainer>::value, |
| "RhsContainer type must not be a reference"); |
| |
| // Like ContainerEq, we make a copy of rhs in case the elements in |
| // it are modified after this matcher is created. |
| PointwiseMatcher(const TupleMatcher& tuple_matcher, const RhsContainer& rhs) |
| : tuple_matcher_(tuple_matcher), rhs_(RhsView::Copy(rhs)) {} |
| |
| template <typename LhsContainer> |
| operator Matcher<LhsContainer>() const { |
| GTEST_COMPILE_ASSERT_( |
| !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)>::value, |
| use_UnorderedPointwise_with_hash_tables); |
| |
| return Matcher<LhsContainer>( |
| new Impl<const LhsContainer&>(tuple_matcher_, rhs_)); |
| } |
| |
| template <typename LhsContainer> |
| class Impl : public MatcherInterface<LhsContainer> { |
| public: |
| typedef internal::StlContainerView< |
| GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)> LhsView; |
| typedef typename LhsView::type LhsStlContainer; |
| typedef typename LhsView::const_reference LhsStlContainerReference; |
| typedef typename LhsStlContainer::value_type LhsValue; |
| // We pass the LHS value and the RHS value to the inner matcher by |
| // reference, as they may be expensive to copy. We must use tuple |
| // instead of pair here, as a pair cannot hold references (C++ 98, |
| // 20.2.2 [lib.pairs]). |
| typedef ::std::tuple<const LhsValue&, const RhsValue&> InnerMatcherArg; |
| |
| Impl(const TupleMatcher& tuple_matcher, const RhsStlContainer& rhs) |
| // mono_tuple_matcher_ holds a monomorphic version of the tuple matcher. |
| : mono_tuple_matcher_(SafeMatcherCast<InnerMatcherArg>(tuple_matcher)), |
| rhs_(rhs) {} |
| |
| void DescribeTo(::std::ostream* os) const override { |
| *os << "contains " << rhs_.size() |
| << " values, where each value and its corresponding value in "; |
| UniversalPrinter<RhsStlContainer>::Print(rhs_, os); |
| *os << " "; |
| mono_tuple_matcher_.DescribeTo(os); |
| } |
| void DescribeNegationTo(::std::ostream* os) const override { |
| *os << "doesn't contain exactly " << rhs_.size() |
| << " values, or contains a value x at some index i" |
| << " where x and the i-th value of "; |
| UniversalPrint(rhs_, os); |
| *os << " "; |
| mono_tuple_matcher_.DescribeNegationTo(os); |
| } |
| |
| bool MatchAndExplain(LhsContainer lhs, |
| MatchResultListener* listener) const override { |
| LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs); |
| const size_t actual_size = lhs_stl_container.size(); |
| if (actual_size != rhs_.size()) { |
| *listener << "which contains " << actual_size << " values"; |
| return false; |
| } |
| |
| typename LhsStlContainer::const_iterator left = lhs_stl_container.begin(); |
| typename RhsStlContainer::const_iterator right = rhs_.begin(); |
| for (size_t i = 0; i != actual_size; ++i, ++left, ++right) { |
| if (listener->IsInterested()) { |
| StringMatchResultListener inner_listener; |
| // Create InnerMatcherArg as a temporarily object to avoid it outlives |
| // *left and *right. Dereference or the conversion to `const T&` may |
| // return temp objects, e.g for vector<bool>. |
| if (!mono_tuple_matcher_.MatchAndExplain( |
| InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left), |
| ImplicitCast_<const RhsValue&>(*right)), |
| &inner_listener)) { |
| *listener << "where the value pair ("; |
| UniversalPrint(*left, listener->stream()); |
| *listener << ", "; |
| UniversalPrint(*right, listener->stream()); |
| *listener << ") at index #" << i << " don't match"; |
| PrintIfNotEmpty(inner_listener.str(), listener->stream()); |
| return false; |
| } |
| } else { |
| if (!mono_tuple_matcher_.Matches( |
| InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left), |
| ImplicitCast_<const RhsValue&>(*right)))) |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| private: |
| const Matcher<InnerMatcherArg> mono_tuple_matcher_; |
| const RhsStlContainer rhs_; |
| }; |
| |
| private: |
| const TupleMatcher tuple_matcher_; |
| const RhsStlContainer rhs_; |
| }; |
| |
| // Holds the logic common to ContainsMatcherImpl and EachMatcherImpl. |
| template <typename Container> |
| class QuantifierMatcherImpl : public MatcherInterface<Container> { |
| public: |
| typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; |
| typedef StlContainerView<RawContainer> View; |
| typedef typename View::type StlContainer; |
| typedef typename View::const_reference StlContainerReference; |
| typedef typename StlContainer::value_type Element; |
| |
| template <typename InnerMatcher> |
| explicit QuantifierMatcherImpl(InnerMatcher inner_matcher) |
| : inner_matcher_( |
| testing::SafeMatcherCast<const Element&>(inner_matcher)) {} |
| |
| // Checks whether: |
| // * All elements in the container match, if all_elements_should_match. |
| // * Any element in the container matches, if !all_elements_should_match. |
| bool MatchAndExplainImpl(bool all_elements_should_match, |
| Container container, |
| MatchResultListener* listener) const { |
| StlContainerReference stl_container = View::ConstReference(container); |
| size_t i = 0; |
| for (typename StlContainer::const_iterator it = stl_container.begin(); |
| it != stl_container.end(); ++it, ++i) { |
| StringMatchResultListener inner_listener; |
| const bool matches = inner_matcher_.MatchAndExplain(*it, &inner_listener); |
| |
| if (matches != all_elements_should_match) { |
| *listener << "whose element #" << i |
| << (matches ? " matches" : " doesn't match"); |
| PrintIfNotEmpty(inner_listener.str(), listener->stream()); |
| return !all_elements_should_match; |
| } |
| } |
| return all_elements_should_match; |
| } |
| |
| protected: |
| const Matcher<const Element&> inner_matcher_; |
| }; |
| |
| // Implements Contains(element_matcher) for the given argument type Container. |
| // Symmetric to EachMatcherImpl. |
| template <typename Container> |
| class ContainsMatcherImpl : public QuantifierMatcherImpl<Container> { |
| public: |
| template <typename InnerMatcher> |
| explicit ContainsMatcherImpl(InnerMatcher inner_matcher) |
| : QuantifierMatcherImpl<Container>(inner_matcher) {} |
| |
| // Describes what this matcher does. |
| void DescribeTo(::std::ostream* os) const override { |
| *os << "contains at least one element that "; |
| this->inner_matcher_.DescribeTo(os); |
| } |
| |
| void DescribeNegationTo(::std::ostream* os) const override { |
| *os << "doesn't contain any element that "; |
| this->inner_matcher_.DescribeTo(os); |
| } |
| |
| bool MatchAndExplain(Container container, |
| MatchResultListener* listener) const override { |
| return this->MatchAndExplainImpl(false, container, listener); |
| } |
| }; |
| |
| // Implements Each(element_matcher) for the given argument type Container. |
| // Symmetric to ContainsMatcherImpl. |
| template <typename Container> |
| class EachMatcherImpl : public QuantifierMatcherImpl<Container> { |
| public: |
| template <typename InnerMatcher> |
| explicit EachMatcherImpl(InnerMatcher inner_matcher) |
| : QuantifierMatcherImpl<Container>(inner_matcher) {} |
| |
| // Describes what this matcher does. |
| void DescribeTo(::std::ostream* os) const override { |
| *os << "only contains elements that "; |
| this->inner_matcher_.DescribeTo(os); |
| } |
| |
| void DescribeNegationTo(::std::ostream* os) const override { |
| *os << "contains some element that "; |
| this->inner_matcher_.DescribeNegationTo(os); |
| } |
| |
| bool MatchAndExplain(Container container, |
| MatchResultListener* listener) const override { |
| return this->MatchAndExplainImpl(true, container, listener); |
| } |
| }; |
| |
| // Implements polymorphic Contains(element_matcher). |
| template <typename M> |
| class ContainsMatcher { |
| public: |
| explicit ContainsMatcher(M m) : inner_matcher_(m) {} |
| |
| template <typename Container> |
| operator Matcher<Container>() const { |
| return Matcher<Container>( |
| new ContainsMatcherImpl<const Container&>(inner_matcher_)); |
| } |
| |
| private: |
| const M inner_matcher_; |
| }; |
| |
| // Implements polymorphic Each(element_matcher). |
| template <typename M> |
| class EachMatcher { |
| public: |
| explicit EachMatcher(M m) : inner_matcher_(m) {} |
| |
| template <typename Container> |
| operator Matcher<Container>() const { |
| return Matcher<Container>( |
| new EachMatcherImpl<const Container&>(inner_matcher_)); |
| } |
| |
| private: |
| const M inner_matcher_; |
| }; |
| |
| struct Rank1 {}; |
| struct Rank0 : Rank1 {}; |
| |
| namespace pair_getters { |
| using std::get; |
| template <typename T> |
| auto First(T& x, Rank1) -> decltype(get<0>(x)) { // NOLINT |
| return get<0>(x); |
| } |
| template <typename T> |
| auto First(T& x, Rank0) -> decltype((x.first)) { // NOLINT |
| return x.first; |
| } |
| |
| template <typename T> |
| auto Second(T& x, Rank1) -> decltype(get<1>(x)) { // NOLINT |
| return get<1>(x); |
| } |
| template <typename T> |
| auto Second(T& x, Rank0) -> decltype((x.second)) { // NOLINT |
| return x.second; |
| } |
| } // namespace pair_getters |
| |
| // Implements Key(inner_matcher) for the given argument pair type. |
| // Key(inner_matcher) matches an std::pair whose 'first' field matches |
| // inner_matcher. For example, Contains(Key(Ge(5))) can be used to match an |
| // std::map that contains at least one element whose key is >= 5. |
| template <typename PairType> |
| class KeyMatcherImpl : public MatcherInterface<PairType> { |
| public: |
| typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType; |
| typedef typename RawPairType::first_type KeyType; |
| |
| template <typename InnerMatcher> |
| explicit KeyMatcherImpl(InnerMatcher inner_matcher) |
| : inner_matcher_( |
| testing::SafeMatcherCast<const KeyType&>(inner_matcher)) { |
| } |
| |
| // Returns true if and only if 'key_value.first' (the key) matches the inner |
| // matcher. |
| bool MatchAndExplain(PairType key_value, |
| MatchResultListener* listener) const override { |
| StringMatchResultListener inner_listener; |
| const bool match = inner_matcher_.MatchAndExplain( |
| pair_getters::First(key_value, Rank0()), &inner_listener); |
| const std::string explanation = inner_listener.str(); |
| if (explanation != "") { |
| *listener << "whose first field is a value " << explanation; |
| } |
| return match; |
| } |
| |
| // Describes what this matcher does. |
| void DescribeTo(::std::ostream* os) const override { |
| *os << "has a key that "; |
| inner_matcher_.DescribeTo(os); |
| } |
| |
| // Describes what the negation of this matcher does. |
| void DescribeNegationTo(::std::ostream* os) const override { |
| *os << "doesn't have a key that "; |
| inner_matcher_.DescribeTo(os); |
| } |
| |
| private: |
| const Matcher<const KeyType&> inner_matcher_; |
| }; |
| |
| // Implements polymorphic Key(matcher_for_key). |
| template <typename M> |
| class KeyMatcher { |
| public: |
| explicit KeyMatcher(M m) : matcher_for_key_(m) {} |
| |
| template <typename PairType> |
| operator Matcher<PairType>() const { |
| return Matcher<PairType>( |
| new KeyMatcherImpl<const PairType&>(matcher_for_key_)); |
| } |
| |
| private: |
| const M matcher_for_key_; |
| }; |
| |
| // Implements polymorphic Address(matcher_for_address). |
| template <typename InnerMatcher> |
| class AddressMatcher { |
| public: |
| explicit AddressMatcher(InnerMatcher m) : matcher_(m) {} |
| |
| template <typename Type> |
| operator Matcher<Type>() const { // NOLINT |
| return Matcher<Type>(new Impl<const Type&>(matcher_)); |
| } |
| |
| private: |
| // The monomorphic implementation that works for a particular object type. |
| template <typename Type> |
| class Impl : public MatcherInterface<Type> { |
| public: |
| using Address = const GTEST_REMOVE_REFERENCE_AND_CONST_(Type) *; |
| explicit Impl(const InnerMatcher& matcher) |
| : matcher_(MatcherCast<Address>(matcher)) {} |
| |
| void DescribeTo(::std::ostream* os) const override { |
| *os << "has address that "; |
| matcher_.DescribeTo(os); |
| } |
| |
| void DescribeNegationTo(::std::ostream* os) const override { |
| *os << "does not have address that "; |
| matcher_.DescribeTo(os); |
| } |
| |
| bool MatchAndExplain(Type object, |
| MatchResultListener* listener) const override { |
| *listener << "which has address "; |
| Address address = std::addressof(object); |
| return MatchPrintAndExplain(address, matcher_, listener); |
| } |
| |
| private: |
| const Matcher<Address> matcher_; |
| }; |
| const InnerMatcher matcher_; |
| }; |
| |
| // Implements Pair(first_matcher, second_matcher) for the given argument pair |
| // type with its two matchers. See Pair() function below. |
| template <typename PairType> |
| class PairMatcherImpl : public MatcherInterface<PairType> { |
| public: |
| typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType; |
| typedef typename RawPairType::first_type FirstType; |
| typedef typename RawPairType::second_type SecondType; |
| |
| template <typename FirstMatcher, typename SecondMatcher> |
| PairMatcherImpl(FirstMatcher first_matcher, SecondMatcher second_matcher) |
| : first_matcher_( |
| testing::SafeMatcherCast<const FirstType&>(first_matcher)), |
| second_matcher_( |
| testing::SafeMatcherCast<const SecondType&>(second_matcher)) { |
| } |
| |
| // Describes what this matcher does. |
| void DescribeTo(::std::ostream* os) const override { |
| *os << "has a first field that "; |
| first_matcher_.DescribeTo(os); |
| *os << ", and has a second field that "; |
| second_matcher_.DescribeTo(os); |
| } |
| |
| // Describes what the negation of this matcher does. |
| void DescribeNegationTo(::std::ostream* os) const override { |
| *os << "has a first field that "; |
| first_matcher_.DescribeNegationTo(os); |
| *os << ", or has a second field that "; |
| second_matcher_.DescribeNegationTo(os); |
| } |
| |
| // Returns true if and only if 'a_pair.first' matches first_matcher and |
| // 'a_pair.second' matches second_matcher. |
| bool MatchAndExplain(PairType a_pair, |
| MatchResultListener* listener) const override { |
| if (!listener->IsInterested()) { |
| // If the listener is not interested, we don't need to construct the |
| // explanation. |
| return first_matcher_.Matches(pair_getters::First(a_pair, Rank0())) && |
| second_matcher_.Matches(pair_getters::Second(a_pair, Rank0())); |
| } |
| StringMatchResultListener first_inner_listener; |
| if (!first_matcher_.MatchAndExplain(pair_getters::First(a_pair, Rank0()), |
| &first_inner_listener)) { |
| *listener << "whose first field does not match"; |
| PrintIfNotEmpty(first_inner_listener.str(), listener->stream()); |
| return false; |
| } |
| StringMatchResultListener second_inner_listener; |
| if (!second_matcher_.MatchAndExplain(pair_getters::Second(a_pair, Rank0()), |
| &second_inner_listener)) { |
| *listener << "whose second field does not match"; |
| PrintIfNotEmpty(second_inner_listener.str(), listener->stream()); |
| return false; |
| } |
| ExplainSuccess(first_inner_listener.str(), second_inner_listener.str(), |
| listener); |
| return true; |
| } |
| |
| private: |
| void ExplainSuccess(const std::string& first_explanation, |
| const std::string& second_explanation, |
| MatchResultListener* listener) const { |
| *listener << "whose both fields match"; |
| if (first_explanation != "") { |
| *listener << ", where the first field is a value " << first_explanation; |
| } |
| if (second_explanation != "") { |
| *listener << ", "; |
| if (first_explanation != "") { |
| *listener << "and "; |
| } else { |
| *listener << "where "; |
| } |
| *listener << "the second field is a value " << second_explanation; |
| } |
| } |
| |
| const Matcher<const FirstType&> first_matcher_; |
| const Matcher<const SecondType&> second_matcher_; |
| }; |
| |
| // Implements polymorphic Pair(first_matcher, second_matcher). |
| template <typename FirstMatcher, typename SecondMatcher> |
| class PairMatcher { |
| public: |
| PairMatcher(FirstMatcher first_matcher, SecondMatcher second_matcher) |
| : first_matcher_(first_matcher), second_matcher_(second_matcher) {} |
| |
| template <typename PairType> |
| operator Matcher<PairType> () const { |
| return Matcher<PairType>( |
| new PairMatcherImpl<const PairType&>(first_matcher_, second_matcher_)); |
| } |
| |
| private: |
| const FirstMatcher first_matcher_; |
| const SecondMatcher second_matcher_; |
| }; |
| |
| template <typename T, size_t... I> |
| auto UnpackStructImpl(const T& t, IndexSequence<I...>, int) |
| -> decltype(std::tie(get<I>(t)...)) { |
| static_assert(std::tuple_size<T>::value == sizeof...(I), |
| "Number of arguments doesn't match the number of fields."); |
| return std::tie(get<I>(t)...); |
| } |
| |
| #if defined(__cpp_structured_bindings) && __cpp_structured_bindings >= 201606 |
| template <typename T> |
| auto UnpackStructImpl(const T& t, MakeIndexSequence<1>, char) { |
| const auto& [a] = t; |
| return std::tie(a); |
| } |
| template <typename T> |
| auto UnpackStructImpl(const T& t, MakeIndexSequence<2>, char) { |
| const auto& [a, b] = t; |
| return std::tie(a, b); |
| } |
| template <typename T> |
| auto UnpackStructImpl(const T& t, MakeIndexSequence<3>, char) { |
| const auto& [a, b, c] = t; |
| return std::tie(a, b, c); |
| } |
| template <typename T> |
| auto UnpackStructImpl(const T& t, MakeIndexSequence<4>, char) { |
| const auto& [a, b, c, d] = t; |
| return std::tie(a, b, c, d); |
| } |
| template <typename T> |
| auto UnpackStructImpl(const T& t, MakeIndexSequence<5>, char) { |
| const auto& [a, b, c, d, e] = t; |
| return std::tie(a, b, c, d, e); |
| } |
| template <typename T> |
| auto UnpackStructImpl(const T& t, MakeIndexSequence<6>, char) { |
| const auto& [a, b, c, d, e, f] = t; |
| return std::tie(a, b, c, d, e, f); |
| } |
| template <typename T> |
| auto UnpackStructImpl(const T& t, MakeIndexSequence<7>, char) { |
| const auto& [a, b, c, d, e, f, g] = t; |
| return std::tie(a, b, c, d, e, f, g); |
| } |
| template <typename T> |
| auto UnpackStructImpl(const T& t, MakeIndexSequence<8>, char) { |
| const auto& [a, b, c, d, e, f, g, h] = t; |
| return std::tie(a, b, c, d, e, f, g, h); |
| } |
| template <typename T> |
| auto UnpackStructImpl(const T& t, MakeIndexSequence<9>, char) { |
| const auto& [a, b, c, d, e, f, g, h, i] = t; |
| return std::tie(a, b, c, d, e, f, g, h, i); |
| } |
| template <typename T> |
| auto UnpackStructImpl(const T& t, MakeIndexSequence<10>, char) { |
| const auto& [a, b, c, d, e, f, g, h, i, j] = t; |
| return std::tie(a, b, c, d, e, f, g, h, i, j); |
| } |
| template <typename T> |
| auto UnpackStructImpl(const T& t, MakeIndexSequence<11>, char) { |
| const auto& [a, b, c, d, e, f, g, h, i, j, k] = t; |
| return std::tie(a, b, c, d, e, f, g, h, i, j, k); |
| } |
| template <typename T> |
| auto UnpackStructImpl(const T& t, MakeIndexSequence<12>, char) { |
| const auto& [a, b, c, d, e, f, g, h, i, j, k, l] = t; |
| return std::tie(a, b, c, d, e, f, g, h, i, j, k, l); |
| } |
| template <typename T> |
| auto UnpackStructImpl(const T& t, MakeIndexSequence<13>, char) { |
| const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m] = t; |
| return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m); |
| } |
| template <typename T> |
| auto UnpackStructImpl(const T& t, MakeIndexSequence<14>, char) { |
| const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n] = t; |
| return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n); |
| } |
| template <typename T> |
| auto UnpackStructImpl(const T& t, MakeIndexSequence<15>, char) { |
| const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o] = t; |
| return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o); |
| } |
| template <typename T> |
| auto UnpackStructImpl(const T& t, MakeIndexSequence<16>, char) { |
| const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p] = t; |
| return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p); |
| } |
| #endif // defined(__cpp_structured_bindings) |
| |
| template <size_t I, typename T> |
| auto UnpackStruct(const T& t) |
| -> decltype((UnpackStructImpl)(t, MakeIndexSequence<I>{}, 0)) { |
| return (UnpackStructImpl)(t, MakeIndexSequence<I>{}, 0); |
| } |
| |
| // Helper function to do comma folding in C++11. |
| // The array ensures left-to-right order of evaluation. |
| // Usage: VariadicExpand({expr...}); |
| template <typename T, size_t N> |
| void VariadicExpand(const T (&)[N]) {} |
| |
| template <typename Struct, typename StructSize> |
| class FieldsAreMatcherImpl; |
| |
| template <typename Struct, size_t... I> |
| class FieldsAreMatcherImpl<Struct, IndexSequence<I...>> |
| : public MatcherInterface<Struct> { |
| using UnpackedType = |
| decltype(UnpackStruct<sizeof...(I)>(std::declval<const Struct&>())); |
| using MatchersType = std::tuple< |
| Matcher<const typename std::tuple_element<I, UnpackedType>::type&>...>; |
| |
| public: |
| template <typename Inner> |
| explicit FieldsAreMatcherImpl(const Inner& matchers) |
| : matchers_(testing::SafeMatcherCast< |
| const typename std::tuple_element<I, UnpackedType>::type&>( |
| std::get<I>(matchers))...) {} |
| |
| void DescribeTo(::std::ostream* os) const override { |
| const char* separator = ""; |
| VariadicExpand( |
| {(*os << separator << "has field #" << I << " that ", |
| std::get<I>(matchers_).DescribeTo(os), separator = ", and ")...}); |
| } |
| |
| void DescribeNegationTo(::std::ostream* os) const override { |
| const char* separator = ""; |
| VariadicExpand({(*os << separator << "has field #" << I << " that ", |
| std::get<I>(matchers_).DescribeNegationTo(os), |
| separator = ", or ")...}); |
| } |
| |
| bool MatchAndExplain(Struct t, MatchResultListener* listener) const override { |
| return MatchInternal((UnpackStruct<sizeof...(I)>)(t), listener); |
| } |
| |
| private: |
| bool MatchInternal(UnpackedType tuple, MatchResultListener* listener) const { |
| if (!listener->IsInterested()) { |
| // If the listener is not interested, we don't need to construct the |
| // explanation. |
| bool good = true; |
| VariadicExpand({good = good && std::get<I>(matchers_).Matches( |
| std::get<I>(tuple))...}); |
| return good; |
| } |
| |
| size_t failed_pos = ~size_t{}; |
| |
| std::vector<StringMatchResultListener> inner_listener(sizeof...(I)); |
| |
| VariadicExpand( |
| {failed_pos == ~size_t{} && !std::get<I>(matchers_).MatchAndExplain( |
| std::get<I>(tuple), &inner_listener[I]) |
| ? failed_pos = I |
| : 0 ...}); |
| if (failed_pos != ~size_t{}) { |
| *listener << "whose field #" << failed_pos << " does not match"; |
| PrintIfNotEmpty(inner_listener[failed_pos].str(), listener->stream()); |
| return false; |
| } |
| |
| *listener << "whose all elements match"; |
| const char* separator = ", where"; |
| for (size_t index = 0; index < sizeof...(I); ++index) { |
| const std::string str = inner_listener[index].str(); |
| if (!str.empty()) { |
| *listener << separator << " field #" << index << " is a value " << str; |
| separator = ", and"; |
| } |
| } |
| |
| return true; |
| } |
| |
| MatchersType matchers_; |
| }; |
| |
| template <typename... Inner> |
| class FieldsAreMatcher { |
| public: |
| explicit FieldsAreMatcher(Inner... inner) : matchers_(std::move(inner)...) {} |
| |
| template <typename Struct> |
| operator Matcher<Struct>() const { // NOLINT |
| return Matcher<Struct>( |
| new FieldsAreMatcherImpl<const Struct&, IndexSequenceFor<Inner...>>( |
| matchers_)); |
| } |
| |
| private: |
| std::tuple<Inner...> matchers_; |
| }; |
| |
| // Implements ElementsAre() and ElementsAreArray(). |
| template <typename Container> |
| class ElementsAreMatcherImpl : public MatcherInterface<Container> { |
| public: |
| typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; |
| typedef internal::StlContainerView<RawContainer> View; |
| typedef typename View::type StlContainer; |
| typedef typename View::const_reference StlContainerReference; |
| typedef typename StlContainer::value_type Element; |
| |
| // Constructs the matcher from a sequence of element values or |
| // element matchers. |
| template <typename InputIter> |
| ElementsAreMatcherImpl(InputIter first, InputIter last) { |
| while (first != last) { |
| matchers_.push_back(MatcherCast<const Element&>(*first++)); |
| } |
| } |
| |
| // Describes what this matcher does. |
| void DescribeTo(::std::ostream* os) const override { |
| if (count() == 0) { |
| *os << "is empty"; |
| } else if (count() == 1) { |
| *os << "has 1 element that "; |
| matchers_[0].DescribeTo(os); |
| } else { |
| *os << "has " << Elements(count()) << " where\n"; |
| for (size_t i = 0; i != count(); ++i) { |
| *os << "element #" << i << " "; |
| matchers_[i].DescribeTo(os); |
| if (i + 1 < count()) { |
| *os << ",\n"; |
| } |
| } |
| } |
| } |
| |
| // Describes what the negation of this matcher does. |
| void DescribeNegationTo(::std::ostream* os) const override { |
| if (count() == 0) { |
| *os << "isn't empty"; |
| return; |
| } |
| |
| *os << "doesn't have " << Elements(count()) << ", or\n"; |
| for (size_t i = 0; i != count(); ++i) { |
| *os << "element #" << i << " "; |
| matchers_[i].DescribeNegationTo(os); |
| if (i + 1 < count()) { |
| *os << ", or\n"; |
| } |
| } |
| } |
| |
| bool MatchAndExplain(Container container, |
| MatchResultListener* listener) const override { |
| // To work with stream-like "containers", we must only walk |
| // through the elements in one pass. |
| |
| const bool listener_interested = listener->IsInterested(); |
| |
| // explanations[i] is the explanation of the element at index i. |
| ::std::vector<std::string> explanations(count()); |
| StlContainerReference stl_container = View::ConstReference(container); |
| typename StlContainer::const_iterator it = stl_container.begin(); |
| size_t exam_pos = 0; |
| bool mismatch_found = false; // Have we found a mismatched element yet? |
| |
| // Go through the elements and matchers in pairs, until we reach |
| // the end of either the elements or the matchers, or until we find a |
| // mismatch. |
| for (; it != stl_container.end() && exam_pos != count(); ++it, ++exam_pos) { |
| bool match; // Does the current element match the current matcher? |
| if (listener_interested) { |
| StringMatchResultListener s; |
| match = matchers_[exam_pos].MatchAndExplain(*it, &s); |
| explanations[exam_pos] = s.str(); |
| } else { |
| match = matchers_[exam_pos].Matches(*it); |
| } |
| |
| if (!match) { |
| mismatch_found = true; |
| break; |
| } |
| } |
| // If mismatch_found is true, 'exam_pos' is the index of the mismatch. |
| |
| // Find how many elements the actual container has. We avoid |
| // calling size() s.t. this code works for stream-like "containers" |
| // that don't define size(). |
| size_t actual_count = exam_pos; |
| for (; it != stl_container.end(); ++it) { |
| ++actual_count; |
| } |
| |
| if (actual_count != count()) { |
| // The element count doesn't match. If the container is empty, |
| // there's no need to explain anything as Google Mock already |
| // prints the empty container. Otherwise we just need to show |
| // how many elements there actually are. |
| if (listener_interested && (actual_count != 0)) { |
| *listener << "which has " << Elements(actual_count); |
| } |
| return false; |
| } |
| |
| if (mismatch_found) { |
| // The element count matches, but the exam_pos-th element doesn't match. |
| if (listener_interested) { |
| *listener << "whose element #" << exam_pos << " doesn't match"; |
| PrintIfNotEmpty(explanations[exam_pos], listener->stream()); |
| } |
| return false; |
| } |
| |
| // Every element matches its expectation. We need to explain why |
| // (the obvious ones can be skipped). |
| if (listener_interested) { |
| bool reason_printed = false; |
| for (size_t i = 0; i != count(); ++i) { |
| const std::string& s = explanations[i]; |
| if (!s.empty()) { |
| if (reason_printed) { |
| *listener << ",\nand "; |
| } |
| *listener << "whose element #" << i << " matches, " << s; |
| reason_printed = true; |
| } |
| } |
| } |
| return true; |
| } |
| |
| private: |
| static Message Elements(size_t count) { |
| return Message() << count << (count == 1 ? " element" : " elements"); |
| } |
| |
| size_t count() const { return matchers_.size(); } |
| |
| ::std::vector<Matcher<const Element&> > matchers_; |
| }; |
| |
| // Connectivity matrix of (elements X matchers), in element-major order. |
| // Initially, there are no edges. |
| // Use NextGraph() to iterate over all possible edge configurations. |
| // Use Randomize() to generate a random edge configuration. |
| class GTEST_API_ MatchMatrix { |
| public: |
| MatchMatrix(size_t num_elements, size_t num_matchers) |
| : num_elements_(num_elements), |
| num_matchers_(num_matchers), |
| matched_(num_elements_* num_matchers_, 0) { |
| } |
| |
| size_t LhsSize() const { return num_elements_; } |
| size_t RhsSize() const { return num_matchers_; } |
| bool HasEdge(size_t ilhs, size_t irhs) const { |
| return matched_[SpaceIndex(ilhs, irhs)] == 1; |
| } |
| void SetEdge(size_t ilhs, size_t irhs, bool b) { |
| matched_[SpaceIndex(ilhs, irhs)] = b ? 1 : 0; |
| } |
| |
| // Treating the connectivity matrix as a (LhsSize()*RhsSize())-bit number, |
| // adds 1 to that number; returns false if incrementing the graph left it |
| // empty. |
| bool NextGraph(); |
| |
| void Randomize(); |
| |
| std::string DebugString() const; |
| |
| private: |
| size_t SpaceIndex(size_t ilhs, size_t irhs) const { |
| return ilhs * num_matchers_ + irhs; |
| } |
| |
| size_t num_elements_; |
| size_t num_matchers_; |
| |
| // Each element is a char interpreted as bool. They are stored as a |
| // flattened array in lhs-major order, use 'SpaceIndex()' to translate |
| // a (ilhs, irhs) matrix coordinate into an offset. |
| ::std::vector<char> matched_; |
| }; |
| |
| typedef ::std::pair<size_t, size_t> ElementMatcherPair; |
| typedef ::std::vector<ElementMatcherPair> ElementMatcherPairs; |
| |
| // Returns a maximum bipartite matching for the specified graph 'g'. |
| // The matching is represented as a vector of {element, matcher} pairs. |
| GTEST_API_ ElementMatcherPairs |
| FindMaxBipartiteMatching(const MatchMatrix& g); |
| |
| struct UnorderedMatcherRequire { |
| enum Flags { |
| Superset = 1 << 0, |
| Subset = 1 << 1, |
| ExactMatch = Superset | Subset, |
| }; |
| }; |
| |
| // Untyped base class for implementing UnorderedElementsAre. By |
| // putting logic that's not specific to the element type here, we |
| // reduce binary bloat and increase compilation speed. |
| class GTEST_API_ UnorderedElementsAreMatcherImplBase { |
| protected: |
| explicit UnorderedElementsAreMatcherImplBase( |
| UnorderedMatcherRequire::Flags matcher_flags) |
| : match_flags_(matcher_flags) {} |
| |
| // A vector of matcher describers, one for each element matcher. |
| // Does not own the describers (and thus can be used only when the |
| // element matchers are alive). |
| typedef ::std::vector<const MatcherDescriberInterface*> MatcherDescriberVec; |
| |
| // Describes this UnorderedElementsAre matcher. |
| void DescribeToImpl(::std::ostream* os) const; |
| |
| // Describes the negation of this UnorderedElementsAre matcher. |
| void DescribeNegationToImpl(::std::ostream* os) const; |
| |
| bool VerifyMatchMatrix(const ::std::vector<std::string>& element_printouts, |
| const MatchMatrix& matrix, |
| MatchResultListener* listener) const; |
| |
| bool FindPairing(const MatchMatrix& matrix, |
| MatchResultListener* listener) const; |
| |
| MatcherDescriberVec& matcher_describers() { |
| return matcher_describers_; |
| } |
| |
| static Message Elements(size_t n) { |
| return Message() << n << " element" << (n == 1 ? "" : "s"); |
| } |
| |
| UnorderedMatcherRequire::Flags match_flags() const { return match_flags_; } |
| |
| private: |
| UnorderedMatcherRequire::Flags match_flags_; |
| MatcherDescriberVec matcher_describers_; |
| }; |
| |
| // Implements UnorderedElementsAre, UnorderedElementsAreArray, IsSubsetOf, and |
| // IsSupersetOf. |
| template <typename Container> |
| class UnorderedElementsAreMatcherImpl |
| : public MatcherInterface<Container>, |
| public UnorderedElementsAreMatcherImplBase { |
| public: |
| typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; |
| typedef internal::StlContainerView<RawContainer> View; |
| typedef typename View::type StlContainer; |
| typedef typename View::const_reference StlContainerReference; |
| typedef typename StlContainer::const_iterator StlContainerConstIterator; |
| typedef typename StlContainer::value_type Element; |
| |
| template <typename InputIter> |
| UnorderedElementsAreMatcherImpl(UnorderedMatcherRequire::Flags matcher_flags, |
| InputIter first, InputIter last) |
| : UnorderedElementsAreMatcherImplBase(matcher_flags) { |
| for (; first != last; ++first) { |
| matchers_.push_back(MatcherCast<const Element&>(*first)); |
| } |
| for (const auto& m : matchers_) { |
| matcher_describers().push_back(m.GetDescriber()); |
| } |
| } |
| |
| // Describes what this matcher does. |
| void DescribeTo(::std::ostream* os) const override { |
| return UnorderedElementsAreMatcherImplBase::DescribeToImpl(os); |
| } |
| |
| // Describes what the negation of this matcher does. |
| void DescribeNegationTo(::std::ostream* os) const override { |
| return UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl(os); |
| } |
| |
| bool MatchAndExplain(Container container, |
| MatchResultListener* listener) const override { |
| StlContainerReference stl_container = View::ConstReference(container); |
| ::std::vector<std::string> element_printouts; |
| MatchMatrix matrix = |
| AnalyzeElements(stl_container.begin(), stl_container.end(), |
| &element_printouts, listener); |
| |
| if (matrix.LhsSize() == 0 && matrix.RhsSize() == 0) { |
| return true; |
| } |
| |
| if (match_flags() == UnorderedMatcherRequire::ExactMatch) { |
| if (matrix.LhsSize() != matrix.RhsSize()) { |
| // The element count doesn't match. If the container is empty, |
| // there's no need to explain anything as Google Mock already |
| // prints the empty container. Otherwise we just need to show |
| // how many elements there actually are. |
| if (matrix.LhsSize() != 0 && listener->IsInterested()) { |
| *listener << "which has " << Elements(matrix.LhsSize()); |
| } |
| return false; |
| } |
| } |
| |
| return VerifyMatchMatrix(element_printouts, matrix, listener) && |
| FindPairing(matrix, listener); |
| } |
| |
| private: |
| template <typename ElementIter> |
| MatchMatrix AnalyzeElements(ElementIter elem_first, ElementIter elem_last, |
| ::std::vector<std::string>* element_printouts, |
| MatchResultListener* listener) const { |
| element_printouts->clear(); |
| ::std::vector<char> did_match; |
| size_t num_elements = 0; |
| DummyMatchResultListener dummy; |
| for (; elem_first != elem_last; ++num_elements, ++elem_first) { |
| if (listener->IsInterested()) { |
| element_printouts->push_back(PrintToString(*elem_first)); |
| } |
| for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) { |
| did_match.push_back( |
| matchers_[irhs].MatchAndExplain(*elem_first, &dummy)); |
| } |
| } |
| |
| MatchMatrix matrix(num_elements, matchers_.size()); |
| ::std::vector<char>::const_iterator did_match_iter = did_match.begin(); |
| for (size_t ilhs = 0; ilhs != num_elements; ++ilhs) { |
| for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) { |
| matrix.SetEdge(ilhs, irhs, *did_match_iter++ != 0); |
| } |
| } |
| return matrix; |
| } |
| |
| ::std::vector<Matcher<const Element&> > matchers_; |
| }; |
| |
| // Functor for use in TransformTuple. |
| // Performs MatcherCast<Target> on an input argument of any type. |
| template <typename Target> |
| struct CastAndAppendTransform { |
| template <typename Arg> |
| Matcher<Target> operator()(const Arg& a) const { |
| return MatcherCast<Target>(a); |
| } |
| }; |
| |
| // Implements UnorderedElementsAre. |
| template <typename MatcherTuple> |
| class UnorderedElementsAreMatcher { |
| public: |
| explicit UnorderedElementsAreMatcher(const MatcherTuple& args) |
| : matchers_(args) {} |
| |
| template <typename Container> |
| operator Matcher<Container>() const { |
| typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; |
| typedef typename internal::StlContainerView<RawContainer>::type View; |
| typedef typename View::value_type Element; |
| typedef ::std::vector<Matcher<const Element&> > MatcherVec; |
| MatcherVec matchers; |
| matchers.reserve(::std::tuple_size<MatcherTuple>::value); |
| TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_, |
| ::std::back_inserter(matchers)); |
| return Matcher<Container>( |
| new UnorderedElementsAreMatcherImpl<const Container&>( |
| UnorderedMatcherRequire::ExactMatch, matchers.begin(), |
| matchers.end())); |
| } |
| |
| private: |
| const MatcherTuple matchers_; |
| }; |
| |
| // Implements ElementsAre. |
| template <typename MatcherTuple> |
| class ElementsAreMatcher { |
| public: |
| explicit ElementsAreMatcher(const MatcherTuple& args) : matchers_(args) {} |
| |
| template <typename Container> |
| operator Matcher<Container>() const { |
| GTEST_COMPILE_ASSERT_( |
| !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value || |
| ::std::tuple_size<MatcherTuple>::value < 2, |
| use_UnorderedElementsAre_with_hash_tables); |
| |
| typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; |
| typedef typename internal::StlContainerView<RawContainer>::type View; |
| typedef typename View::value_type Element; |
| typedef ::std::vector<Matcher<const Element&> > MatcherVec; |
| MatcherVec matchers; |
| matchers.reserve(::std::tuple_size<MatcherTuple>::value); |
| TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_, |
| ::std::back_inserter(matchers)); |
| return Matcher<Container>(new ElementsAreMatcherImpl<const Container&>( |
| matchers.begin(), matchers.end())); |
| } |
| |
| private: |
| const MatcherTuple matchers_; |
| }; |
| |
| // Implements UnorderedElementsAreArray(), IsSubsetOf(), and IsSupersetOf(). |
| template <typename T> |
| class UnorderedElementsAreArrayMatcher { |
| public: |
| template <typename Iter> |
| UnorderedElementsAreArrayMatcher(UnorderedMatcherRequire::Flags match_flags, |
| Iter first, Iter last) |
| : match_flags_(match_flags), matchers_(first, last) {} |
| |
| template <typename Container> |
| operator Matcher<Container>() const { |
| return Matcher<Container>( |
| new UnorderedElementsAreMatcherImpl<const Container&>( |
| match_flags_, matchers_.begin(), matchers_.end())); |
| } |
| |
| private: |
| UnorderedMatcherRequire::Flags match_flags_; |
| ::std::vector<T> matchers_; |
| }; |
| |
| // Implements ElementsAreArray(). |
| template <typename T> |
| class ElementsAreArrayMatcher { |
| public: |
| template <typename Iter> |
| ElementsAreArrayMatcher(Iter first, Iter last) : matchers_(first, last) {} |
| |
| template <typename Container> |
| operator Matcher<Container>() const { |
| GTEST_COMPILE_ASSERT_( |
| !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value, |
| use_UnorderedElementsAreArray_with_hash_tables); |
| |
| return Matcher<Container>(new ElementsAreMatcherImpl<const Container&>( |
| matchers_.begin(), matchers_.end())); |
| } |
| |
| private: |
| const ::std::vector<T> matchers_; |
| }; |
| |
| // Given a 2-tuple matcher tm of type Tuple2Matcher and a value second |
| // of type Second, BoundSecondMatcher<Tuple2Matcher, Second>(tm, |
| // second) is a polymorphic matcher that matches a value x if and only if |
| // tm matches tuple (x, second). Useful for implementing |
| // UnorderedPointwise() in terms of UnorderedElementsAreArray(). |
| // |
| // BoundSecondMatcher is copyable and assignable, as we need to put |
| // instances of this class in a vector when implementing |
| // UnorderedPointwise(). |
| template <typename Tuple2Matcher, typename Second> |
| class BoundSecondMatcher { |
| public: |
| BoundSecondMatcher(const Tuple2Matcher& tm, const Second& second) |
| : tuple2_matcher_(tm), second_value_(second) {} |
| |
| BoundSecondMatcher(const BoundSecondMatcher& other) = default; |
| |
| template <typename T> |
| operator Matcher<T>() const { |
| return MakeMatcher(new Impl<T>(tuple2_matcher_, second_value_)); |
| } |
| |
| // We have to define this for UnorderedPointwise() to compile in |
| // C++98 mode, as it puts BoundSecondMatcher instances in a vector, |
| // which requires the elements to be assignable in C++98. The |
| // compiler cannot generate the operator= for us, as Tuple2Matcher |
| // and Second may not be assignable. |
| // |
| // However, this should never be called, so the implementation just |
| // need to assert. |
| void operator=(const BoundSecondMatcher& /*rhs*/) { |
| GTEST_LOG_(FATAL) << "BoundSecondMatcher should never be assigned."; |
| } |
| |
| private: |
| template <typename T> |
| class Impl : public MatcherInterface<T> { |
| public: |
| typedef ::std::tuple<T, Second> ArgTuple; |
| |
| Impl(const Tuple2Matcher& tm, const Second& second) |
| : mono_tuple2_matcher_(SafeMatcherCast<const ArgTuple&>(tm)), |
| second_value_(second) {} |
| |
| void DescribeTo(::std::ostream* os) const override { |
| *os << "and "; |
| UniversalPrint(second_value_, os); |
| *os << " "; |
| mono_tuple2_matcher_.DescribeTo(os); |
| } |
| |
| bool MatchAndExplain(T x, MatchResultListener* listener) const override { |
| return mono_tuple2_matcher_.MatchAndExplain(ArgTuple(x, second_value_), |
| listener); |
| } |
| |
| private: |
| const Matcher<const ArgTuple&> mono_tuple2_matcher_; |
| const Second second_value_; |
| }; |
| |
| const Tuple2Matcher tuple2_matcher_; |
| const Second second_value_; |
| }; |
| |
| // Given a 2-tuple matcher tm and a value second, |
| // MatcherBindSecond(tm, second) returns a matcher that matches a |
| // value x if and only if tm matches tuple (x, second). Useful for |
| // implementing UnorderedPointwise() in terms of UnorderedElementsAreArray(). |
| template <typename Tuple2Matcher, typename Second> |
| BoundSecondMatcher<Tuple2Matcher, Second> MatcherBindSecond( |
| const Tuple2Matcher& tm, const Second& second) { |
| return BoundSecondMatcher<Tuple2Matcher, Second>(tm, second); |
| } |
| |
| // Returns the description for a matcher defined using the MATCHER*() |
| // macro where the user-supplied description string is "", if |
| // 'negation' is false; otherwise returns the description of the |
| // negation of the matcher. 'param_values' contains a list of strings |
| // that are the print-out of the matcher's parameters. |
| GTEST_API_ std::string FormatMatcherDescription(bool negation, |
| const char* matcher_name, |
| const Strings& param_values); |
| |
| // Implements a matcher that checks the value of a optional<> type variable. |
| template <typename ValueMatcher> |
| class OptionalMatcher { |
| public: |
| explicit OptionalMatcher(const ValueMatcher& value_matcher) |
| : value_matcher_(value_matcher) {} |
| |
| template <typename Optional> |
| operator Matcher<Optional>() const { |
| return Matcher<Optional>(new Impl<const Optional&>(value_matcher_)); |
| } |
| |
| template <typename Optional> |
| class Impl : public MatcherInterface<Optional> { |
| public: |
| typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Optional) OptionalView; |
| typedef typename OptionalView::value_type ValueType; |
| explicit Impl(const ValueMatcher& value_matcher) |
| : value_matcher_(MatcherCast<ValueType>(value_matcher)) {} |
| |
| void DescribeTo(::std::ostream* os) const override { |
| *os << "value "; |
| value_matcher_.DescribeTo(os); |
| } |
| |
| void DescribeNegationTo(::std::ostream* os) const override { |
| *os << "value "; |
| value_matcher_.DescribeNegationTo(os); |
| } |
| |
| bool MatchAndExplain(Optional optional, |
| MatchResultListener* listener) const override { |
| if (!optional) { |
| *listener << "which is not engaged"; |
| return false; |
| } |
| const ValueType& value = *optional; |
| StringMatchResultListener value_listener; |
| const bool match = value_matcher_.MatchAndExplain(value, &value_listener); |
| *listener << "whose value " << PrintToString(value) |
| << (match ? " matches" : " doesn't match"); |
| PrintIfNotEmpty(value_listener.str(), listener->stream()); |
| return match; |
| } |
| |
| private: |
| const Matcher<ValueType> value_matcher_; |
| }; |
| |
| private: |
| const ValueMatcher value_matcher_; |
| }; |
| |
| namespace variant_matcher { |
| // Overloads to allow VariantMatcher to do proper ADL lookup. |
| template <typename T> |
| void holds_alternative() {} |
| template <typename T> |
| void get() {} |
| |
| // Implements a matcher that checks the value of a variant<> type variable. |
| template <typename T> |
| class VariantMatcher { |
| public: |
| explicit VariantMatcher(::testing::Matcher<const T&> matcher) |
| : matcher_(std::move(matcher)) {} |
| |
| template <typename Variant> |
| bool MatchAndExplain(const Variant& value, |
| ::testing::MatchResultListener* listener) const { |
| using std::get; |
| if (!listener->IsInterested()) { |
| return holds_alternative<T>(value) && matcher_.Matches(get<T>(value)); |
| } |
| |
| if (!holds_alternative<T>(value)) { |
| *listener << "whose value is not of type '" << GetTypeName() << "'"; |
| return false; |
| } |
| |
| const T& elem = get<T>(value); |
| StringMatchResultListener elem_listener; |
| const bool match = matcher_.MatchAndExplain(elem, &elem_listener); |
| *listener << "whose value " << PrintToString(elem) |
| << (match ? " matches" : " doesn't match"); |
| PrintIfNotEmpty(elem_listener.str(), listener->stream()); |
| return match; |
| } |
| |
| void DescribeTo(std::ostream* os) const { |
| *os << "is a variant<> with value of type '" << GetTypeName() |
| << "' and the value "; |
| matcher_.DescribeTo(os); |
| } |
| |
| void DescribeNegationTo(std::ostream* os) const { |
| *os << "is a variant<> with value of type other than '" << GetTypeName() |
| << "' or the value "; |
| matcher_.DescribeNegationTo(os); |
| } |
| |
| private: |
| static std::string GetTypeName() { |
| #if GTEST_HAS_RTTI |
| GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_( |
| return internal::GetTypeName<T>()); |
| #endif |
| return "the element type"; |
| } |
| |
| const ::testing::Matcher<const T&> matcher_; |
| }; |
| |
| } // namespace variant_matcher |
| |
| namespace any_cast_matcher { |
| |
| // Overloads to allow AnyCastMatcher to do proper ADL lookup. |
| template <typename T> |
| void any_cast() {} |
| |
| // Implements a matcher that any_casts the value. |
| template <typename T> |
| class AnyCastMatcher { |
| public: |
| explicit AnyCastMatcher(const ::testing::Matcher<const T&>& matcher) |
| : matcher_(matcher) {} |
| |
| template <typename AnyType> |
| bool MatchAndExplain(const AnyType& value, |
| ::testing::MatchResultListener* listener) const { |
| if (!listener->IsInterested()) { |
| const T* ptr = any_cast<T>(&value); |
| return ptr != nullptr && matcher_.Matches(*ptr); |
| } |
| |
| const T* elem = any_cast<T>(&value); |
| if (elem == nullptr) { |
| *listener << "whose value is not of type '" << GetTypeName() << "'"; |
| return false; |
| } |
| |
| StringMatchResultListener elem_listener; |
| const bool match = matcher_.MatchAndExplain(*elem, &elem_listener); |
| *listener << "whose value " << PrintToString(*elem) |
| << (match ? " matches" : " doesn't match"); |
| PrintIfNotEmpty(elem_listener.str(), listener->stream()); |
| return match; |
| } |
| |
| void DescribeTo(std::ostream* os) const { |
| *os << "is an 'any' type with value of type '" << GetTypeName() |
| << "' and the value "; |
| matcher_.DescribeTo(os); |
| } |
| |
| void DescribeNegationTo(std::ostream* os) const { |
| *os << "is an 'any' type with value of type other than '" << GetTypeName() |
| << "' or the value "; |
| matcher_.DescribeNegationTo(os); |
| } |
| |
| private: |
| static std::string GetTypeName() { |
| #if GTEST_HAS_RTTI |
| GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_( |
| return internal::GetTypeName<T>()); |
| #endif |
| return "the element type"; |
| } |
| |
| const ::testing::Matcher<const T&> matcher_; |
| }; |
| |
| } // namespace any_cast_matcher |
| |
| // Implements the Args() matcher. |
| template <class ArgsTuple, size_t... k> |
| class ArgsMatcherImpl : public MatcherInterface<ArgsTuple> { |
| public: |
| using RawArgsTuple = typename std::decay<ArgsTuple>::type; |
| using SelectedArgs = |
| std::tuple<typename std::tuple_element<k, RawArgsTuple>::type...>; |
| using MonomorphicInnerMatcher = Matcher<const SelectedArgs&>; |
| |
| template <typename InnerMatcher> |
| explicit ArgsMatcherImpl(const InnerMatcher& inner_matcher) |
| : inner_matcher_(SafeMatcherCast<const SelectedArgs&>(inner_matcher)) {} |
| |
| bool MatchAndExplain(ArgsTuple args, |
| MatchResultListener* listener) const override { |
| // Workaround spurious C4100 on MSVC<=15.7 when k is empty. |
| (void)args; |
| const SelectedArgs& selected_args = |
| std::forward_as_tuple(std::get<k>(args)...); |
| if (!listener->IsInterested()) return inner_matcher_.Matches(selected_args); |
| |
| PrintIndices(listener->stream()); |
| *listener << "are " << PrintToString(selected_args); |
| |
| StringMatchResultListener inner_listener; |
| const bool match = |
| inner_matcher_.MatchAndExplain(selected_args, &inner_listener); |
| PrintIfNotEmpty(inner_listener.str(), listener->stream()); |
| return match; |
| } |
| |
| void DescribeTo(::std::ostream* os) const override { |
| *os << "are a tuple "; |
| PrintIndices(os); |
| inner_matcher_.DescribeTo(os); |
| } |
| |
| void DescribeNegationTo(::std::ostream* os) const override { |
| *os << "are a tuple "; |
| PrintIndices(os); |
| inner_matcher_.DescribeNegationTo(os); |
| } |
| |
| private: |
| // Prints the indices of the selected fields. |
| static void PrintIndices(::std::ostream* os) { |
| *os << "whose fields ("; |
| const char* sep = ""; |
| // Workaround spurious C4189 on MSVC<=15.7 when k is empty. |
| (void)sep; |
| const char* dummy[] = {"", (*os << sep << "#" << k, sep = ", ")...}; |
| (void)dummy; |
| *os << ") "; |
| } |
| |
| MonomorphicInnerMatcher inner_matcher_; |
| }; |
| |
| template <class InnerMatcher, size_t... k> |
| class ArgsMatcher { |
| public: |
| explicit ArgsMatcher(InnerMatcher inner_matcher) |
| : inner_matcher_(std::move(inner_matcher)) {} |
| |
| template <typename ArgsTuple> |
| operator Matcher<ArgsTuple>() const { // NOLINT |
| return MakeMatcher(new ArgsMatcherImpl<ArgsTuple, k...>(inner_matcher_)); |
| } |
| |
| private: |
| InnerMatcher inner_matcher_; |
| }; |
| |
| } // namespace internal |
| |
| // ElementsAreArray(iterator_first, iterator_last) |
| // ElementsAreArray(pointer, count) |
| // ElementsAreArray(array) |
| // ElementsAreArray(container) |
| // ElementsAreArray({ e1, e2, ..., en }) |
| // |
| // The ElementsAreArray() functions are like ElementsAre(...), except |
| // that they are given a homogeneous sequence rather than taking each |
| // element as a function argument. The sequence can be specified as an |
| // array, a pointer and count, a vector, an initializer list, or an |
| // STL iterator range. In each of these cases, the underlying sequence |
| // can be either a sequence of values or a sequence of matchers. |
| // |
| // All forms of ElementsAreArray() make a copy of the input matcher sequence. |
| |
| template <typename Iter> |
| inline internal::ElementsAreArrayMatcher< |
| typename ::std::iterator_traits<Iter>::value_type> |
| ElementsAreArray(Iter first, Iter last) { |
| typedef typename ::std::iterator_traits<Iter>::value_type T; |
| return internal::ElementsAreArrayMatcher<T>(first, last); |
| } |
| |
| template <typename T> |
| inline internal::ElementsAreArrayMatcher<T> ElementsAreArray( |
| const T* pointer, size_t count) { |
| return ElementsAreArray(pointer, pointer + count); |
| } |
| |
| template <typename T, size_t N> |
| inline internal::ElementsAreArrayMatcher<T> ElementsAreArray( |
| const T (&array)[N]) { |
| return ElementsAreArray(array, N); |
| } |
| |
| template <typename Container> |
| inline internal::ElementsAreArrayMatcher<typename Container::value_type> |
| ElementsAreArray(const Container& container) { |
| return ElementsAreArray(container.begin(), container.end()); |
| } |
| |
| template <typename T> |
| inline internal::ElementsAreArrayMatcher<T> |
| ElementsAreArray(::std::initializer_list<T> xs) { |
| return ElementsAreArray(xs.begin(), xs.end()); |
| } |
| |
| // UnorderedElementsAreArray(iterator_first, iterator_last) |
| // UnorderedElementsAreArray(pointer, count) |
| // UnorderedElementsAreArray(array) |
| // UnorderedElementsAreArray(container) |
| // UnorderedElementsAreArray({ e1, e2, ..., en }) |
| // |
| // UnorderedElementsAreArray() verifies that a bijective mapping onto a |
| // collection of matchers exists. |
| // |
| // The matchers can be specified as an array, a pointer and count, a container, |
| // an initializer list, or an STL iterator range. In each of these cases, the |
| // underlying matchers can be either values or matchers. |
| |
| template <typename Iter> |
| inline internal::UnorderedElementsAreArrayMatcher< |
| typename ::std::iterator_traits<Iter>::value_type> |
| UnorderedElementsAreArray(Iter first, Iter last) { |
| typedef typename ::std::iterator_traits<Iter>::value_type T; |
| return internal::UnorderedElementsAreArrayMatcher<T>( |
| internal::UnorderedMatcherRequire::ExactMatch, first, last); |
| } |
| |
| template <typename T> |
| inline internal::UnorderedElementsAreArrayMatcher<T> |
| UnorderedElementsAreArray(const T* pointer, size_t count) { |
| return UnorderedElementsAreArray(pointer, pointer + count); |
| } |
| |
| template <typename T, size_t N> |
| inline internal::UnorderedElementsAreArrayMatcher<T> |
| UnorderedElementsAreArray(const T (&array)[N]) { |
| return UnorderedElementsAreArray(array, N); |
| } |
| |
| template <typename Container> |
| inline internal::UnorderedElementsAreArrayMatcher< |
| typename Container::value_type> |
| UnorderedElementsAreArray(const Container& container) { |
| return UnorderedElementsAreArray(container.begin(), container.end()); |
| } |
| |
| template <typename T> |
| inline internal::UnorderedElementsAreArrayMatcher<T> |
| UnorderedElementsAreArray(::std::initializer_list<T> xs) { |
| return UnorderedElementsAreArray(xs.begin(), xs.end()); |
| } |
| |
| // _ is a matcher that matches anything of any type. |
| // |
| // This definition is fine as: |
| // |
| // 1. The C++ standard permits using the name _ in a namespace that |
| // is not the global namespace or ::std. |
| // 2. The AnythingMatcher class has no data member or constructor, |
| // so it's OK to create global variables of this type. |
| // 3. c-style has approved of using _ in this case. |
| const internal::AnythingMatcher _ = {}; |
| // Creates a matcher that matches any value of the given type T. |
| template <typename T> |
| inline Matcher<T> A() { |
| return _; |
| } |
| |
| // Creates a matcher that matches any value of the given type T. |
| template <typename T> |
| inline Matcher<T> An() { |
| return _; |
| } |
| |
| template <typename T, typename M> |
| Matcher<T> internal::MatcherCastImpl<T, M>::CastImpl( |
| const M& value, std::false_type /* convertible_to_matcher */, |
| std::false_type /* convertible_to_T */) { |
| return Eq(value); |
| } |
| |
| // Creates a polymorphic matcher that matches any NULL pointer. |
| inline PolymorphicMatcher<internal::IsNullMatcher > IsNull() { |
| return MakePolymorphicMatcher(internal::IsNullMatcher()); |
| } |
| |
| // Creates a polymorphic matcher that matches any non-NULL pointer. |
| // This is convenient as Not(NULL) doesn't compile (the compiler |
| // thinks that that expression is comparing a pointer with an integer). |
| inline PolymorphicMatcher<internal::NotNullMatcher > NotNull() { |
| return MakePolymorphicMatcher(internal::NotNullMatcher()); |
| } |
| |
| // Creates a polymorphic matcher that matches any argument that |
| // references variable x. |
| template <typename T> |
| inline internal::RefMatcher<T&> Ref(T& x) { // NOLINT |
| return internal::RefMatcher<T&>(x); |
| } |
| |
| // Creates a polymorphic matcher that matches any NaN floating point. |
| inline PolymorphicMatcher<internal::IsNanMatcher> IsNan() { |
| return MakePolymorphicMatcher(internal::IsNanMatcher()); |
| } |
| |
| // Creates a matcher that matches any double argument approximately |
| // equal to rhs, where two NANs are considered unequal. |
| inline internal::FloatingEqMatcher<double> DoubleEq(double rhs) { |
| return internal::FloatingEqMatcher<double>(rhs, false); |
| } |
| |
| // Creates a matcher that matches any double argument approximately |
| // equal to rhs, including NaN values when rhs is NaN. |
| inline internal::FloatingEqMatcher<double> NanSensitiveDoubleEq(double rhs) { |
| return internal::FloatingEqMatcher<double>(rhs, true); |
| } |
| |
| // Creates a matcher that matches any double argument approximately equal to |
| // rhs, up to the specified max absolute error bound, where two NANs are |
| // considered unequal. The max absolute error bound must be non-negative. |
| inline internal::FloatingEqMatcher<double> DoubleNear( |
| double rhs, double max_abs_error) { |
| return internal::FloatingEqMatcher<double>(rhs, false, max_abs_error); |
| } |
| |
| // Creates a matcher that matches any double argument approximately equal to |
| // rhs, up to the specified max absolute error bound, including NaN values when |
| // rhs is NaN. The max absolute error bound must be non-negative. |
| inline internal::FloatingEqMatcher<double> NanSensitiveDoubleNear( |
| double rhs, double max_abs_error) { |
| return internal::FloatingEqMatcher<double>(rhs, true, max_abs_error); |
| } |
| |
| // Creates a matcher that matches any float argument approximately |
| // equal to rhs, where two NANs are considered unequal. |
| inline internal::FloatingEqMatcher<float> FloatEq(float rhs) { |
| return internal::FloatingEqMatcher<float>(rhs, false); |
| } |
| |
| // Creates a matcher that matches any float argument approximately |
| // equal to rhs, including NaN values when rhs is NaN. |
| inline internal::FloatingEqMatcher<float> NanSensitiveFloatEq(float rhs) { |
| return internal::FloatingEqMatcher<float>(rhs, true); |
| } |
| |
| // Creates a matcher that matches any float argument approximately equal to |
| // rhs, up to the specified max absolute error bound, where two NANs are |
| // considered unequal. The max absolute error bound must be non-negative. |
| inline internal::FloatingEqMatcher<float> FloatNear( |
| float rhs, float max_abs_error) { |
| return internal::FloatingEqMatcher<float>(rhs, false, max_abs_error); |
| } |
| |
| // Creates a matcher that matches any float argument approximately equal to |
| // rhs, up to the specified max absolute error bound, including NaN values when |
| // rhs is NaN. The max absolute error bound must be non-negative. |
| inline internal::FloatingEqMatcher<float> NanSensitiveFloatNear( |
| float rhs, float max_abs_error) { |
| return internal::FloatingEqMatcher<float>(rhs, true, max_abs_error); |
| } |
| |
| // Creates a matcher that matches a pointer (raw or smart) that points |
| // to a value that matches inner_matcher. |
| template <typename InnerMatcher> |
| inline internal::PointeeMatcher<InnerMatcher> Pointee( |
| const InnerMatcher& inner_matcher) { |
| return internal::PointeeMatcher<InnerMatcher>(inner_matcher); |
| } |
| |
| #if GTEST_HAS_RTTI |
| // Creates a matcher that matches a pointer or reference that matches |
| // inner_matcher when dynamic_cast<To> is applied. |
| // The result of dynamic_cast<To> is forwarded to the inner matcher. |
| // If To is a pointer and the cast fails, the inner matcher will receive NULL. |
| // If To is a reference and the cast fails, this matcher returns false |
| // immediately. |
| template <typename To> |
| inline PolymorphicMatcher<internal::WhenDynamicCastToMatcher<To> > |
| WhenDynamicCastTo(const Matcher<To>& inner_matcher) { |
| return MakePolymorphicMatcher( |
| internal::WhenDynamicCastToMatcher<To>(inner_matcher)); |
| } |
| #endif // GTEST_HAS_RTTI |
| |
| // Creates a matcher that matches an object whose given field matches |
| // 'matcher'. For example, |
| // Field(&Foo::number, Ge(5)) |
| // matches a Foo object x if and only if x.number >= 5. |
| template <typename Class, typename FieldType, typename FieldMatcher> |
| inline PolymorphicMatcher< |
| internal::FieldMatcher<Class, FieldType> > Field( |
| FieldType Class::*field, const FieldMatcher& matcher) { |
| return MakePolymorphicMatcher( |
| internal::FieldMatcher<Class, FieldType>( |
| field, MatcherCast<const FieldType&>(matcher))); |
| // The call to MatcherCast() is required for supporting inner |
| // matchers of compatible types. For example, it allows |
| // Field(&Foo::bar, m) |
| // to compile where bar is an int32 and m is a matcher for int64. |
| } |
| |
| // Same as Field() but also takes the name of the field to provide better error |
| // messages. |
| template <typename Class, typename FieldType, typename FieldMatcher> |
| inline PolymorphicMatcher<internal::FieldMatcher<Class, FieldType> > Field( |
| const std::string& field_name, FieldType Class::*field, |
| const FieldMatcher& matcher) { |
| return MakePolymorphicMatcher(internal::FieldMatcher<Class, FieldType>( |
| field_name, field, MatcherCast<const FieldType&>(matcher))); |
| } |
| |
| // Creates a matcher that matches an object whose given property |
| // matches 'matcher'. For example, |
| // Property(&Foo::str, StartsWith("hi")) |
| // matches a Foo object x if and only if x.str() starts with "hi". |
| template <typename Class, typename PropertyType, typename PropertyMatcher> |
| inline PolymorphicMatcher<internal::PropertyMatcher< |
| Class, PropertyType, PropertyType (Class::*)() const> > |
| Property(PropertyType (Class::*property)() const, |
| const PropertyMatcher& matcher) { |
| return MakePolymorphicMatcher( |
| internal::PropertyMatcher<Class, PropertyType, |
| PropertyType (Class::*)() const>( |
| property, MatcherCast<const PropertyType&>(matcher))); |
| // The call to MatcherCast() is required for supporting inner |
| // matchers of compatible types. For example, it allows |
| // Property(&Foo::bar, m) |
| // to compile where bar() returns an int32 and m is a matcher for int64. |
| } |
| |
| // Same as Property() above, but also takes the name of the property to provide |
| // better error messages. |
| template <typename Class, typename PropertyType, typename PropertyMatcher> |
| inline PolymorphicMatcher<internal::PropertyMatcher< |
| Class, PropertyType, PropertyType (Class::*)() const> > |
| Property(const std::string& property_name, |
| PropertyType (Class::*property)() const, |
| const PropertyMatcher& matcher) { |
| return MakePolymorphicMatcher( |
| internal::PropertyMatcher<Class, PropertyType, |
| PropertyType (Class::*)() const>( |
| property_name, property, MatcherCast<const PropertyType&>(matcher))); |
| } |
| |
| // The same as above but for reference-qualified member functions. |
| template <typename Class, typename PropertyType, typename PropertyMatcher> |
| inline PolymorphicMatcher<internal::PropertyMatcher< |
| Class, PropertyType, PropertyType (Class::*)() const &> > |
| Property(PropertyType (Class::*property)() const &, |
| const PropertyMatcher& matcher) { |
| return MakePolymorphicMatcher( |
| internal::PropertyMatcher<Class, PropertyType, |
| PropertyType (Class::*)() const&>( |
| property, MatcherCast<const PropertyType&>(matcher))); |
| } |
| |
| // Three-argument form for reference-qualified member functions. |
| template <typename Class, typename PropertyType, typename PropertyMatcher> |
| inline PolymorphicMatcher<internal::PropertyMatcher< |
| Class, PropertyType, PropertyType (Class::*)() const &> > |
| Property(const std::string& property_name, |
| PropertyType (Class::*property)() const &, |
| const PropertyMatcher& matcher) { |
| return MakePolymorphicMatcher( |
| internal::PropertyMatcher<Class, PropertyType, |
| PropertyType (Class::*)() const&>( |
| property_name, property, MatcherCast<const PropertyType&>(matcher))); |
| } |
| |
| // Creates a matcher that matches an object if and only if the result of |
| // applying a callable to x matches 'matcher'. For example, |
| // ResultOf(f, StartsWith("hi")) |
| // matches a Foo object x if and only if f(x) starts with "hi". |
| // `callable` parameter can be a function, function pointer, or a functor. It is |
| // required to keep no state affecting the results of the calls on it and make |
| // no assumptions about how many calls will be made. Any state it keeps must be |
| // protected from the concurrent access. |
| template <typename Callable, typename InnerMatcher> |
| internal::ResultOfMatcher<Callable, InnerMatcher> ResultOf( |
| Callable callable, InnerMatcher matcher) { |
| return internal::ResultOfMatcher<Callable, InnerMatcher>( |
| std::move(callable), std::move(matcher)); |
| } |
| |
| // String matchers. |
| |
| // Matches a string equal to str. |
| template <typename T = std::string> |
| PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrEq( |
| const internal::StringLike<T>& str) { |
| return MakePolymorphicMatcher( |
| internal::StrEqualityMatcher<std::string>(std::string(str), true, true)); |
| } |
| |
| // Matches a string not equal to str. |
| template <typename T = std::string> |
| PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrNe( |
| const internal::StringLike<T>& str) { |
| return MakePolymorphicMatcher( |
| internal::StrEqualityMatcher<std::string>(std::string(str), false, true)); |
| } |
| |
| // Matches a string equal to str, ignoring case. |
| template <typename T = std::string> |
| PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrCaseEq( |
| const internal::StringLike<T>& str) { |
| return MakePolymorphicMatcher( |
| internal::StrEqualityMatcher<std::string>(std::string(str), true, false)); |
| } |
| |
| // Matches a string not equal to str, ignoring case. |
| template <typename T = std::string> |
| PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrCaseNe( |
| const internal::StringLike<T>& str) { |
| return MakePolymorphicMatcher(internal::StrEqualityMatcher<std::string>( |
| std::string(str), false, false)); |
| } |
| |
| // Creates a matcher that matches any string, std::string, or C string |
| // that contains the given substring. |
| template <typename T = std::string> |
| PolymorphicMatcher<internal::HasSubstrMatcher<std::string> > HasSubstr( |
| const internal::StringLike<T>& substring) { |
| return MakePolymorphicMatcher( |
| internal::HasSubstrMatcher<std::string>(std::string(substring))); |
| } |
| |
| // Matches a string that starts with 'prefix' (case-sensitive). |
| template <typename T = std::string> |
| PolymorphicMatcher<internal::StartsWithMatcher<std::string> > StartsWith( |
| const internal::StringLike<T>& prefix) { |
| return MakePolymorphicMatcher( |
| internal::StartsWithMatcher<std::string>(std::string(prefix))); |
| } |
| |
| // Matches a string that ends with 'suffix' (case-sensitive). |
| template <typename T = std::string> |
| PolymorphicMatcher<internal::EndsWithMatcher<std::string> > EndsWith( |
| const internal::StringLike<T>& suffix) { |
| return MakePolymorphicMatcher( |
| internal::EndsWithMatcher<std::string>(std::string(suffix))); |
| } |
| |
| #if GTEST_HAS_STD_WSTRING |
| // Wide string matchers. |
| |
| // Matches a string equal to str. |
| inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > StrEq( |
| const std::wstring& str) { |
| return MakePolymorphicMatcher( |
| internal::StrEqualityMatcher<std::wstring>(str, true, true)); |
| } |
| |
| // Matches a string not equal to str. |
| inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > StrNe( |
| const std::wstring& str) { |
| return MakePolymorphicMatcher( |
| internal::StrEqualityMatcher<std::wstring>(str, false, true)); |
| } |
| |
| // Matches a string equal to str, ignoring case. |
| inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > |
| StrCaseEq(const std::wstring& str) { |
| return MakePolymorphicMatcher( |
| internal::StrEqualityMatcher<std::wstring>(str, true, false)); |
| } |
| |
| // Matches a string not equal to str, ignoring case. |
| inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > |
| StrCaseNe(const std::wstring& str) { |
| return MakePolymorphicMatcher( |
| internal::StrEqualityMatcher<std::wstring>(str, false, false)); |
| } |
| |
| // Creates a matcher that matches any ::wstring, std::wstring, or C wide string |
| // that contains the given substring. |
| inline PolymorphicMatcher<internal::HasSubstrMatcher<std::wstring> > HasSubstr( |
| const std::wstring& substring) { |
| return MakePolymorphicMatcher( |
| internal::HasSubstrMatcher<std::wstring>(substring)); |
| } |
| |
| // Matches a string that starts with 'prefix' (case-sensitive). |
| inline PolymorphicMatcher<internal::StartsWithMatcher<std::wstring> > |
| StartsWith(const std::wstring& prefix) { |
| return MakePolymorphicMatcher( |
| internal::StartsWithMatcher<std::wstring>(prefix)); |
| } |
| |
| // Matches a string that ends with 'suffix' (case-sensitive). |
| inline PolymorphicMatcher<internal::EndsWithMatcher<std::wstring> > EndsWith( |
| const std::wstring& suffix) { |
| return MakePolymorphicMatcher( |
| internal::EndsWithMatcher<std::wstring>(suffix)); |
| } |
| |
| #endif // GTEST_HAS_STD_WSTRING |
| |
| // Creates a polymorphic matcher that matches a 2-tuple where the |
| // first field == the second field. |
| inline internal::Eq2Matcher Eq() { return internal::Eq2Matcher(); } |
| |
| // Creates a polymorphic matcher that matches a 2-tuple where the |
| // first field >= the second field. |
| inline internal::Ge2Matcher Ge() { return internal::Ge2Matcher(); } |
| |
| // Creates a polymorphic matcher that matches a 2-tuple where the |
| // first field > the second field. |
| inline internal::Gt2Matcher Gt() { return internal::Gt2Matcher(); } |
| |
| // Creates a polymorphic matcher that matches a 2-tuple where the |
| // first field <= the second field. |
| inline internal::Le2Matcher Le() { return internal::Le2Matcher(); } |
| |
| // Creates a polymorphic matcher that matches a 2-tuple where the |
| // first field < the second field. |
| inline internal::Lt2Matcher Lt() { return internal::Lt2Matcher(); } |
| |
| // Creates a polymorphic matcher that matches a 2-tuple where the |
| // first field != the second field. |
| inline internal::Ne2Matcher Ne() { return internal::Ne2Matcher(); } |
| |
| // Creates a polymorphic matcher that matches a 2-tuple where |
| // FloatEq(first field) matches the second field. |
| inline internal::FloatingEq2Matcher<float> FloatEq() { |
| return internal::FloatingEq2Matcher<float>(); |
| } |
| |
| // Creates a polymorphic matcher that matches a 2-tuple where |
| // DoubleEq(first field) matches the second field. |
| inline internal::FloatingEq2Matcher<double> DoubleEq() { |
| return internal::FloatingEq2Matcher<double>(); |
| } |
| |
| // Creates a polymorphic matcher that matches a 2-tuple where |
| // FloatEq(first field) matches the second field with NaN equality. |
| inline internal::FloatingEq2Matcher<float> NanSensitiveFloatEq() { |
| return internal::FloatingEq2Matcher<float>(true); |
| } |
| |
| // Creates a polymorphic matcher that matches a 2-tuple where |
| // DoubleEq(first field) matches the second field with NaN equality. |
| inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleEq() { |
| return internal::FloatingEq2Matcher<double>(true); |
| } |
| |
| // Creates a polymorphic matcher that matches a 2-tuple where |
| // FloatNear(first field, max_abs_error) matches the second field. |
| inline internal::FloatingEq2Matcher<float> FloatNear(float max_abs_error) { |
| return internal::FloatingEq2Matcher<float>(max_abs_error); |
| } |
| |
| // Creates a polymorphic matcher that matches a 2-tuple where |
| // DoubleNear(first field, max_abs_error) matches the second field. |
| inline internal::FloatingEq2Matcher<double> DoubleNear(double max_abs_error) { |
| return internal::FloatingEq2Matcher<double>(max_abs_error); |
| } |
| |
| // Creates a polymorphic matcher that matches a 2-tuple where |
| // FloatNear(first field, max_abs_error) matches the second field with NaN |
| // equality. |
| inline internal::FloatingEq2Matcher<float> NanSensitiveFloatNear( |
| float max_abs_error) { |
| return internal::FloatingEq2Matcher<float>(max_abs_error, true); |
| } |
| |
| // Creates a polymorphic matcher that matches a 2-tuple where |
| // DoubleNear(first field, max_abs_error) matches the second field with NaN |
| // equality. |
| inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleNear( |
| double max_abs_error) { |
| return internal::FloatingEq2Matcher<double>(max_abs_error, true); |
| } |
| |
| // Creates a matcher that matches any value of type T that m doesn't |
| // match. |
| template <typename InnerMatcher> |
| inline internal::NotMatcher<InnerMatcher> Not(InnerMatcher m) { |
| return internal::NotMatcher<InnerMatcher>(m); |
| } |
| |
| // Returns a matcher that matches anything that satisfies the given |
| // predicate. The predicate can be any unary function or functor |
| // whose return type can be implicitly converted to bool. |
| template <typename Predicate> |
| inline PolymorphicMatcher<internal::TrulyMatcher<Predicate> > |
| Truly(Predicate pred) { |
| return MakePolymorphicMatcher(internal::TrulyMatcher<Predicate>(pred)); |
| } |
| |
| // Returns a matcher that matches the container size. The container must |
| // support both size() and size_type which all STL-like containers provide. |
| // Note that the parameter 'size' can be a value of type size_type as well as |
| // matcher. For instance: |
| // EXPECT_THAT(container, SizeIs(2)); // Checks container has 2 elements. |
| // EXPECT_THAT(container, SizeIs(Le(2)); // Checks container has at most 2. |
| template <typename SizeMatcher> |
| inline internal::SizeIsMatcher<SizeMatcher> |
| SizeIs(const SizeMatcher& size_matcher) { |
| return internal::SizeIsMatcher<SizeMatcher>(size_matcher); |
| } |
| |
| // Returns a matcher that matches the distance between the container's begin() |
| // iterator and its end() iterator, i.e. the size of the container. This matcher |
| // can be used instead of SizeIs with containers such as std::forward_list which |
| // do not implement size(). The container must provide const_iterator (with |
| // valid iterator_traits), begin() and end(). |
| template <typename DistanceMatcher> |
| inline internal::BeginEndDistanceIsMatcher<DistanceMatcher> |
| BeginEndDistanceIs(const DistanceMatcher& distance_matcher) { |
| return internal::BeginEndDistanceIsMatcher<DistanceMatcher>(distance_matcher); |
| } |
| |
| // Returns a matcher that matches an equal container. |
| // This matcher behaves like Eq(), but in the event of mismatch lists the |
| // values that are included in one container but not the other. (Duplicate |
| // values and order differences are not explained.) |
| template <typename Container> |
| inline PolymorphicMatcher<internal::ContainerEqMatcher< |
| typename std::remove_const<Container>::type>> |
| ContainerEq(const Container& rhs) { |
| return MakePolymorphicMatcher(internal::ContainerEqMatcher<Container>(rhs)); |
| } |
| |
| // Returns a matcher that matches a container that, when sorted using |
| // the given comparator, matches container_matcher. |
| template <typename Comparator, typename ContainerMatcher> |
| inline internal::WhenSortedByMatcher<Comparator, ContainerMatcher> |
| WhenSortedBy(const Comparator& comparator, |
| const ContainerMatcher& container_matcher) { |
| return internal::WhenSortedByMatcher<Comparator, ContainerMatcher>( |
| comparator, container_matcher); |
| } |
| |
| // Returns a matcher that matches a container that, when sorted using |
| // the < operator, matches container_matcher. |
| template <typename ContainerMatcher> |
| inline internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher> |
| WhenSorted(const ContainerMatcher& container_matcher) { |
| return |
| internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher>( |
| internal::LessComparator(), container_matcher); |
| } |
| |
| // Matches an STL-style container or a native array that contains the |
| // same number of elements as in rhs, where its i-th element and rhs's |
| // i-th element (as a pair) satisfy the given pair matcher, for all i. |
| // TupleMatcher must be able to be safely cast to Matcher<std::tuple<const |
| // T1&, const T2&> >, where T1 and T2 are the types of elements in the |
| // LHS container and the RHS container respectively. |
| template <typename TupleMatcher, typename Container> |
| inline internal::PointwiseMatcher<TupleMatcher, |
| typename std::remove_const<Container>::type> |
| Pointwise(const TupleMatcher& tuple_matcher, const Container& rhs) { |
| return internal::PointwiseMatcher<TupleMatcher, Container>(tuple_matcher, |
| rhs); |
| } |
| |
| |
| // Supports the Pointwise(m, {a, b, c}) syntax. |
| template <typename TupleMatcher, typename T> |
| inline internal::PointwiseMatcher<TupleMatcher, std::vector<T> > Pointwise( |
| const TupleMatcher& tuple_matcher, std::initializer_list<T> rhs) { |
| return Pointwise(tuple_matcher, std::vector<T>(rhs)); |
| } |
| |
| |
| // UnorderedPointwise(pair_matcher, rhs) matches an STL-style |
| // container or a native array that contains the same number of |
| // elements as in rhs, where in some permutation of the container, its |
| // i-th element and rhs's i-th element (as a pair) satisfy the given |
| // pair matcher, for all i. Tuple2Matcher must be able to be safely |
| // cast to Matcher<std::tuple<const T1&, const T2&> >, where T1 and T2 are |
| // the types of elements in the LHS container and the RHS container |
| // respectively. |
| // |
| // This is like Pointwise(pair_matcher, rhs), except that the element |
| // order doesn't matter. |
| template <typename Tuple2Matcher, typename RhsContainer> |
| inline internal::UnorderedElementsAreArrayMatcher< |
| typename internal::BoundSecondMatcher< |
| Tuple2Matcher, |
| typename internal::StlContainerView< |
| typename std::remove_const<RhsContainer>::type>::type::value_type>> |
| UnorderedPointwise(const Tuple2Matcher& tuple2_matcher, |
| const RhsContainer& rhs_container) { |
| // RhsView allows the same code to handle RhsContainer being a |
| // STL-style container and it being a native C-style array. |
| typedef typename internal::StlContainerView<RhsContainer> RhsView; |
| typedef typename RhsView::type RhsStlContainer; |
| typedef typename RhsStlContainer::value_type Second; |
| const RhsStlContainer& rhs_stl_container = |
| RhsView::ConstReference(rhs_container); |
| |
| // Create a matcher for each element in rhs_container. |
| ::std::vector<internal::BoundSecondMatcher<Tuple2Matcher, Second> > matchers; |
| for (typename RhsStlContainer::const_iterator it = rhs_stl_container.begin(); |
| it != rhs_stl_container.end(); ++it) { |
| matchers.push_back( |
| internal::MatcherBindSecond(tuple2_matcher, *it)); |
| } |
| |
| // Delegate the work to UnorderedElementsAreArray(). |
| return UnorderedElementsAreArray(matchers); |
| } |
| |
| |
| // Supports the UnorderedPointwise(m, {a, b, c}) syntax. |
| template <typename Tuple2Matcher, typename T> |
| inline internal::UnorderedElementsAreArrayMatcher< |
| typename internal::BoundSecondMatcher<Tuple2Matcher, T> > |
| UnorderedPointwise(const Tuple2Matcher& tuple2_matcher, |
| std::initializer_list<T> rhs) { |
| return UnorderedPointwise(tuple2_matcher, std::vector<T>(rhs)); |
| } |
| |
| |
| // Matches an STL-style container or a native array that contains at |
| // least one element matching the given value or matcher. |
| // |
| // Examples: |
| // ::std::set<int> page_ids; |
| // page_ids.insert(3); |
| // page_ids.insert(1); |
| // EXPECT_THAT(page_ids, Contains(1)); |
| // EXPECT_THAT(page_ids, Contains(Gt(2))); |
| // EXPECT_THAT(page_ids, Not(Contains(4))); |
| // |
| // ::std::map<int, size_t> page_lengths; |
| // page_lengths[1] = 100; |
| // EXPECT_THAT(page_lengths, |
| // Contains(::std::pair<const int, size_t>(1, 100))); |
| // |
| // const char* user_ids[] = { "joe", "mike", "tom" }; |
| // EXPECT_THAT(user_ids, Contains(Eq(::std::string("tom")))); |
| template <typename M> |
| inline internal::ContainsMatcher<M> Contains(M matcher) { |
| return internal::ContainsMatcher<M>(matcher); |
| } |
| |
| // IsSupersetOf(iterator_first, iterator_last) |
| // IsSupersetOf(pointer, count) |
| // IsSupersetOf(array) |
| // IsSupersetOf(container) |
| // IsSupersetOf({e1, e2, ..., en}) |
| // |
| // IsSupersetOf() verifies that a surjective partial mapping onto a collection |
| // of matchers exists. In other words, a container matches |
| // IsSupersetOf({e1, ..., en}) if and only if there is a permutation |
| // {y1, ..., yn} of some of the container's elements where y1 matches e1, |
| // ..., and yn matches en. Obviously, the size of the container must be >= n |
| // in order to have a match. Examples: |
| // |
| // - {1, 2, 3} matches IsSupersetOf({Ge(3), Ne(0)}), as 3 matches Ge(3) and |
| // 1 matches Ne(0). |
| // - {1, 2} doesn't match IsSupersetOf({Eq(1), Lt(2)}), even though 1 matches |
| // both Eq(1) and Lt(2). The reason is that different matchers must be used |
| // for elements in different slots of the container. |
| // - {1, 1, 2} matches IsSupersetOf({Eq(1), Lt(2)}), as (the first) 1 matches |
| // Eq(1) and (the second) 1 matches Lt(2). |
| // - {1, 2, 3} matches IsSupersetOf(Gt(1), Gt(1)), as 2 matches (the first) |
| // Gt(1) and 3 matches (the second) Gt(1). |
| // |
| // The matchers can be specified as an array, a pointer and count, a container, |
| // an initializer list, or an STL iterator range. In each of these cases, the |
| // underlying matchers can be either values or matchers. |
| |
| template <typename Iter> |
| inline internal::UnorderedElementsAreArrayMatcher< |
| typename ::std::iterator_traits<Iter>::value_type> |
| IsSupersetOf(Iter first, Iter last) { |
| typedef typename ::std::iterator_traits<Iter>::value_type T; |
| return internal::UnorderedElementsAreArrayMatcher<T>( |
| internal::UnorderedMatcherRequire::Superset, first, last); |
| } |
| |
| template <typename T> |
| inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf( |
| const T* pointer, size_t count) { |
| return IsSupersetOf(pointer, pointer + count); |
| } |
| |
| template <typename T, size_t N> |
| inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf( |
| const T (&array)[N]) { |
| return IsSupersetOf(array, N); |
| } |
| |
| template <typename Container> |
| inline internal::UnorderedElementsAreArrayMatcher< |
| typename Container::value_type> |
| IsSupersetOf(const Container& container) { |
| return IsSupersetOf(container.begin(), container.end()); |
| } |
| |
| template <typename T> |
| inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf( |
| ::std::initializer_list<T> xs) { |
| return IsSupersetOf(xs.begin(), xs.end()); |
| } |
| |
| // IsSubsetOf(iterator_first, iterator_last) |
| // IsSubsetOf(pointer, count) |
| // IsSubsetOf(array) |
| // IsSubsetOf(container) |
| // IsSubsetOf({e1, e2, ..., en}) |
| // |
| // IsSubsetOf() verifies that an injective mapping onto a collection of matchers |
| // exists. In other words, a container matches IsSubsetOf({e1, ..., en}) if and |
| // only if there is a subset of matchers {m1, ..., mk} which would match the |
| // container using UnorderedElementsAre. Obviously, the size of the container |
| // must be <= n in order to have a match. Examples: |
| // |
| // - {1} matches IsSubsetOf({Gt(0), Lt(0)}), as 1 matches Gt(0). |
| // - {1, -1} matches IsSubsetOf({Lt(0), Gt(0)}), as 1 matches Gt(0) and -1 |
| // matches Lt(0). |
| // - {1, 2} doesn't matches IsSubsetOf({Gt(0), Lt(0)}), even though 1 and 2 both |
| // match Gt(0). The reason is that different matchers must be used for |
| // elements in different slots of the container. |
| // |
| // The matchers can be specified as an array, a pointer and count, a container, |
| // an initializer list, or an STL iterator range. In each of these cases, the |
| // underlying matchers can be either values or matchers. |
| |
| template <typename Iter> |
| inline internal::UnorderedElementsAreArrayMatcher< |
| typename ::std::iterator_traits<Iter>::value_type> |
| IsSubsetOf(Iter first, Iter last) { |
| typedef typename ::std::iterator_traits<Iter>::value_type T; |
| return internal::UnorderedElementsAreArrayMatcher<T>( |
| internal::UnorderedMatcherRequire::Subset, first, last); |
| } |
| |
| template <typename T> |
| inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf( |
| const T* pointer, size_t count) { |
| return IsSubsetOf(pointer, pointer + count); |
| } |
| |
| template <typename T, size_t N> |
| inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf( |
| const T (&array)[N]) { |
| return IsSubsetOf(array, N); |
| } |
| |
| template <typename Container> |
| inline internal::UnorderedElementsAreArrayMatcher< |
| typename Container::value_type> |
| IsSubsetOf(const Container& container) { |
| return IsSubsetOf(container.begin(), container.end()); |
| } |
| |
| template <typename T> |
| inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf( |
| ::std::initializer_list<T> xs) { |
| return IsSubsetOf(xs.begin(), xs.end()); |
| } |
| |
| // Matches an STL-style container or a native array that contains only |
| // elements matching the given value or matcher. |
| // |
| // Each(m) is semantically equivalent to Not(Contains(Not(m))). Only |
| // the messages are different. |
| // |
| // Examples: |
| // ::std::set<int> page_ids; |
| // // Each(m) matches an empty container, regardless of what m is. |
| // EXPECT_THAT(page_ids, Each(Eq(1))); |
| // EXPECT_THAT(page_ids, Each(Eq(77))); |
| // |
| // page_ids.insert(3); |
| // EXPECT_THAT(page_ids, Each(Gt(0))); |
| // EXPECT_THAT(page_ids, Not(Each(Gt(4)))); |
| // page_ids.insert(1); |
| // EXPECT_THAT(page_ids, Not(Each(Lt(2)))); |
| // |
| // ::std::map<int, size_t> page_lengths; |
| // page_lengths[1] = 100; |
| // page_lengths[2] = 200; |
| // page_lengths[3] = 300; |
| // EXPECT_THAT(page_lengths, Not(Each(Pair(1, 100)))); |
| // EXPECT_THAT(page_lengths, Each(Key(Le(3)))); |
| // |
| // const char* user_ids[] = { "joe", "mike", "tom" }; |
| // EXPECT_THAT(user_ids, Not(Each(Eq(::std::string("tom"))))); |
| template <typename M> |
| inline internal::EachMatcher<M> Each(M matcher) { |
| return internal::EachMatcher<M>(matcher); |
| } |
| |
| // Key(inner_matcher) matches an std::pair whose 'first' field matches |
| // inner_matcher. For example, Contains(Key(Ge(5))) can be used to match an |
| // std::map that contains at least one element whose key is >= 5. |
| template <typename M> |
| inline internal::KeyMatcher<M> Key(M inner_matcher) { |
| return internal::KeyMatcher<M>(inner_matcher); |
| } |
| |
| // Pair(first_matcher, second_matcher) matches a std::pair whose 'first' field |
| // matches first_matcher and whose 'second' field matches second_matcher. For |
| // example, EXPECT_THAT(map_type, ElementsAre(Pair(Ge(5), "foo"))) can be used |
| // to match a std::map<int, string> that contains exactly one element whose key |
| // is >= 5 and whose value equals "foo". |
| template <typename FirstMatcher, typename SecondMatcher> |
| inline internal::PairMatcher<FirstMatcher, SecondMatcher> |
| Pair(FirstMatcher first_matcher, SecondMatcher second_matcher) { |
| return internal::PairMatcher<FirstMatcher, SecondMatcher>( |
| first_matcher, second_matcher); |
| } |
| |
| namespace no_adl { |
| // FieldsAre(matchers...) matches piecewise the fields of compatible structs. |
| // These include those that support `get<I>(obj)`, and when structured bindings |
| // are enabled any class that supports them. |
| // In particular, `std::tuple`, `std::pair`, `std::array` and aggregate types. |
| template <typename... M> |
| internal::FieldsAreMatcher<typename std::decay<M>::type...> FieldsAre( |
| M&&... matchers) { |
| return internal::FieldsAreMatcher<typename std::decay<M>::type...>( |
| std::forward<M>(matchers)...); |
| } |
| |
| // Creates a matcher that matches a pointer (raw or smart) that matches |
| // inner_matcher. |
| template <typename InnerMatcher> |
| inline internal::PointerMatcher<InnerMatcher> Pointer( |
| const InnerMatcher& inner_matcher) { |
| return internal::PointerMatcher<InnerMatcher>(inner_matcher); |
| } |
| |
| // Creates a matcher that matches an object that has an address that matches |
| // inner_matcher. |
| template <typename InnerMatcher> |
| inline internal::AddressMatcher<InnerMatcher> Address( |
| const InnerMatcher& inner_matcher) { |
| return internal::AddressMatcher<InnerMatcher>(inner_matcher); |
| } |
| } // namespace no_adl |
| |
| // Returns a predicate that is satisfied by anything that matches the |
| // given matcher. |
| template <typename M> |
| inline internal::MatcherAsPredicate<M> Matches(M matcher) { |
| return internal::MatcherAsPredicate<M>(matcher); |
| } |
| |
| // Returns true if and only if the value matches the matcher. |
| template <typename T, typename M> |
| inline bool Value(const T& value, M matcher) { |
| return testing::Matches(matcher)(value); |
| } |
| |
| // Matches the value against the given matcher and explains the match |
| // result to listener. |
| template <typename T, typename M> |
| inline bool ExplainMatchResult( |
| M matcher, const T& value, MatchResultListener* listener) { |
| return SafeMatcherCast<const T&>(matcher).MatchAndExplain(value, listener); |
| } |
| |
| // Returns a string representation of the given matcher. Useful for description |
| // strings of matchers defined using MATCHER_P* macros that accept matchers as |
| // their arguments. For example: |
| // |
| // MATCHER_P(XAndYThat, matcher, |
| // "X that " + DescribeMatcher<int>(matcher, negation) + |
| // " and Y that " + DescribeMatcher<double>(matcher, negation)) { |
| // return ExplainMatchResult(matcher, arg.x(), result_listener) && |
| // ExplainMatchResult(matcher, arg.y(), result_listener); |
| // } |
| template <typename T, typename M> |
| std::string DescribeMatcher(const M& matcher, bool negation = false) { |
| ::std::stringstream ss; |
| Matcher<T> monomorphic_matcher = SafeMatcherCast<T>(matcher); |
| if (negation) { |
| monomorphic_matcher.DescribeNegationTo(&ss); |
| } else { |
| monomorphic_matcher.DescribeTo(&ss); |
| } |
| return ss.str(); |
| } |
| |
| template <typename... Args> |
| internal::ElementsAreMatcher< |
| std::tuple<typename std::decay<const Args&>::type...>> |
| ElementsAre(const Args&... matchers) { |
| return internal::ElementsAreMatcher< |
| std::tuple<typename std::decay<const Args&>::type...>>( |
| std::make_tuple(matchers...)); |
| } |
| |
| template <typename... Args> |
| internal::UnorderedElementsAreMatcher< |
| std::tuple<typename std::decay<const Args&>::type...>> |
| UnorderedElementsAre(const Args&... matchers) { |
| return internal::UnorderedElementsAreMatcher< |
| std::tuple<typename std::decay<const Args&>::type...>>( |
| std::make_tuple(matchers...)); |
| } |
| |
| // Define variadic matcher versions. |
| template <typename... Args> |
| internal::AllOfMatcher<typename std::decay<const Args&>::type...> AllOf( |
| const Args&... matchers) { |
| return internal::AllOfMatcher<typename std::decay<const Args&>::type...>( |
| matchers...); |
| } |
| |
| template <typename... Args> |
| internal::AnyOfMatcher<typename std::decay<const Args&>::type...> AnyOf( |
| const Args&... matchers) { |
| return internal::AnyOfMatcher<typename std::decay<const Args&>::type...>( |
| matchers...); |
| } |
| |
| // AnyOfArray(array) |
| // AnyOfArray(pointer, count) |
| // AnyOfArray(container) |
| // AnyOfArray({ e1, e2, ..., en }) |
| // AnyOfArray(iterator_first, iterator_last) |
| // |
| // AnyOfArray() verifies whether a given value matches any member of a |
| // collection of matchers. |
| // |
| // AllOfArray(array) |
| // AllOfArray(pointer, count) |
| // AllOfArray(container) |
| // AllOfArray({ e1, e2, ..., en }) |
| // AllOfArray(iterator_first, iterator_last) |
| // |
| // AllOfArray() verifies whether a given value matches all members of a |
| // collection of matchers. |
| // |
| // The matchers can be specified as an array, a pointer and count, a container, |
| // an initializer list, or an STL iterator range. In each of these cases, the |
| // underlying matchers can be either values or matchers. |
| |
| template <typename Iter> |
| inline internal::AnyOfArrayMatcher< |
| typename ::std::iterator_traits<Iter>::value_type> |
| AnyOfArray(Iter first, Iter last) { |
| return internal::AnyOfArrayMatcher< |
| typename ::std::iterator_traits<Iter>::value_type>(first, last); |
| } |
| |
| template <typename Iter> |
| inline internal::AllOfArrayMatcher< |
| typename ::std::iterator_traits<Iter>::value_type> |
| AllOfArray(Iter first, Iter last) { |
| return internal::AllOfArrayMatcher< |
| typename ::std::iterator_traits<Iter>::value_type>(first, last); |
| } |
| |
| template <typename T> |
| inline internal::AnyOfArrayMatcher<T> AnyOfArray(const T* ptr, size_t count) { |
| return AnyOfArray(ptr, ptr + count); |
| } |
| |
| template <typename T> |
| inline internal::AllOfArrayMatcher<T> AllOfArray(const T* ptr, size_t count) { |
| return AllOfArray(ptr, ptr + count); |
| } |
| |
| template <typename T, size_t N> |
| inline internal::AnyOfArrayMatcher<T> AnyOfArray(const T (&array)[N]) { |
| return AnyOfArray(array, N); |
| } |
| |
| template <typename T, size_t N> |
| inline internal::AllOfArrayMatcher<T> AllOfArray(const T (&array)[N]) { |
| return AllOfArray(array, N); |
| } |
| |
| template <typename Container> |
| inline internal::AnyOfArrayMatcher<typename Container::value_type> AnyOfArray( |
| const Container& container) { |
| return AnyOfArray(container.begin(), container.end()); |
| } |
| |
| template <typename Container> |
| inline internal::AllOfArrayMatcher<typename Container::value_type> AllOfArray( |
| const Container& container) { |
| return AllOfArray(container.begin(), container.end()); |
| } |
| |
| template <typename T> |
| inline internal::AnyOfArrayMatcher<T> AnyOfArray( |
| ::std::initializer_list<T> xs) { |
| return AnyOfArray(xs.begin(), xs.end()); |
| } |
| |
| template <typename T> |
| inline internal::AllOfArrayMatcher<T> AllOfArray( |
| ::std::initializer_list<T> xs) { |
| return AllOfArray(xs.begin(), xs.end()); |
| } |
| |
| // Args<N1, N2, ..., Nk>(a_matcher) matches a tuple if the selected |
| // fields of it matches a_matcher. C++ doesn't support default |
| // arguments for function templates, so we have to overload it. |
| template <size_t... k, typename InnerMatcher> |
| internal::ArgsMatcher<typename std::decay<InnerMatcher>::type, k...> Args( |
| InnerMatcher&& matcher) { |
| return internal::ArgsMatcher<typename std::decay<InnerMatcher>::type, k...>( |
| std::forward<InnerMatcher>(matcher)); |
| } |
| |
| // AllArgs(m) is a synonym of m. This is useful in |
| // |
| // EXPECT_CALL(foo, Bar(_, _)).With(AllArgs(Eq())); |
| // |
| // which is easier to read than |
| // |
| // EXPECT_CALL(foo, Bar(_, _)).With(Eq()); |
| template <typename InnerMatcher> |
| inline InnerMatcher AllArgs(const InnerMatcher& matcher) { return matcher; } |
| |
| // Returns a matcher that matches the value of an optional<> type variable. |
| // The matcher implementation only uses '!arg' and requires that the optional<> |
| // type has a 'value_type' member type and that '*arg' is of type 'value_type' |
| // and is printable using 'PrintToString'. It is compatible with |
| // std::optional/std::experimental::optional. |
| // Note that to compare an optional type variable against nullopt you should |
| // use Eq(nullopt) and not Eq(Optional(nullopt)). The latter implies that the |
| // optional value contains an optional itself. |
| template <typename ValueMatcher> |
| inline internal::OptionalMatcher<ValueMatcher> Optional( |
| const ValueMatcher& value_matcher) { |
| return internal::OptionalMatcher<ValueMatcher>(value_matcher); |
| } |
| |
| // Returns a matcher that matches the value of a absl::any type variable. |
| template <typename T> |
| PolymorphicMatcher<internal::any_cast_matcher::AnyCastMatcher<T> > AnyWith( |
| const Matcher<const T&>& matcher) { |
| return MakePolymorphicMatcher( |
| internal::any_cast_matcher::AnyCastMatcher<T>(matcher)); |
| } |
| |
| // Returns a matcher that matches the value of a variant<> type variable. |
| // The matcher implementation uses ADL to find the holds_alternative and get |
| // functions. |
| // It is compatible with std::variant. |
| template <typename T> |
| PolymorphicMatcher<internal::variant_matcher::VariantMatcher<T> > VariantWith( |
| const Matcher<const T&>& matcher) { |
| return MakePolymorphicMatcher( |
| internal::variant_matcher::VariantMatcher<T>(matcher)); |
| } |
| |
| #if GTEST_HAS_EXCEPTIONS |
| |
| // Anything inside the `internal` namespace is internal to the implementation |
| // and must not be used in user code! |
| namespace internal { |
| |
| class WithWhatMatcherImpl { |
| public: |
| WithWhatMatcherImpl(Matcher<std::string> matcher) |
| : matcher_(std::move(matcher)) {} |
| |
| void DescribeTo(std::ostream* os) const { |
| *os << "contains .what() that "; |
| matcher_.DescribeTo(os); |
| } |
| |
| void DescribeNegationTo(std::ostream* os) const { |
| *os << "contains .what() that does not "; |
| matcher_.DescribeTo(os); |
| } |
| |
| template <typename Err> |
| bool MatchAndExplain(const Err& err, MatchResultListener* listener) const { |
| *listener << "which contains .what() that "; |
| return matcher_.MatchAndExplain(err.what(), listener); |
| } |
| |
| private: |
| const Matcher<std::string> matcher_; |
| }; |
| |
| inline PolymorphicMatcher<WithWhatMatcherImpl> WithWhat( |
| Matcher<std::string> m) { |
| return MakePolymorphicMatcher(WithWhatMatcherImpl(std::move(m))); |
| } |
| |
| template <typename Err> |
| class ExceptionMatcherImpl { |
| class NeverThrown { |
| public: |
| const char* what() const noexcept { |
| return "this exception should never be thrown"; |
| } |
| }; |
| |
| // If the matchee raises an exception of a wrong type, we'd like to |
| // catch it and print its message and type. To do that, we add an additional |
| // catch clause: |
| // |
| // try { ... } |
| // catch (const Err&) { /* an expected exception */ } |
| // catch (const std::exception&) { /* exception of a wrong type */ } |
| // |
| // However, if the `Err` itself is `std::exception`, we'd end up with two |
| // identical `catch` clauses: |
| // |
| // try { ... } |
| // catch (const std::exception&) { /* an expected exception */ } |
| // catch (const std::exception&) { /* exception of a wrong type */ } |
| // |
| // This can cause a warning or an error in some compilers. To resolve |
| // the issue, we use a fake error type whenever `Err` is `std::exception`: |
| // |
| // try { ... } |
| // catch (const std::exception&) { /* an expected exception */ } |
| // catch (const NeverThrown&) { /* exception of a wrong type */ } |
| using DefaultExceptionType = typename std::conditional< |
| std::is_same<typename std::remove_cv< |
| typename std::remove_reference<Err>::type>::type, |
| std::exception>::value, |
| const NeverThrown&, const std::exception&>::type; |
| |
| public: |
| ExceptionMatcherImpl(Matcher<const Err&> matcher) |
| : matcher_(std::move(matcher)) {} |
| |
| void DescribeTo(std::ostream* os) const { |
| *os << "throws an exception which is a " << GetTypeName<Err>(); |
| *os << " which "; |
| matcher_.DescribeTo(os); |
| } |
| |
| void DescribeNegationTo(std::ostream* os) const { |
| *os << "throws an exception which is not a " << GetTypeName<Err>(); |
| *os << " which "; |
| matcher_.DescribeNegationTo(os); |
| } |
| |
| template <typename T> |
| bool MatchAndExplain(T&& x, MatchResultListener* listener) const { |
| try { |
| (void)(std::forward<T>(x)()); |
| } catch (const Err& err) { |
| *listener << "throws an exception which is a " << GetTypeName<Err>(); |
| *listener << " "; |
| return matcher_.MatchAndExplain(err, listener); |
| } catch (DefaultExceptionType err) { |
| #if GTEST_HAS_RTTI |
| *listener << "throws an exception of type " << GetTypeName(typeid(err)); |
| *listener << " "; |
| #else |
| *listener << "throws an std::exception-derived type "; |
| #endif |
| *listener << "with description \"" << err.what() << "\""; |
| return false; |
| } catch (...) { |
| *listener << "throws an exception of an unknown type"; |
| return false; |
| } |
| |
| *listener << "does not throw any exception"; |
| return false; |
| } |
| |
| private: |
| const Matcher<const Err&> matcher_; |
| }; |
| |
| } // namespace internal |
| |
| // Throws() |
| // Throws(exceptionMatcher) |
| // ThrowsMessage(messageMatcher) |
| // |
| // This matcher accepts a callable and verifies that when invoked, it throws |
| // an exception with the given type and properties. |
| // |
| // Examples: |
| // |
| // EXPECT_THAT( |
| // []() { throw std::runtime_error("message"); }, |
| // Throws<std::runtime_error>()); |
| // |
| // EXPECT_THAT( |
| // []() { throw std::runtime_error("message"); }, |
| // ThrowsMessage<std::runtime_error>(HasSubstr("message"))); |
| // |
| // EXPECT_THAT( |
| // []() { throw std::runtime_error("message"); }, |
| // Throws<std::runtime_error>( |
| // Property(&std::runtime_error::what, HasSubstr("message")))); |
| |
| template <typename Err> |
| PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> Throws() { |
| return MakePolymorphicMatcher( |
| internal::ExceptionMatcherImpl<Err>(A<const Err&>())); |
| } |
| |
| template <typename Err, typename ExceptionMatcher> |
| PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> Throws( |
| const ExceptionMatcher& exception_matcher) { |
| // Using matcher cast allows users to pass a matcher of a more broad type. |
| // For example user may want to pass Matcher<std::exception> |
| // to Throws<std::runtime_error>, or Matcher<int64> to Throws<int32>. |
| return MakePolymorphicMatcher(internal::ExceptionMatcherImpl<Err>( |
| SafeMatcherCast<const Err&>(exception_matcher))); |
| } |
| |
| template <typename Err, typename MessageMatcher> |
| PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> ThrowsMessage( |
| MessageMatcher&& message_matcher) { |
| static_assert(std::is_base_of<std::exception, Err>::value, |
| "expected an std::exception-derived type"); |
| return Throws<Err>(internal::WithWhat( |
| MatcherCast<std::string>(std::forward<MessageMatcher>(message_matcher)))); |
| } |
| |
| #endif // GTEST_HAS_EXCEPTIONS |
| |
| // These macros allow using matchers to check values in Google Test |
| // tests. ASSERT_THAT(value, matcher) and EXPECT_THAT(value, matcher) |
| // succeed if and only if the value matches the matcher. If the assertion |
| // fails, the value and the description of the matcher will be printed. |
| #define ASSERT_THAT(value, matcher) ASSERT_PRED_FORMAT1(\ |
| ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value) |
| #define EXPECT_THAT(value, matcher) EXPECT_PRED_FORMAT1(\ |
| ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value) |
| |
| // MATCHER* macroses itself are listed below. |
| #define MATCHER(name, description) \ |
| class name##Matcher \ |
| : public ::testing::internal::MatcherBaseImpl<name##Matcher> { \ |
| public: \ |
| template <typename arg_type> \ |
| class gmock_Impl : public ::testing::MatcherInterface<const arg_type&> { \ |
| public: \ |
| gmock_Impl() {} \ |
| bool MatchAndExplain( \ |
| const arg_type& arg, \ |
| ::testing::MatchResultListener* result_listener) const override; \ |
| void DescribeTo(::std::ostream* gmock_os) const override { \ |
| *gmock_os << FormatDescription(false); \ |
| } \ |
| void DescribeNegationTo(::std::ostream* gmock_os) const override { \ |
| *gmock_os << FormatDescription(true); \ |
| } \ |
| \ |
| private: \ |
| ::std::string FormatDescription(bool negation) const { \ |
| ::std::string gmock_description = (description); \ |
| if (!gmock_description.empty()) { \ |
| return gmock_description; \ |
| } \ |
| return ::testing::internal::FormatMatcherDescription(negation, #name, \ |
| {}); \ |
| } \ |
| }; \ |
| }; \ |
| GTEST_ATTRIBUTE_UNUSED_ inline name##Matcher name() { return {}; } \ |
| template <typename arg_type> \ |
| bool name##Matcher::gmock_Impl<arg_type>::MatchAndExplain( \ |
| const arg_type& arg, \ |
| ::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_) \ |
| const |
| |
| #define MATCHER_P(name, p0, description) \ |
| GMOCK_INTERNAL_MATCHER(name, name##MatcherP, description, (p0)) |
| #define MATCHER_P2(name, p0, p1, description) \ |
| GMOCK_INTERNAL_MATCHER(name, name##MatcherP2, description, (p0, p1)) |
| #define MATCHER_P3(name, p0, p1, p2, description) \ |
| GMOCK_INTERNAL_MATCHER(name, name##MatcherP3, description, (p0, p1, p2)) |
| #define MATCHER_P4(name, p0, p1, p2, p3, description) \ |
| GMOCK_INTERNAL_MATCHER(name, name##MatcherP4, description, (p0, p1, p2, p3)) |
| #define MATCHER_P5(name, p0, p1, p2, p3, p4, description) \ |
| GMOCK_INTERNAL_MATCHER(name, name##MatcherP5, description, \ |
| (p0, p1, p2, p3, p4)) |
| #define MATCHER_P6(name, p0, p1, p2, p3, p4, p5, description) \ |
| GMOCK_INTERNAL_MATCHER(name, name##MatcherP6, description, \ |
| (p0, p1, p2, p3, p4, p5)) |
| #define MATCHER_P7(name, p0, p1, p2, p3, p4, p5, p6, description) \ |
| GMOCK_INTERNAL_MATCHER(name, name##MatcherP7, description, \ |
| (p0, p1, p2, p3, p4, p5, p6)) |
| #define MATCHER_P8(name, p0, p1, p2, p3, p4, p5, p6, p7, description) \ |
| GMOCK_INTERNAL_MATCHER(name, name##MatcherP8, description, \ |
| (p0, p1, p2, p3, p4, p5, p6, p7)) |
| #define MATCHER_P9(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, description) \ |
| GMOCK_INTERNAL_MATCHER(name, name##MatcherP9, description, \ |
| (p0, p1, p2, p3, p4, p5, p6, p7, p8)) |
| #define MATCHER_P10(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, description) \ |
| GMOCK_INTERNAL_MATCHER(name, name##MatcherP10, description, \ |
| (p0, p1, p2, p3, p4, p5, p6, p7, p8, p9)) |
| |
| #define GMOCK_INTERNAL_MATCHER(name, full_name, description, args) \ |
| template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)> \ |
| class full_name : public ::testing::internal::MatcherBaseImpl< \ |
| full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>> { \ |
| public: \ |
| using full_name::MatcherBaseImpl::MatcherBaseImpl; \ |
| template <typename arg_type> \ |
| class gmock_Impl : public ::testing::MatcherInterface<const arg_type&> { \ |
| public: \ |
| explicit gmock_Impl(GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args)) \ |
| : GMOCK_INTERNAL_MATCHER_FORWARD_ARGS(args) {} \ |
| bool MatchAndExplain( \ |
| const arg_type& arg, \ |
| ::testing::MatchResultListener* result_listener) const override; \ |
| void DescribeTo(::std::ostream* gmock_os) const override { \ |
| *gmock_os << FormatDescription(false); \ |
| } \ |
| void DescribeNegationTo(::std::ostream* gmock_os) const override { \ |
| *gmock_os << FormatDescription(true); \ |
| } \ |
| GMOCK_INTERNAL_MATCHER_MEMBERS(args) \ |
| \ |
| private: \ |
| ::std::string FormatDescription(bool negation) const { \ |
| ::std::string gmock_description = (description); \ |
| if (!gmock_description.empty()) { \ |
| return gmock_description; \ |
| } \ |
| return ::testing::internal::FormatMatcherDescription( \ |
| negation, #name, \ |
| ::testing::internal::UniversalTersePrintTupleFieldsToStrings( \ |
| ::std::tuple<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>( \ |
| GMOCK_INTERNAL_MATCHER_MEMBERS_USAGE(args)))); \ |
| } \ |
| }; \ |
| }; \ |
| template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)> \ |
| inline full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)> name( \ |
| GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args)) { \ |
| return full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>( \ |
| GMOCK_INTERNAL_MATCHER_ARGS_USAGE(args)); \ |
| } \ |
| template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)> \ |
| template <typename arg_type> \ |
| bool full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>::gmock_Impl< \ |
| arg_type>::MatchAndExplain(const arg_type& arg, \ |
| ::testing::MatchResultListener* \ |
| result_listener GTEST_ATTRIBUTE_UNUSED_) \ |
| const |
| |
| #define GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args) \ |
| GMOCK_PP_TAIL( \ |
| GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAM, , args)) |
| #define GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAM(i_unused, data_unused, arg) \ |
| , typename arg##_type |
| |
| #define GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args) \ |
| GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_TYPE_PARAM, , args)) |
| #define GMOCK_INTERNAL_MATCHER_TYPE_PARAM(i_unused, data_unused, arg) \ |
| , arg##_type |
| |
| #define GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args) \ |
| GMOCK_PP_TAIL(dummy_first GMOCK_PP_FOR_EACH( \ |
| GMOCK_INTERNAL_MATCHER_FUNCTION_ARG, , args)) |
| #define GMOCK_INTERNAL_MATCHER_FUNCTION_ARG(i, data_unused, arg) \ |
| , arg##_type gmock_p##i |
| |
| #define GMOCK_INTERNAL_MATCHER_FORWARD_ARGS(args) \ |
| GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_FORWARD_ARG, , args)) |
| #define GMOCK_INTERNAL_MATCHER_FORWARD_ARG(i, data_unused, arg) \ |
| , arg(::std::forward<arg##_type>(gmock_p##i)) |
| |
| #define GMOCK_INTERNAL_MATCHER_MEMBERS(args) \ |
| GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_MEMBER, , args) |
| #define GMOCK_INTERNAL_MATCHER_MEMBER(i_unused, data_unused, arg) \ |
| const arg##_type arg; |
| |
| #define GMOCK_INTERNAL_MATCHER_MEMBERS_USAGE(args) \ |
| GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_MEMBER_USAGE, , args)) |
| #define GMOCK_INTERNAL_MATCHER_MEMBER_USAGE(i_unused, data_unused, arg) , arg |
| |
| #define GMOCK_INTERNAL_MATCHER_ARGS_USAGE(args) \ |
| GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_ARG_USAGE, , args)) |
| #define GMOCK_INTERNAL_MATCHER_ARG_USAGE(i, data_unused, arg_unused) \ |
| , gmock_p##i |
| |
| // To prevent ADL on certain functions we put them on a separate namespace. |
| using namespace no_adl; // NOLINT |
| |
| } // namespace testing |
| |
| GTEST_DISABLE_MSC_WARNINGS_POP_() // 4251 5046 |
| |
| // Include any custom callback matchers added by the local installation. |
| // We must include this header at the end to make sure it can use the |
| // declarations from this file. |
| // Copyright 2015, Google Inc. |
| // All rights reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following disclaimer |
| // in the documentation and/or other materials provided with the |
| // distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Injection point for custom user configurations. See README for details |
| // |
| // GOOGLETEST_CM0002 DO NOT DELETE |
| |
| #ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_MATCHERS_H_ |
| #define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_MATCHERS_H_ |
| #endif // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_MATCHERS_H_ |
| |
| #endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ |
| |
| #if GTEST_HAS_EXCEPTIONS |
| # include <stdexcept> // NOLINT |
| #endif |
| |
| GTEST_DISABLE_MSC_WARNINGS_PUSH_(4251 \ |
| /* class A needs to have dll-interface to be used by clients of class B */) |
| |
| namespace testing { |
| |
| // An abstract handle of an expectation. |
| class Expectation; |
| |
| // A set of expectation handles. |
| class ExpectationSet; |
| |
| // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION |
| // and MUST NOT BE USED IN USER CODE!!! |
| namespace internal { |
| |
| // Implements a mock function. |
| template <typename F> class FunctionMocker; |
| |
| // Base class for expectations. |
| class ExpectationBase; |
| |
| // Implements an expectation. |
| template <typename F> class TypedExpectation; |
| |
| // Helper class for testing the Expectation class template. |
| class ExpectationTester; |
| |
| // Helper classes for implementing NiceMock, StrictMock, and NaggyMock. |
| template <typename MockClass> |
| class NiceMockImpl; |
| template <typename MockClass> |
| class StrictMockImpl; |
| template <typename MockClass> |
| class NaggyMockImpl; |
| |
| // Protects the mock object registry (in class Mock), all function |
| // mockers, and all expectations. |
| // |
| // The reason we don't use more fine-grained protection is: when a |
| // mock function Foo() is called, it needs to consult its expectations |
| // to see which one should be picked. If another thread is allowed to |
| // call a mock function (either Foo() or a different one) at the same |
| // time, it could affect the "retired" attributes of Foo()'s |
| // expectations when InSequence() is used, and thus affect which |
| // expectation gets picked. Therefore, we sequence all mock function |
| // calls to ensure the integrity of the mock objects' states. |
| GTEST_API_ GTEST_DECLARE_STATIC_MUTEX_(g_gmock_mutex); |
| |
| // Untyped base class for ActionResultHolder<R>. |
| class UntypedActionResultHolderBase; |
| |
| // Abstract base class of FunctionMocker. This is the |
| // type-agnostic part of the function mocker interface. Its pure |
| // virtual methods are implemented by FunctionMocker. |
| class GTEST_API_ UntypedFunctionMockerBase { |
| public: |
| UntypedFunctionMockerBase(); |
| virtual ~UntypedFunctionMockerBase(); |
| |
| // Verifies that all expectations on this mock function have been |
| // satisfied. Reports one or more Google Test non-fatal failures |
| // and returns false if not. |
| bool VerifyAndClearExpectationsLocked() |
| GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex); |
| |
| // Clears the ON_CALL()s set on this mock function. |
| virtual void ClearDefaultActionsLocked() |
| GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) = 0; |
| |
| // In all of the following Untyped* functions, it's the caller's |
| // responsibility to guarantee the correctness of the arguments' |
| // types. |
| |
| // Performs the default action with the given arguments and returns |
| // the action's result. The call description string will be used in |
| // the error message to describe the call in the case the default |
| // action fails. |
| // L = * |
| virtual UntypedActionResultHolderBase* UntypedPerformDefaultAction( |
| void* untyped_args, const std::string& call_description) const = 0; |
| |
| // Performs the given action with the given arguments and returns |
| // the action's result. |
| // L = * |
| virtual UntypedActionResultHolderBase* UntypedPerformAction( |
| const void* untyped_action, void* untyped_args) const = 0; |
| |
| // Writes a message that the call is uninteresting (i.e. neither |
| // explicitly expected nor explicitly unexpected) to the given |
| // ostream. |
| virtual void UntypedDescribeUninterestingCall( |
| const void* untyped_args, |
| ::std::ostream* os) const |
| GTEST_LOCK_EXCLUDED_(g_gmock_mutex) = 0; |
| |
| // Returns the expectation that matches the given function arguments |
| // (or NULL is there's no match); when a match is found, |
| // untyped_action is set to point to the action that should be |
| // performed (or NULL if the action is "do default"), and |
| // is_excessive is modified to indicate whether the call exceeds the |
| // expected number. |
| virtual const ExpectationBase* UntypedFindMatchingExpectation( |
| const void* untyped_args, |
| const void** untyped_action, bool* is_excessive, |
| ::std::ostream* what, ::std::ostream* why) |
| GTEST_LOCK_EXCLUDED_(g_gmock_mutex) = 0; |
| |
| // Prints the given function arguments to the ostream. |
| virtual void UntypedPrintArgs(const void* untyped_args, |
| ::std::ostream* os) const = 0; |
| |
| // Sets the mock object this mock method belongs to, and registers |
| // this information in the global mock registry. Will be called |
| // whenever an EXPECT_CALL() or ON_CALL() is executed on this mock |
| // method. |
| void RegisterOwner(const void* mock_obj) |
| GTEST_LOCK_EXCLUDED_(g_gmock_mutex); |
| |
| // Sets the mock object this mock method belongs to, and sets the |
| // name of the mock function. Will be called upon each invocation |
| // of this mock function. |
| void SetOwnerAndName(const void* mock_obj, const char* name) |
| GTEST_LOCK_EXCLUDED_(g_gmock_mutex); |
| |
| // Returns the mock object this mock method belongs to. Must be |
| // called after RegisterOwner() or SetOwnerAndName() has been |
| // called. |
| const void* MockObject() const |
| GTEST_LOCK_EXCLUDED_(g_gmock_mutex); |
| |
| // Returns the name of this mock method. Must be called after |
| // SetOwnerAndName() has been called. |
| const char* Name() const |
| GTEST_LOCK_EXCLUDED_(g_gmock_mutex); |
| |
| // Returns the result of invoking this mock function with the given |
| // arguments. This function can be safely called from multiple |
| // threads concurrently. The caller is responsible for deleting the |
| // result. |
| UntypedActionResultHolderBase* UntypedInvokeWith(void* untyped_args) |
| GTEST_LOCK_EXCLUDED_(g_gmock_mutex); |
| |
| protected: |
| typedef std::vector<const void*> UntypedOnCallSpecs; |
| |
| using UntypedExpectations = std::vector<std::shared_ptr<ExpectationBase>>; |
| |
| // Returns an Expectation object that references and co-owns exp, |
| // which must be an expectation on this mock function. |
| Expectation GetHandleOf(ExpectationBase* exp); |
| |
| // Address of the mock object this mock method belongs to. Only |
| // valid after this mock method has been called or |
| // ON_CALL/EXPECT_CALL has been invoked on it. |
| const void* mock_obj_; // Protected by g_gmock_mutex. |
| |
| // Name of the function being mocked. Only valid after this mock |
| // method has been called. |
| const char* name_; // Protected by g_gmock_mutex. |
| |
| // All default action specs for this function mocker. |
| UntypedOnCallSpecs untyped_on_call_specs_; |
| |
| // All expectations for this function mocker. |
| // |
| // It's undefined behavior to interleave expectations (EXPECT_CALLs |
| // or ON_CALLs) and mock function calls. Also, the order of |
| // expectations is important. Therefore it's a logic race condition |
| // to read/write untyped_expectations_ concurrently. In order for |
| // tools like tsan to catch concurrent read/write accesses to |
| // untyped_expectations, we deliberately leave accesses to it |
| // unprotected. |
| UntypedExpectations untyped_expectations_; |
| }; // class UntypedFunctionMockerBase |
| |
| // Untyped base class for OnCallSpec<F>. |
| class UntypedOnCallSpecBase { |
| public: |
| // The arguments are the location of the ON_CALL() statement. |
| UntypedOnCallSpecBase(const char* a_file, int a_line) |
| : file_(a_file), line_(a_line), last_clause_(kNone) {} |
| |
| // Where in the source file was the default action spec defined? |
| const char* file() const { return file_; } |
| int line() const { return line_; } |
| |
| protected: |
| // Gives each clause in the ON_CALL() statement a name. |
| enum Clause { |
| // Do not change the order of the enum members! The run-time |
| // syntax checking relies on it. |
| kNone, |
| kWith, |
| kWillByDefault |
| }; |
| |
| // Asserts that the ON_CALL() statement has a certain property. |
| void AssertSpecProperty(bool property, |
| const std::string& failure_message) const { |
| Assert(property, file_, line_, failure_message); |
| } |
| |
| // Expects that the ON_CALL() statement has a certain property. |
| void ExpectSpecProperty(bool property, |
| const std::string& failure_message) const { |
| Expect(property, file_, line_, failure_message); |
| } |
| |
| const char* file_; |
| int line_; |
| |
| // The last clause in the ON_CALL() statement as seen so far. |
| // Initially kNone and changes as the statement is parsed. |
| Clause last_clause_; |
| }; // class UntypedOnCallSpecBase |
| |
| // This template class implements an ON_CALL spec. |
| template <typename F> |
| class OnCallSpec : public UntypedOnCallSpecBase { |
| public: |
| typedef typename Function<F>::ArgumentTuple ArgumentTuple; |
| typedef typename Function<F>::ArgumentMatcherTuple ArgumentMatcherTuple; |
| |
| // Constructs an OnCallSpec object from the information inside |
| // the parenthesis of an ON_CALL() statement. |
| OnCallSpec(const char* a_file, int a_line, |
| const ArgumentMatcherTuple& matchers) |
| : UntypedOnCallSpecBase(a_file, a_line), |
| matchers_(matchers), |
| // By default, extra_matcher_ should match anything. However, |
| // we cannot initialize it with _ as that causes ambiguity between |
| // Matcher's copy and move constructor for some argument types. |
| extra_matcher_(A<const ArgumentTuple&>()) {} |
| |
| // Implements the .With() clause. |
| OnCallSpec& With(const Matcher<const ArgumentTuple&>& m) { |
| // Makes sure this is called at most once. |
| ExpectSpecProperty(last_clause_ < kWith, |
| ".With() cannot appear " |
| "more than once in an ON_CALL()."); |
| last_clause_ = kWith; |
| |
| extra_matcher_ = m; |
| return *this; |
| } |
| |
| // Implements the .WillByDefault() clause. |
| OnCallSpec& WillByDefault(const Action<F>& action) { |
| ExpectSpecProperty(last_clause_ < kWillByDefault, |
| ".WillByDefault() must appear " |
| "exactly once in an ON_CALL()."); |
| last_clause_ = kWillByDefault; |
| |
| ExpectSpecProperty(!action.IsDoDefault(), |
| "DoDefault() cannot be used in ON_CALL()."); |
| action_ = action; |
| return *this; |
| } |
| |
| // Returns true if and only if the given arguments match the matchers. |
| bool Matches(const ArgumentTuple& args) const { |
| return TupleMatches(matchers_, args) && extra_matcher_.Matches(args); |
| } |
| |
| // Returns the action specified by the user. |
| const Action<F>& GetAction() const { |
| AssertSpecProperty(last_clause_ == kWillByDefault, |
| ".WillByDefault() must appear exactly " |
| "once in an ON_CALL()."); |
| return action_; |
| } |
| |
| private: |
| // The information in statement |
| // |
| // ON_CALL(mock_object, Method(matchers)) |
| // .With(multi-argument-matcher) |
| // .WillByDefault(action); |
| // |
| // is recorded in the data members like this: |
| // |
| // source file that contains the statement => file_ |
| // line number of the statement => line_ |
| // matchers => matchers_ |
| // multi-argument-matcher => extra_matcher_ |
| // action => action_ |
| ArgumentMatcherTuple matchers_; |
| Matcher<const ArgumentTuple&> extra_matcher_; |
| Action<F> action_; |
| }; // class OnCallSpec |
| |
| // Possible reactions on uninteresting calls. |
| enum CallReaction { |
| kAllow, |
| kWarn, |
| kFail, |
| }; |
| |
| } // namespace internal |
| |
| // Utilities for manipulating mock objects. |
| class GTEST_API_ Mock { |
| public: |
| // The following public methods can be called concurrently. |
| |
| // Tells Google Mock to ignore mock_obj when checking for leaked |
| // mock objects. |
| static void AllowLeak(const void* mock_obj) |
| GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); |
| |
| // Verifies and clears all expectations on the given mock object. |
| // If the expectations aren't satisfied, generates one or more |
| // Google Test non-fatal failures and returns false. |
| static bool VerifyAndClearExpectations(void* mock_obj) |
| GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); |
| |
| // Verifies all expectations on the given mock object and clears its |
| // default actions and expectations. Returns true if and only if the |
| // verification was successful. |
| static bool VerifyAndClear(void* mock_obj) |
| GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); |
| |
| // Returns whether the mock was created as a naggy mock (default) |
| static bool IsNaggy(void* mock_obj) |
| GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); |
| // Returns whether the mock was created as a nice mock |
| static bool IsNice(void* mock_obj) |
| GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); |
| // Returns whether the mock was created as a strict mock |
| static bool IsStrict(void* mock_obj) |
| GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); |
| |
| private: |
| friend class internal::UntypedFunctionMockerBase; |
| |
| // Needed for a function mocker to register itself (so that we know |
| // how to clear a mock object). |
| template <typename F> |
| friend class internal::FunctionMocker; |
| |
| template <typename MockClass> |
| friend class internal::NiceMockImpl; |
| template <typename MockClass> |
| friend class internal::NaggyMockImpl; |
| template <typename MockClass> |
| friend class internal::StrictMockImpl; |
| |
| // Tells Google Mock to allow uninteresting calls on the given mock |
| // object. |
| static void AllowUninterestingCalls(const void* mock_obj) |
| GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); |
| |
| // Tells Google Mock to warn the user about uninteresting calls on |
| // the given mock object. |
| static void WarnUninterestingCalls(const void* mock_obj) |
| GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); |
| |
| // Tells Google Mock to fail uninteresting calls on the given mock |
| // object. |
| static void FailUninterestingCalls(const void* mock_obj) |
| GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); |
| |
| // Tells Google Mock the given mock object is being destroyed and |
| // its entry in the call-reaction table should be removed. |
| static void UnregisterCallReaction(const void* mock_obj) |
| GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); |
| |
| // Returns the reaction Google Mock will have on uninteresting calls |
| // made on the given mock object. |
| static internal::CallReaction GetReactionOnUninterestingCalls( |
| const void* mock_obj) |
| GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); |
| |
| // Verifies that all expectations on the given mock object have been |
| // satisfied. Reports one or more Google Test non-fatal failures |
| // and returns false if not. |
| static bool VerifyAndClearExpectationsLocked(void* mock_obj) |
| GTEST_EXCLUSIVE_LOCK_REQUIRED_(internal::g_gmock_mutex); |
| |
| // Clears all ON_CALL()s set on the given mock object. |
| static void ClearDefaultActionsLocked(void* mock_obj) |
| GTEST_EXCLUSIVE_LOCK_REQUIRED_(internal::g_gmock_mutex); |
| |
| // Registers a mock object and a mock method it owns. |
| static void Register( |
| const void* mock_obj, |
| internal::UntypedFunctionMockerBase* mocker) |
| GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); |
| |
| // Tells Google Mock where in the source code mock_obj is used in an |
| // ON_CALL or EXPECT_CALL. In case mock_obj is leaked, this |
| // information helps the user identify which object it is. |
| static void RegisterUseByOnCallOrExpectCall( |
| const void* mock_obj, const char* file, int line) |
| GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); |
| |
| // Unregisters a mock method; removes the owning mock object from |
| // the registry when the last mock method associated with it has |
| // been unregistered. This is called only in the destructor of |
| // FunctionMocker. |
| static void UnregisterLocked(internal::UntypedFunctionMockerBase* mocker) |
| GTEST_EXCLUSIVE_LOCK_REQUIRED_(internal::g_gmock_mutex); |
| }; // class Mock |
| |
| // An abstract handle of an expectation. Useful in the .After() |
| // clause of EXPECT_CALL() for setting the (partial) order of |
| // expectations. The syntax: |
| // |
| // Expectation e1 = EXPECT_CALL(...)...; |
| // EXPECT_CALL(...).After(e1)...; |
| // |
| // sets two expectations where the latter can only be matched after |
| // the former has been satisfied. |
| // |
| // Notes: |
| // - This class is copyable and has value semantics. |
| // - Constness is shallow: a const Expectation object itself cannot |
| // be modified, but the mutable methods of the ExpectationBase |
| // object it references can be called via expectation_base(). |
| |
| class GTEST_API_ Expectation { |
| public: |
| // Constructs a null object that doesn't reference any expectation. |
| Expectation(); |
| Expectation(Expectation&&) = default; |
| Expectation(const Expectation&) = default; |
| Expectation& operator=(Expectation&&) = default; |
| Expectation& operator=(const Expectation&) = default; |
| ~Expectation(); |
| |
| // This single-argument ctor must not be explicit, in order to support the |
| // Expectation e = EXPECT_CALL(...); |
| // syntax. |
| // |
| // A TypedExpectation object stores its pre-requisites as |
| // Expectation objects, and needs to call the non-const Retire() |
| // method on the ExpectationBase objects they reference. Therefore |
| // Expectation must receive a *non-const* reference to the |
| // ExpectationBase object. |
| Expectation(internal::ExpectationBase& exp); // NOLINT |
| |
| // The compiler-generated copy ctor and operator= work exactly as |
| // intended, so we don't need to define our own. |
| |
| // Returns true if and only if rhs references the same expectation as this |
| // object does. |
| bool operator==(const Expectation& rhs) const { |
| return expectation_base_ == rhs.expectation_base_; |
| } |
| |
| bool operator!=(const Expectation& rhs) const { return !(*this == rhs); } |
| |
| private: |
| friend class ExpectationSet; |
| friend class Sequence; |
| friend class ::testing::internal::ExpectationBase; |
| friend class ::testing::internal::UntypedFunctionMockerBase; |
| |
| template <typename F> |
| friend class ::testing::internal::FunctionMocker; |
| |
| template <typename F> |
| friend class ::testing::internal::TypedExpectation; |
| |
| // This comparator is needed for putting Expectation objects into a set. |
| class Less { |
| public: |
| bool operator()(const Expectation& lhs, const Expectation& rhs) const { |
| return lhs.expectation_base_.get() < rhs.expectation_base_.get(); |
| } |
| }; |
| |
| typedef ::std::set<Expectation, Less> Set; |
| |
| Expectation( |
| const std::shared_ptr<internal::ExpectationBase>& expectation_base); |
| |
| // Returns the expectation this object references. |
| const std::shared_ptr<internal::ExpectationBase>& expectation_base() const { |
| return expectation_base_; |
| } |
| |
| // A shared_ptr that co-owns the expectation this handle references. |
| std::shared_ptr<internal::ExpectationBase> expectation_base_; |
| }; |
| |
| // A set of expectation handles. Useful in the .After() clause of |
| // EXPECT_CALL() for setting the (partial) order of expectations. The |
| // syntax: |
| // |
| // ExpectationSet es; |
| // es += EXPECT_CALL(...)...; |
| // es += EXPECT_CALL(...)...; |
| // EXPECT_CALL(...).After(es)...; |
| // |
| // sets three expectations where the last one can only be matched |
| // after the first two have both been satisfied. |
| // |
| // This class is copyable and has value semantics. |
| class ExpectationSet { |
| public: |
| // A bidirectional iterator that can read a const element in the set. |
| typedef Expectation::Set::const_iterator const_iterator; |
| |
| // An object stored in the set. This is an alias of Expectation. |
| typedef Expectation::Set::value_type value_type; |
| |
| // Constructs an empty set. |
| ExpectationSet() {} |
| |
| // This single-argument ctor must not be explicit, in order to support the |
| // ExpectationSet es = EXPECT_CALL(...); |
| // syntax. |
| ExpectationSet(internal::ExpectationBase& exp) { // NOLINT |
| *this += Expectation(exp); |
| } |
| |
| // This single-argument ctor implements implicit conversion from |
| // Expectation and thus must not be explicit. This allows either an |
| // Expectation or an ExpectationSet to be used in .After(). |
| ExpectationSet(const Expectation& e) { // NOLINT |
| *this += e; |
| } |
| |
| // The compiler-generator ctor and operator= works exactly as |
| // intended, so we don't need to define our own. |
| |
| // Returns true if and only if rhs contains the same set of Expectation |
| // objects as this does. |
| bool operator==(const ExpectationSet& rhs) const { |
| return expectations_ == rhs.expectations_; |
| } |
| |
| bool operator!=(const ExpectationSet& rhs) const { return !(*this == rhs); } |
| |
| // Implements the syntax |
| // expectation_set += EXPECT_CALL(...); |
| ExpectationSet& operator+=(const Expectation& e) { |
| expectations_.insert(e); |
| return *this; |
| } |
| |
| int size() const { return static_cast<int>(expectations_.size()); } |
| |
| const_iterator begin() const { return expectations_.begin(); } |
| const_iterator end() const { return expectations_.end(); } |
| |
| private: |
| Expectation::Set expectations_; |
| }; |
| |
| |
| // Sequence objects are used by a user to specify the relative order |
| // in which the expectations should match. They are copyable (we rely |
| // on the compiler-defined copy constructor and assignment operator). |
| class GTEST_API_ Sequence { |
| public: |
| // Constructs an empty sequence. |
| Sequence() : last_expectation_(new Expectation) {} |
| |
| // Adds an expectation to this sequence. The caller must ensure |
| // that no other thread is accessing this Sequence object. |
| void AddExpectation(const Expectation& expectation) const; |
| |
| private: |
| // The last expectation in this sequence. |
| std::shared_ptr<Expectation> last_expectation_; |
| }; // class Sequence |
| |
| // An object of this type causes all EXPECT_CALL() statements |
| // encountered in its scope to be put in an anonymous sequence. The |
| // work is done in the constructor and destructor. You should only |
| // create an InSequence object on the stack. |
| // |
| // The sole purpose for this class is to support easy definition of |
| // sequential expectations, e.g. |
| // |
| // { |
| // InSequence dummy; // The name of the object doesn't matter. |
| // |
| // // The following expectations must match in the order they appear. |
| // EXPECT_CALL(a, Bar())...; |
| // EXPECT_CALL(a, Baz())...; |
| // ... |
| // EXPECT_CALL(b, Xyz())...; |
| // } |
| // |
| // You can create InSequence objects in multiple threads, as long as |
| // they are used to affect different mock objects. The idea is that |
| // each thread can create and set up its own mocks as if it's the only |
| // thread. However, for clarity of your tests we recommend you to set |
| // up mocks in the main thread unless you have a good reason not to do |
| // so. |
| class GTEST_API_ InSequence { |
| public: |
| InSequence(); |
| ~InSequence(); |
| private: |
| bool sequence_created_; |
| |
| GTEST_DISALLOW_COPY_AND_ASSIGN_(InSequence); // NOLINT |
| } GTEST_ATTRIBUTE_UNUSED_; |
| |
| namespace internal { |
| |
| // Points to the implicit sequence introduced by a living InSequence |
| // object (if any) in the current thread or NULL. |
| GTEST_API_ extern ThreadLocal<Sequence*> g_gmock_implicit_sequence; |
| |
| // Base class for implementing expectations. |
| // |
| // There are two reasons for having a type-agnostic base class for |
| // Expectation: |
| // |
| // 1. We need to store collections of expectations of different |
| // types (e.g. all pre-requisites of a particular expectation, all |
| // expectations in a sequence). Therefore these expectation objects |
| // must share a common base class. |
| // |
| // 2. We can avoid binary code bloat by moving methods not depending |
| // on the template argument of Expectation to the base class. |
| // |
| // This class is internal and mustn't be used by user code directly. |
| class GTEST_API_ ExpectationBase { |
| public: |
| // source_text is the EXPECT_CALL(...) source that created this Expectation. |
| ExpectationBase(const char* file, int line, const std::string& source_text); |
| |
| virtual ~ExpectationBase(); |
| |
| // Where in the source file was the expectation spec defined? |
| const char* file() const { return file_; } |
| int line() const { return line_; } |
| const char* source_text() const { return source_text_.c_str(); } |
| // Returns the cardinality specified in the expectation spec. |
| const Cardinality& cardinality() const { return cardinality_; } |
| |
| // Describes the source file location of this expectation. |
| void DescribeLocationTo(::std::ostream* os) const { |
| *os << FormatFileLocation(file(), line()) << " "; |
| } |
| |
| // Describes how many times a function call matching this |
| // expectation has occurred. |
| void DescribeCallCountTo(::std::ostream* os) const |
| GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex); |
| |
| // If this mock method has an extra matcher (i.e. .With(matcher)), |
| // describes it to the ostream. |
| virtual void MaybeDescribeExtraMatcherTo(::std::ostream* os) = 0; |
| |
| protected: |
| friend class ::testing::Expectation; |
| friend class UntypedFunctionMockerBase; |
| |
| enum Clause { |
| // Don't change the order of the enum members! |
| kNone, |
| kWith, |
| kTimes, |
| kInSequence, |
| kAfter, |
| kWillOnce, |
| kWillRepeatedly, |
| kRetiresOnSaturation |
| }; |
| |
| typedef std::vector<const void*> UntypedActions; |
| |
| // Returns an Expectation object that references and co-owns this |
| // expectation. |
| virtual Expectation GetHandle() = 0; |
| |
| // Asserts that the EXPECT_CALL() statement has the given property. |
| void AssertSpecProperty(bool property, |
| const std::string& failure_message) const { |
| Assert(property, file_, line_, failure_message); |
| } |
| |
| // Expects that the EXPECT_CALL() statement has the given property. |
| void ExpectSpecProperty(bool property, |
| const std::string& failure_message) const { |
| Expect(property, file_, line_, failure_message); |
| } |
| |
| // Explicitly specifies the cardinality of this expectation. Used |
| // by the subclasses to implement the .Times() clause. |
| void SpecifyCardinality(const Cardinality& cardinality); |
| |
| // Returns true if and only if the user specified the cardinality |
| // explicitly using a .Times(). |
| bool cardinality_specified() const { return cardinality_specified_; } |
| |
| // Sets the cardinality of this expectation spec. |
| void set_cardinality(const Cardinality& a_cardinality) { |
| cardinality_ = a_cardinality; |
| } |
| |
| // The following group of methods should only be called after the |
| // EXPECT_CALL() statement, and only when g_gmock_mutex is held by |
| // the current thread. |
| |
| // Retires all pre-requisites of this expectation. |
| void RetireAllPreRequisites() |
| GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex); |
| |
| // Returns true if and only if this expectation is retired. |
| bool is_retired() const |
| GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { |
| g_gmock_mutex.AssertHeld(); |
| return retired_; |
| } |
| |
| // Retires this expectation. |
| void Retire() |
| GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { |
| g_gmock_mutex.AssertHeld(); |
| retired_ = true; |
| } |
| |
| // Returns true if and only if this expectation is satisfied. |
| bool IsSatisfied() const |
| GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { |
| g_gmock_mutex.AssertHeld(); |
| return cardinality().IsSatisfiedByCallCount(call_count_); |
| } |
| |
| // Returns true if and only if this expectation is saturated. |
| bool IsSaturated() const |
| GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { |
| g_gmock_mutex.AssertHeld(); |
| return cardinality().IsSaturatedByCallCount(call_count_); |
| } |
| |
| // Returns true if and only if this expectation is over-saturated. |
| bool IsOverSaturated() const |
| GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { |
| g_gmock_mutex.AssertHeld(); |
| return cardinality().IsOverSaturatedByCallCount(call_count_); |
| } |
| |
| // Returns true if and only if all pre-requisites of this expectation are |
| // satisfied. |
| bool AllPrerequisitesAreSatisfied() const |
| GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex); |
| |
| // Adds unsatisfied pre-requisites of this expectation to 'result'. |
| void FindUnsatisfiedPrerequisites(ExpectationSet* result) const |
| GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex); |
| |
| // Returns the number this expectation has been invoked. |
| int call_count() const |
| GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { |
| g_gmock_mutex.AssertHeld(); |
| return call_count_; |
| } |
| |
| // Increments the number this expectation has been invoked. |
| void IncrementCallCount() |
| GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { |
| g_gmock_mutex.AssertHeld(); |
| call_count_++; |
| } |
| |
| // Checks the action count (i.e. the number of WillOnce() and |
| // WillRepeatedly() clauses) against the cardinality if this hasn't |
| // been done before. Prints a warning if there are too many or too |
| // few actions. |
| void CheckActionCountIfNotDone() const |
| GTEST_LOCK_EXCLUDED_(mutex_); |
| |
| friend class ::testing::Sequence; |
| friend class ::testing::internal::ExpectationTester; |
| |
| template <typename Function> |
| friend class TypedExpectation; |
| |
| // Implements the .Times() clause. |
| void UntypedTimes(const Cardinality& a_cardinality); |
| |
| // This group of fields are part of the spec and won't change after |
| // an EXPECT_CALL() statement finishes. |
| const char* file_; // The file that contains the expectation. |
| int line_; // The line number of the expectation. |
| const std::string source_text_; // The EXPECT_CALL(...) source text. |
| // True if and only if the cardinality is specified explicitly. |
| bool cardinality_specified_; |
| Cardinality cardinality_; // The cardinality of the expectation. |
| // The immediate pre-requisites (i.e. expectations that must be |
| // satisfied before this expectation can be matched) of this |
| // expectation. We use std::shared_ptr in the set because we want an |
| // Expectation object to be co-owned by its FunctionMocker and its |
| // successors. This allows multiple mock objects to be deleted at |
| // different times. |
| ExpectationSet immediate_prerequisites_; |
| |
| // This group of fields are the current state of the expectation, |
| // and can change as the mock function is called. |
| int call_count_; // How many times this expectation has been invoked. |
| bool retired_; // True if and only if this expectation has retired. |
| UntypedActions untyped_actions_; |
| bool extra_matcher_specified_; |
| bool repeated_action_specified_; // True if a WillRepeatedly() was specified. |
| bool retires_on_saturation_; |
| Clause last_clause_; |
| mutable bool action_count_checked_; // Under mutex_. |
| mutable Mutex mutex_; // Protects action_count_checked_. |
| }; // class ExpectationBase |
| |
| // Impements an expectation for the given function type. |
| template <typename F> |
| class TypedExpectation : public ExpectationBase { |
| public: |
| typedef typename Function<F>::ArgumentTuple ArgumentTuple; |
| typedef typename Function<F>::ArgumentMatcherTuple ArgumentMatcherTuple; |
| typedef typename Function<F>::Result Result; |
| |
| TypedExpectation(FunctionMocker<F>* owner, const char* a_file, int a_line, |
| const std::string& a_source_text, |
| const ArgumentMatcherTuple& m) |
| : ExpectationBase(a_file, a_line, a_source_text), |
| owner_(owner), |
| matchers_(m), |
| // By default, extra_matcher_ should match anything. However, |
| // we cannot initialize it with _ as that causes ambiguity between |
| // Matcher's copy and move constructor for some argument types. |
| extra_matcher_(A<const ArgumentTuple&>()), |
| repeated_action_(DoDefault()) {} |
| |
| ~TypedExpectation() override { |
| // Check the validity of the action count if it hasn't been done |
| // yet (for example, if the expectation was never used). |
| CheckActionCountIfNotDone(); |
| for (UntypedActions::const_iterator it = untyped_actions_.begin(); |
| it != untyped_actions_.end(); ++it) { |
| delete static_cast<const Action<F>*>(*it); |
| } |
| } |
| |
| // Implements the .With() clause. |
| TypedExpectation& With(const Matcher<const ArgumentTuple&>& m) { |
| if (last_clause_ == kWith) { |
| ExpectSpecProperty(false, |
| ".With() cannot appear " |
| "more than once in an EXPECT_CALL()."); |
| } else { |
| ExpectSpecProperty(last_clause_ < kWith, |
| ".With() must be the first " |
| "clause in an EXPECT_CALL()."); |
| } |
| last_clause_ = kWith; |
| |
| extra_matcher_ = m; |
| extra_matcher_specified_ = true; |
| return *this; |
| } |
| |
| // Implements the .Times() clause. |
| TypedExpectation& Times(const Cardinality& a_cardinality) { |
| ExpectationBase::UntypedTimes(a_cardinality); |
| return *this; |
| } |
| |
| // Implements the .Times() clause. |
| TypedExpectation& Times(int n) { |
| return Times(Exactly(n)); |
| } |
| |
| // Implements the .InSequence() clause. |
| TypedExpectation& InSequence(const Sequence& s) { |
| ExpectSpecProperty(last_clause_ <= kInSequence, |
| ".InSequence() cannot appear after .After()," |
| " .WillOnce(), .WillRepeatedly(), or " |
| ".RetiresOnSaturation()."); |
| last_clause_ = kInSequence; |
| |
| s.AddExpectation(GetHandle()); |
| return *this; |
| } |
| TypedExpectation& InSequence(const Sequence& s1, const Sequence& s2) { |
| return InSequence(s1).InSequence(s2); |
| } |
| TypedExpectation& InSequence(const Sequence& s1, const Sequence& s2, |
| const Sequence& s3) { |
| return InSequence(s1, s2).InSequence(s3); |
| } |
| TypedExpectation& InSequence(const Sequence& s1, const Sequence& s2, |
| const Sequence& s3, const Sequence& s4) { |
| return InSequence(s1, s2, s3).InSequence(s4); |
| } |
| TypedExpectation& InSequence(const Sequence& s1, const Sequence& s2, |
| const Sequence& s3, const Sequence& s4, |
| const Sequence& s5) { |
| return InSequence(s1, s2, s3, s4).InSequence(s5); |
| } |
| |
| // Implements that .After() clause. |
| TypedExpectation& After(const ExpectationSet& s) { |
| ExpectSpecProperty(last_clause_ <= kAfter, |
| ".After() cannot appear after .WillOnce()," |
| " .WillRepeatedly(), or " |
| ".RetiresOnSaturation()."); |
| last_clause_ = kAfter; |
| |
| for (ExpectationSet::const_iterator it = s.begin(); it != s.end(); ++it) { |
| immediate_prerequisites_ += *it; |
| } |
| return *this; |
| } |
| TypedExpectation& After(const ExpectationSet& s1, const ExpectationSet& s2) { |
| return After(s1).After(s2); |
| } |
| TypedExpectation& After(const ExpectationSet& s1, const ExpectationSet& s2, |
| const ExpectationSet& s3) { |
| return After(s1, s2).After(s3); |
| } |
| TypedExpectation& After(const ExpectationSet& s1, const ExpectationSet& s2, |
| const ExpectationSet& s3, const ExpectationSet& s4) { |
| return After(s1, s2, s3).After(s4); |
| } |
| TypedExpectation& After(const ExpectationSet& s1, const ExpectationSet& s2, |
| const ExpectationSet& s3, const ExpectationSet& s4, |
| const ExpectationSet& s5) { |
| return After(s1, s2, s3, s4).After(s5); |
| } |
| |
| // Implements the .WillOnce() clause. |
| TypedExpectation& WillOnce(const Action<F>& action) { |
| ExpectSpecProperty(last_clause_ <= kWillOnce, |
| ".WillOnce() cannot appear after " |
| ".WillRepeatedly() or .RetiresOnSaturation()."); |
| last_clause_ = kWillOnce; |
| |
| untyped_actions_.push_back(new Action<F>(action)); |
| if (!cardinality_specified()) { |
| set_cardinality(Exactly(static_cast<int>(untyped_actions_.size()))); |
| } |
| return *this; |
| } |
| |
| // Implements the .WillRepeatedly() clause. |
| TypedExpectation& WillRepeatedly(const Action<F>& action) { |
| if (last_clause_ == kWillRepeatedly) { |
| ExpectSpecProperty(false, |
| ".WillRepeatedly() cannot appear " |
| "more than once in an EXPECT_CALL()."); |
| } else { |
| ExpectSpecProperty(last_clause_ < kWillRepeatedly, |
| ".WillRepeatedly() cannot appear " |
| "after .RetiresOnSaturation()."); |
| } |
| last_clause_ = kWillRepeatedly; |
| repeated_action_specified_ = true; |
| |
| repeated_action_ = action; |
| if (!cardinality_specified()) { |
| set_cardinality(AtLeast(static_cast<int>(untyped_actions_.size()))); |
| } |
| |
| // Now that no more action clauses can be specified, we check |
| // whether their count makes sense. |
| CheckActionCountIfNotDone(); |
| return *this; |
| } |
| |
| // Implements the .RetiresOnSaturation() clause. |
| TypedExpectation& RetiresOnSaturation() { |
| ExpectSpecProperty(last_clause_ < kRetiresOnSaturation, |
| ".RetiresOnSaturation() cannot appear " |
| "more than once."); |
| last_clause_ = kRetiresOnSaturation; |
| retires_on_saturation_ = true; |
| |
| // Now that no more action clauses can be specified, we check |
| // whether their count makes sense. |
| CheckActionCountIfNotDone(); |
| return *this; |
| } |
| |
| // Returns the matchers for the arguments as specified inside the |
| // EXPECT_CALL() macro. |
| const ArgumentMatcherTuple& matchers() const { |
| return matchers_; |
| } |
| |
| // Returns the matcher specified by the .With() clause. |
| const Matcher<const ArgumentTuple&>& extra_matcher() const { |
| return extra_matcher_; |
| } |
| |
| // Returns the action specified by the .WillRepeatedly() clause. |
| const Action<F>& repeated_action() const { return repeated_action_; } |
| |
| // If this mock method has an extra matcher (i.e. .With(matcher)), |
| // describes it to the ostream. |
| void MaybeDescribeExtraMatcherTo(::std::ostream* os) override { |
| if (extra_matcher_specified_) { |
| *os << " Expected args: "; |
| extra_matcher_.DescribeTo(os); |
| *os << "\n"; |
| } |
| } |
| |
| private: |
| template <typename Function> |
| friend class FunctionMocker; |
| |
| // Returns an Expectation object that references and co-owns this |
| // expectation. |
| Expectation GetHandle() override { return owner_->GetHandleOf(this); } |
| |
| // The following methods will be called only after the EXPECT_CALL() |
| // statement finishes and when the current thread holds |
| // g_gmock_mutex. |
| |
| // Returns true if and only if this expectation matches the given arguments. |
| bool Matches(const ArgumentTuple& args) const |
| GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { |
| g_gmock_mutex.AssertHeld(); |
| return TupleMatches(matchers_, args) && extra_matcher_.Matches(args); |
| } |
| |
| // Returns true if and only if this expectation should handle the given |
| // arguments. |
| bool ShouldHandleArguments(const ArgumentTuple& args) const |
| GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { |
| g_gmock_mutex.AssertHeld(); |
| |
| // In case the action count wasn't checked when the expectation |
| // was defined (e.g. if this expectation has no WillRepeatedly() |
| // or RetiresOnSaturation() clause), we check it when the |
| // expectation is used for the first time. |
| CheckActionCountIfNotDone(); |
| return !is_retired() && AllPrerequisitesAreSatisfied() && Matches(args); |
| } |
| |
| // Describes the result of matching the arguments against this |
| // expectation to the given ostream. |
| void ExplainMatchResultTo( |
| const ArgumentTuple& args, |
| ::std::ostream* os) const |
| GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { |
| g_gmock_mutex.AssertHeld(); |
| |
| if (is_retired()) { |
| *os << " Expected: the expectation is active\n" |
| << " Actual: it is retired\n"; |
| } else if (!Matches(args)) { |
| if (!TupleMatches(matchers_, args)) { |
| ExplainMatchFailureTupleTo(matchers_, args, os); |
| } |
| StringMatchResultListener listener; |
| if (!extra_matcher_.MatchAndExplain(args, &listener)) { |
| *os << " Expected args: "; |
| extra_matcher_.DescribeTo(os); |
| *os << "\n Actual: don't match"; |
| |
| internal::PrintIfNotEmpty(listener.str(), os); |
| *os << "\n"; |
| } |
| } else if (!AllPrerequisitesAreSatisfied()) { |
| *os << " Expected: all pre-requisites are satisfied\n" |
| << " Actual: the following immediate pre-requisites " |
| << "are not satisfied:\n"; |
| ExpectationSet unsatisfied_prereqs; |
| FindUnsatisfiedPrerequisites(&unsatisfied_prereqs); |
| int i = 0; |
| for (ExpectationSet::const_iterator it = unsatisfied_prereqs.begin(); |
| it != unsatisfied_prereqs.end(); ++it) { |
| it->expectation_base()->DescribeLocationTo(os); |
| *os << "pre-requisite #" << i++ << "\n"; |
| } |
| *os << " (end of pre-requisites)\n"; |
| } else { |
| // This line is here just for completeness' sake. It will never |
| // be executed as currently the ExplainMatchResultTo() function |
| // is called only when the mock function call does NOT match the |
| // expectation. |
| *os << "The call matches the expectation.\n"; |
| } |
| } |
| |
| // Returns the action that should be taken for the current invocation. |
| const Action<F>& GetCurrentAction(const FunctionMocker<F>* mocker, |
| const ArgumentTuple& args) const |
| GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { |
| g_gmock_mutex.AssertHeld(); |
| const int count = call_count(); |
| Assert(count >= 1, __FILE__, __LINE__, |
| "call_count() is <= 0 when GetCurrentAction() is " |
| "called - this should never happen."); |
| |
| const int action_count = static_cast<int>(untyped_actions_.size()); |
| if (action_count > 0 && !repeated_action_specified_ && |
| count > action_count) { |
| // If there is at least one WillOnce() and no WillRepeatedly(), |
| // we warn the user when the WillOnce() clauses ran out. |
| ::std::stringstream ss; |
| DescribeLocationTo(&ss); |
| ss << "Actions ran out in " << source_text() << "...\n" |
| << "Called " << count << " times, but only " |
| << action_count << " WillOnce()" |
| << (action_count == 1 ? " is" : "s are") << " specified - "; |
| mocker->DescribeDefaultActionTo(args, &ss); |
| Log(kWarning, ss.str(), 1); |
| } |
| |
| return count <= action_count |
| ? *static_cast<const Action<F>*>( |
| untyped_actions_[static_cast<size_t>(count - 1)]) |
| : repeated_action(); |
| } |
| |
| // Given the arguments of a mock function call, if the call will |
| // over-saturate this expectation, returns the default action; |
| // otherwise, returns the next action in this expectation. Also |
| // describes *what* happened to 'what', and explains *why* Google |
| // Mock does it to 'why'. This method is not const as it calls |
| // IncrementCallCount(). A return value of NULL means the default |
| // action. |
| const Action<F>* GetActionForArguments(const FunctionMocker<F>* mocker, |
| const ArgumentTuple& args, |
| ::std::ostream* what, |
| ::std::ostream* why) |
| GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { |
| g_gmock_mutex.AssertHeld(); |
| if (IsSaturated()) { |
| // We have an excessive call. |
| IncrementCallCount(); |
| *what << "Mock function called more times than expected - "; |
| mocker->DescribeDefaultActionTo(args, what); |
| DescribeCallCountTo(why); |
| |
| return nullptr; |
| } |
| |
| IncrementCallCount(); |
| RetireAllPreRequisites(); |
| |
| if (retires_on_saturation_ && IsSaturated()) { |
| Retire(); |
| } |
| |
| // Must be done after IncrementCount()! |
| *what << "Mock function call matches " << source_text() <<"...\n"; |
| return &(GetCurrentAction(mocker, args)); |
| } |
| |
| // All the fields below won't change once the EXPECT_CALL() |
| // statement finishes. |
| FunctionMocker<F>* const owner_; |
| ArgumentMatcherTuple matchers_; |
| Matcher<const ArgumentTuple&> extra_matcher_; |
| Action<F> repeated_action_; |
| |
| GTEST_DISALLOW_COPY_AND_ASSIGN_(TypedExpectation); |
| }; // class TypedExpectation |
| |
| // A MockSpec object is used by ON_CALL() or EXPECT_CALL() for |
| // specifying the default behavior of, or expectation on, a mock |
| // function. |
| |
| // Note: class MockSpec really belongs to the ::testing namespace. |
| // However if we define it in ::testing, MSVC will complain when |
| // classes in ::testing::internal declare it as a friend class |
| // template. To workaround this compiler bug, we define MockSpec in |
| // ::testing::internal and import it into ::testing. |
| |
| // Logs a message including file and line number information. |
| GTEST_API_ void LogWithLocation(testing::internal::LogSeverity severity, |
| const char* file, int line, |
| const std::string& message); |
| |
| template <typename F> |
| class MockSpec { |
| public: |
| typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; |
| typedef typename internal::Function<F>::ArgumentMatcherTuple |
| ArgumentMatcherTuple; |
| |
| // Constructs a MockSpec object, given the function mocker object |
| // that the spec is associated with. |
| MockSpec(internal::FunctionMocker<F>* function_mocker, |
| const ArgumentMatcherTuple& matchers) |
| : function_mocker_(function_mocker), matchers_(matchers) {} |
| |
| // Adds a new default action spec to the function mocker and returns |
| // the newly created spec. |
| internal::OnCallSpec<F>& InternalDefaultActionSetAt( |
| const char* file, int line, const char* obj, const char* call) { |
| LogWithLocation(internal::kInfo, file, line, |
| std::string("ON_CALL(") + obj + ", " + call + ") invoked"); |
| return function_mocker_->AddNewOnCallSpec(file, line, matchers_); |
| } |
| |
| // Adds a new expectation spec to the function mocker and returns |
| // the newly created spec. |
| internal::TypedExpectation<F>& InternalExpectedAt( |
| const char* file, int line, const char* obj, const char* call) { |
| const std::string source_text(std::string("EXPECT_CALL(") + obj + ", " + |
| call + ")"); |
| LogWithLocation(internal::kInfo, file, line, source_text + " invoked"); |
| return function_mocker_->AddNewExpectation( |
| file, line, source_text, matchers_); |
| } |
| |
| // This operator overload is used to swallow the superfluous parameter list |
| // introduced by the ON/EXPECT_CALL macros. See the macro comments for more |
| // explanation. |
| MockSpec<F>& operator()(const internal::WithoutMatchers&, void* const) { |
| return *this; |
| } |
| |
| private: |
| template <typename Function> |
| friend class internal::FunctionMocker; |
| |
| // The function mocker that owns this spec. |
| internal::FunctionMocker<F>* const function_mocker_; |
| // The argument matchers specified in the spec. |
| ArgumentMatcherTuple matchers_; |
| }; // class MockSpec |
| |
| // Wrapper type for generically holding an ordinary value or lvalue reference. |
| // If T is not a reference type, it must be copyable or movable. |
| // ReferenceOrValueWrapper<T> is movable, and will also be copyable unless |
| // T is a move-only value type (which means that it will always be copyable |
| // if the current platform does not support move semantics). |
| // |
| // The primary template defines handling for values, but function header |
| // comments describe the contract for the whole template (including |
| // specializations). |
| template <typename T> |
| class ReferenceOrValueWrapper { |
| public: |
| // Constructs a wrapper from the given value/reference. |
| explicit ReferenceOrValueWrapper(T value) |
| : value_(std::move(value)) { |
| } |
| |
| // Unwraps and returns the underlying value/reference, exactly as |
| // originally passed. The behavior of calling this more than once on |
| // the same object is unspecified. |
| T Unwrap() { return std::move(value_); } |
| |
| // Provides nondestructive access to the underlying value/reference. |
| // Always returns a const reference (more precisely, |
| // const std::add_lvalue_reference<T>::type). The behavior of calling this |
| // after calling Unwrap on the same object is unspecified. |
| const T& Peek() const { |
| return value_; |
| } |
| |
| private: |
| T value_; |
| }; |
| |
| // Specialization for lvalue reference types. See primary template |
| // for documentation. |
| template <typename T> |
| class ReferenceOrValueWrapper<T&> { |
| public: |
| // Workaround for debatable pass-by-reference lint warning (c-library-team |
| // policy precludes NOLINT in this context) |
| typedef T& reference; |
| explicit ReferenceOrValueWrapper(reference ref) |
| : value_ptr_(&ref) {} |
| T& Unwrap() { return *value_ptr_; } |
| const T& Peek() const { return *value_ptr_; } |
| |
| private: |
| T* value_ptr_; |
| }; |
| |
| // C++ treats the void type specially. For example, you cannot define |
| // a void-typed variable or pass a void value to a function. |
| // ActionResultHolder<T> holds a value of type T, where T must be a |
| // copyable type or void (T doesn't need to be default-constructable). |
| // It hides the syntactic difference between void and other types, and |
| // is used to unify the code for invoking both void-returning and |
| // non-void-returning mock functions. |
| |
| // Untyped base class for ActionResultHolder<T>. |
| class UntypedActionResultHolderBase { |
| public: |
| virtual ~UntypedActionResultHolderBase() {} |
| |
| // Prints the held value as an action's result to os. |
| virtual void PrintAsActionResult(::std::ostream* os) const = 0; |
| }; |
| |
| // This generic definition is used when T is not void. |
| template <typename T> |
| class ActionResultHolder : public UntypedActionResultHolderBase { |
| public: |
| // Returns the held value. Must not be called more than once. |
| T Unwrap() { |
| return result_.Unwrap(); |
| } |
| |
| // Prints the held value as an action's result to os. |
| void PrintAsActionResult(::std::ostream* os) const override { |
| *os << "\n Returns: "; |
| // T may be a reference type, so we don't use UniversalPrint(). |
| UniversalPrinter<T>::Print(result_.Peek(), os); |
| } |
| |
| // Performs the given mock function's default action and returns the |
| // result in a new-ed ActionResultHolder. |
| template <typename F> |
| static ActionResultHolder* PerformDefaultAction( |
| const FunctionMocker<F>* func_mocker, |
| typename Function<F>::ArgumentTuple&& args, |
| const std::string& call_description) { |
| return new ActionResultHolder(Wrapper(func_mocker->PerformDefaultAction( |
| std::move(args), call_description))); |
| } |
| |
| // Performs the given action and returns the result in a new-ed |
| // ActionResultHolder. |
| template <typename F> |
| static ActionResultHolder* PerformAction( |
| const Action<F>& action, typename Function<F>::ArgumentTuple&& args) { |
| return new ActionResultHolder( |
| Wrapper(action.Perform(std::move(args)))); |
| } |
| |
| private: |
| typedef ReferenceOrValueWrapper<T> Wrapper; |
| |
| explicit ActionResultHolder(Wrapper result) |
| : result_(std::move(result)) { |
| } |
| |
| Wrapper result_; |
| |
| GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionResultHolder); |
| }; |
| |
| // Specialization for T = void. |
| template <> |
| class ActionResultHolder<void> : public UntypedActionResultHolderBase { |
| public: |
| void Unwrap() { } |
| |
| void PrintAsActionResult(::std::ostream* /* os */) const override {} |
| |
| // Performs the given mock function's default action and returns ownership |
| // of an empty ActionResultHolder*. |
| template <typename F> |
| static ActionResultHolder* PerformDefaultAction( |
| const FunctionMocker<F>* func_mocker, |
| typename Function<F>::ArgumentTuple&& args, |
| const std::string& call_description) { |
| func_mocker->PerformDefaultAction(std::move(args), call_description); |
| return new ActionResultHolder; |
| } |
| |
| // Performs the given action and returns ownership of an empty |
| // ActionResultHolder*. |
| template <typename F> |
| static ActionResultHolder* PerformAction( |
| const Action<F>& action, typename Function<F>::ArgumentTuple&& args) { |
| action.Perform(std::move(args)); |
| return new ActionResultHolder; |
| } |
| |
| private: |
| ActionResultHolder() {} |
| GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionResultHolder); |
| }; |
| |
| template <typename F> |
| class FunctionMocker; |
| |
| template <typename R, typename... Args> |
| class FunctionMocker<R(Args...)> final : public UntypedFunctionMockerBase { |
| using F = R(Args...); |
| |
| public: |
| using Result = R; |
| using ArgumentTuple = std::tuple<Args...>; |
| using ArgumentMatcherTuple = std::tuple<Matcher<Args>...>; |
| |
| FunctionMocker() {} |
| |
| // There is no generally useful and implementable semantics of |
| // copying a mock object, so copying a mock is usually a user error. |
| // Thus we disallow copying function mockers. If the user really |
| // wants to copy a mock object, they should implement their own copy |
| // operation, for example: |
| // |
| // class MockFoo : public Foo { |
| // public: |
| // // Defines a copy constructor explicitly. |
| // MockFoo(const MockFoo& src) {} |
| // ... |
| // }; |
| FunctionMocker(const FunctionMocker&) = delete; |
| FunctionMocker& operator=(const FunctionMocker&) = delete; |
| |
| // The destructor verifies that all expectations on this mock |
| // function have been satisfied. If not, it will report Google Test |
| // non-fatal failures for the violations. |
| ~FunctionMocker() override GTEST_LOCK_EXCLUDED_(g_gmock_mutex) { |
| MutexLock l(&g_gmock_mutex); |
| VerifyAndClearExpectationsLocked(); |
| Mock::UnregisterLocked(this); |
| ClearDefaultActionsLocked(); |
| } |
| |
| // Returns the ON_CALL spec that matches this mock function with the |
| // given arguments; returns NULL if no matching ON_CALL is found. |
| // L = * |
| const OnCallSpec<F>* FindOnCallSpec( |
| const ArgumentTuple& args) const { |
| for (UntypedOnCallSpecs::const_reverse_iterator it |
| = untyped_on_call_specs_.rbegin(); |
| it != untyped_on_call_specs_.rend(); ++it) { |
| const OnCallSpec<F>* spec = static_cast<const OnCallSpec<F>*>(*it); |
| if (spec->Matches(args)) |
| return spec; |
| } |
| |
| return nullptr; |
| } |
| |
| // Performs the default action of this mock function on the given |
| // arguments and returns the result. Asserts (or throws if |
| // exceptions are enabled) with a helpful call descrption if there |
| // is no valid return value. This method doesn't depend on the |
| // mutable state of this object, and thus can be called concurrently |
| // without locking. |
| // L = * |
| Result PerformDefaultAction(ArgumentTuple&& args, |
| const std::string& call_description) const { |
| const OnCallSpec<F>* const spec = |
| this->FindOnCallSpec(args); |
| if (spec != nullptr) { |
| return spec->GetAction().Perform(std::move(args)); |
| } |
| const std::string message = |
| call_description + |
| "\n The mock function has no default action " |
| "set, and its return type has no default value set."; |
| #if GTEST_HAS_EXCEPTIONS |
| if (!DefaultValue<Result>::Exists()) { |
| throw std::runtime_error(message); |
| } |
| #else |
| Assert(DefaultValue<Result>::Exists(), "", -1, message); |
| #endif |
| return DefaultValue<Result>::Get(); |
| } |
| |
| // Performs the default action with the given arguments and returns |
| // the action's result. The call description string will be used in |
| // the error message to describe the call in the case the default |
| // action fails. The caller is responsible for deleting the result. |
| // L = * |
| UntypedActionResultHolderBase* UntypedPerformDefaultAction( |
| void* untyped_args, // must point to an ArgumentTuple |
| const std::string& call_description) const override { |
| ArgumentTuple* args = static_cast<ArgumentTuple*>(untyped_args); |
| return ResultHolder::PerformDefaultAction(this, std::move(*args), |
| call_description); |
| } |
| |
| // Performs the given action with the given arguments and returns |
| // the action's result. The caller is responsible for deleting the |
| // result. |
| // L = * |
| UntypedActionResultHolderBase* UntypedPerformAction( |
| const void* untyped_action, void* untyped_args) const override { |
| // Make a copy of the action before performing it, in case the |
| // action deletes the mock object (and thus deletes itself). |
| const Action<F> action = *static_cast<const Action<F>*>(untyped_action); |
| ArgumentTuple* args = static_cast<ArgumentTuple*>(untyped_args); |
| return ResultHolder::PerformAction(action, std::move(*args)); |
| } |
| |
| // Implements UntypedFunctionMockerBase::ClearDefaultActionsLocked(): |
| // clears the ON_CALL()s set on this mock function. |
| void ClearDefaultActionsLocked() override |
| GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { |
| g_gmock_mutex.AssertHeld(); |
| |
| // Deleting our default actions may trigger other mock objects to be |
| // deleted, for example if an action contains a reference counted smart |
| // pointer to that mock object, and that is the last reference. So if we |
| // delete our actions within the context of the global mutex we may deadlock |
| // when this method is called again. Instead, make a copy of the set of |
| // actions to delete, clear our set within the mutex, and then delete the |
| // actions outside of the mutex. |
| UntypedOnCallSpecs specs_to_delete; |
| untyped_on_call_specs_.swap(specs_to_delete); |
| |
| g_gmock_mutex.Unlock(); |
| for (UntypedOnCallSpecs::const_iterator it = |
| specs_to_delete.begin(); |
| it != specs_to_delete.end(); ++it) { |
| delete static_cast<const OnCallSpec<F>*>(*it); |
| } |
| |
| // Lock the mutex again, since the caller expects it to be locked when we |
| // return. |
| g_gmock_mutex.Lock(); |
| } |
| |
| // Returns the result of invoking this mock function with the given |
| // arguments. This function can be safely called from multiple |
| // threads concurrently. |
| Result Invoke(Args... args) GTEST_LOCK_EXCLUDED_(g_gmock_mutex) { |
| ArgumentTuple tuple(std::forward<Args>(args)...); |
| std::unique_ptr<ResultHolder> holder(DownCast_<ResultHolder*>( |
| this->UntypedInvokeWith(static_cast<void*>(&tuple)))); |
| return holder->Unwrap(); |
| } |
| |
| MockSpec<F> With(Matcher<Args>... m) { |
| return MockSpec<F>(this, ::std::make_tuple(std::move(m)...)); |
| } |
| |
| protected: |
| template <typename Function> |
| friend class MockSpec; |
| |
| typedef ActionResultHolder<Result> ResultHolder; |
| |
| // Adds and returns a default action spec for this mock function. |
| OnCallSpec<F>& AddNewOnCallSpec( |
| const char* file, int line, |
| const ArgumentMatcherTuple& m) |
| GTEST_LOCK_EXCLUDED_(g_gmock_mutex) { |
| Mock::RegisterUseByOnCallOrExpectCall(MockObject(), file, line); |
| OnCallSpec<F>* const on_call_spec = new OnCallSpec<F>(file, line, m); |
| untyped_on_call_specs_.push_back(on_call_spec); |
| return *on_call_spec; |
| } |
| |
| // Adds and returns an expectation spec for this mock function. |
| TypedExpectation<F>& AddNewExpectation(const char* file, int line, |
| const std::string& source_text, |
| const ArgumentMatcherTuple& m) |
| GTEST_LOCK_EXCLUDED_(g_gmock_mutex) { |
| Mock::RegisterUseByOnCallOrExpectCall(MockObject(), file, line); |
| TypedExpectation<F>* const expectation = |
| new TypedExpectation<F>(this, file, line, source_text, m); |
| const std::shared_ptr<ExpectationBase> untyped_expectation(expectation); |
| // See the definition of untyped_expectations_ for why access to |
| // it is unprotected here. |
| untyped_expectations_.push_back(untyped_expectation); |
| |
| // Adds this expectation into the implicit sequence if there is one. |
| Sequence* const implicit_sequence = g_gmock_implicit_sequence.get(); |
| if (implicit_sequence != nullptr) { |
| implicit_sequence->AddExpectation(Expectation(untyped_expectation)); |
| } |
| |
| return *expectation; |
| } |
| |
| private: |
| template <typename Func> friend class TypedExpectation; |
| |
| // Some utilities needed for implementing UntypedInvokeWith(). |
| |
| // Describes what default action will be performed for the given |
| // arguments. |
| // L = * |
| void DescribeDefaultActionTo(const ArgumentTuple& args, |
| ::std::ostream* os) const { |
| const OnCallSpec<F>* const spec = FindOnCallSpec(args); |
| |
| if (spec == nullptr) { |
| *os << (std::is_void<Result>::value ? "returning directly.\n" |
| : "returning default value.\n"); |
| } else { |
| *os << "taking default action specified at:\n" |
| << FormatFileLocation(spec->file(), spec->line()) << "\n"; |
| } |
| } |
| |
| // Writes a message that the call is uninteresting (i.e. neither |
| // explicitly expected nor explicitly unexpected) to the given |
| // ostream. |
| void UntypedDescribeUninterestingCall(const void* untyped_args, |
| ::std::ostream* os) const override |
| GTEST_LOCK_EXCLUDED_(g_gmock_mutex) { |
| const ArgumentTuple& args = |
| *static_cast<const ArgumentTuple*>(untyped_args); |
| *os << "Uninteresting mock function call - "; |
| DescribeDefaultActionTo(args, os); |
| *os << " Function call: " << Name(); |
| UniversalPrint(args, os); |
| } |
| |
| // Returns the expectation that matches the given function arguments |
| // (or NULL is there's no match); when a match is found, |
| // untyped_action is set to point to the action that should be |
| // performed (or NULL if the action is "do default"), and |
| // is_excessive is modified to indicate whether the call exceeds the |
| // expected number. |
| // |
| // Critical section: We must find the matching expectation and the |
| // corresponding action that needs to be taken in an ATOMIC |
| // transaction. Otherwise another thread may call this mock |
| // method in the middle and mess up the state. |
| // |
| // However, performing the action has to be left out of the critical |
| // section. The reason is that we have no control on what the |
| // action does (it can invoke an arbitrary user function or even a |
| // mock function) and excessive locking could cause a dead lock. |
| const ExpectationBase* UntypedFindMatchingExpectation( |
| const void* untyped_args, const void** untyped_action, bool* is_excessive, |
| ::std::ostream* what, ::std::ostream* why) override |
| GTEST_LOCK_EXCLUDED_(g_gmock_mutex) { |
| const ArgumentTuple& args = |
| *static_cast<const ArgumentTuple*>(untyped_args); |
| MutexLock l(&g_gmock_mutex); |
| TypedExpectation<F>* exp = this->FindMatchingExpectationLocked(args); |
| if (exp == nullptr) { // A match wasn't found. |
| this->FormatUnexpectedCallMessageLocked(args, what, why); |
| return nullptr; |
| } |
| |
| // This line must be done before calling GetActionForArguments(), |
| // which will increment the call count for *exp and thus affect |
| // its saturation status. |
| *is_excessive = exp->IsSaturated(); |
| const Action<F>* action = exp->GetActionForArguments(this, args, what, why); |
| if (action != nullptr && action->IsDoDefault()) |
| action = nullptr; // Normalize "do default" to NULL. |
| *untyped_action = action; |
| return exp; |
| } |
| |
| // Prints the given function arguments to the ostream. |
| void UntypedPrintArgs(const void* untyped_args, |
| ::std::ostream* os) const override { |
| const ArgumentTuple& args = |
| *static_cast<const ArgumentTuple*>(untyped_args); |
| UniversalPrint(args, os); |
| } |
| |
| // Returns the expectation that matches the arguments, or NULL if no |
| // expectation matches them. |
| TypedExpectation<F>* FindMatchingExpectationLocked( |
| const ArgumentTuple& args) const |
| GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { |
| g_gmock_mutex.AssertHeld(); |
| // See the definition of untyped_expectations_ for why access to |
| // it is unprotected here. |
| for (typename UntypedExpectations::const_reverse_iterator it = |
| untyped_expectations_.rbegin(); |
| it != untyped_expectations_.rend(); ++it) { |
| TypedExpectation<F>* const exp = |
| static_cast<TypedExpectation<F>*>(it->get()); |
| if (exp->ShouldHandleArguments(args)) { |
| return exp; |
| } |
| } |
| return nullptr; |
| } |
| |
| // Returns a message that the arguments don't match any expectation. |
| void FormatUnexpectedCallMessageLocked( |
| const ArgumentTuple& args, |
| ::std::ostream* os, |
| ::std::ostream* why) const |
| GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { |
| g_gmock_mutex.AssertHeld(); |
| *os << "\nUnexpected mock function call - "; |
| DescribeDefaultActionTo(args, os); |
| PrintTriedExpectationsLocked(args, why); |
| } |
| |
| // Prints a list of expectations that have been tried against the |
| // current mock function call. |
| void PrintTriedExpectationsLocked( |
| const ArgumentTuple& args, |
| ::std::ostream* why) const |
| GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { |
| g_gmock_mutex.AssertHeld(); |
| const size_t count = untyped_expectations_.size(); |
| *why << "Google Mock tried the following " << count << " " |
| << (count == 1 ? "expectation, but it didn't match" : |
| "expectations, but none matched") |
| << ":\n"; |
| for (size_t i = 0; i < count; i++) { |
| TypedExpectation<F>* const expectation = |
| static_cast<TypedExpectation<F>*>(untyped_expectations_[i].get()); |
| *why << "\n"; |
| expectation->DescribeLocationTo(why); |
| if (count > 1) { |
| *why << "tried expectation #" << i << ": "; |
| } |
| *why << expectation->source_text() << "...\n"; |
| expectation->ExplainMatchResultTo(args, why); |
| expectation->DescribeCallCountTo(why); |
| } |
| } |
| }; // class FunctionMocker |
| |
| // Reports an uninteresting call (whose description is in msg) in the |
| // manner specified by 'reaction'. |
| void ReportUninterestingCall(CallReaction reaction, const std::string& msg); |
| |
| } // namespace internal |
| |
| namespace internal { |
| |
| template <typename F> |
| class MockFunction; |
| |
| template <typename R, typename... Args> |
| class MockFunction<R(Args...)> { |
| public: |
| MockFunction(const MockFunction&) = delete; |
| MockFunction& operator=(const MockFunction&) = delete; |
| |
| std::function<R(Args...)> AsStdFunction() { |
| return [this](Args... args) -> R { |
| return this->Call(std::forward<Args>(args)...); |
| }; |
| } |
| |
| // Implementation detail: the expansion of the MOCK_METHOD macro. |
| R Call(Args... args) { |
| mock_.SetOwnerAndName(this, "Call"); |
| return mock_.Invoke(std::forward<Args>(args)...); |
| } |
| |
| MockSpec<R(Args...)> gmock_Call(Matcher<Args>... m) { |
| mock_.RegisterOwner(this); |
| return mock_.With(std::move(m)...); |
| } |
| |
| MockSpec<R(Args...)> gmock_Call(const WithoutMatchers&, R (*)(Args...)) { |
| return this->gmock_Call(::testing::A<Args>()...); |
| } |
| |
| protected: |
| MockFunction() = default; |
| ~MockFunction() = default; |
| |
| private: |
| FunctionMocker<R(Args...)> mock_; |
| }; |
| |
| /* |
| The SignatureOf<F> struct is a meta-function returning function signature |
| corresponding to the provided F argument. |
| |
| It makes use of MockFunction easier by allowing it to accept more F arguments |
| than just function signatures. |
| |
| Specializations provided here cover a signature type itself and any template |
| that can be parameterized with a signature, including std::function and |
| boost::function. |
| */ |
| |
| template <typename F, typename = void> |
| struct SignatureOf; |
| |
| template <typename R, typename... Args> |
| struct SignatureOf<R(Args...)> { |
| using type = R(Args...); |
| }; |
| |
| template <template <typename> class C, typename F> |
| struct SignatureOf<C<F>, |
| typename std::enable_if<std::is_function<F>::value>::type> |
| : SignatureOf<F> {}; |
| |
| template <typename F> |
| using SignatureOfT = typename SignatureOf<F>::type; |
| |
| } // namespace internal |
| |
| // A MockFunction<F> type has one mock method whose type is |
| // internal::SignatureOfT<F>. It is useful when you just want your |
| // test code to emit some messages and have Google Mock verify the |
| // right messages are sent (and perhaps at the right times). For |
| // example, if you are exercising code: |
| // |
| // Foo(1); |
| // Foo(2); |
| // Foo(3); |
| // |
| // and want to verify that Foo(1) and Foo(3) both invoke |
| // mock.Bar("a"), but Foo(2) doesn't invoke anything, you can write: |
| // |
| // TEST(FooTest, InvokesBarCorrectly) { |
| // MyMock mock; |
| // MockFunction<void(string check_point_name)> check; |
| // { |
| // InSequence s; |
| // |
| // EXPECT_CALL(mock, Bar("a")); |
| // EXPECT_CALL(check, Call("1")); |
| // EXPECT_CALL(check, Call("2")); |
| // EXPECT_CALL(mock, Bar("a")); |
| // } |
| // Foo(1); |
| // check.Call("1"); |
| // Foo(2); |
| // check.Call("2"); |
| // Foo(3); |
| // } |
| // |
| // The expectation spec says that the first Bar("a") must happen |
| // before check point "1", the second Bar("a") must happen after check |
| // point "2", and nothing should happen between the two check |
| // points. The explicit check points make it easy to tell which |
| // Bar("a") is called by which call to Foo(). |
| // |
| // MockFunction<F> can also be used to exercise code that accepts |
| // std::function<internal::SignatureOfT<F>> callbacks. To do so, use |
| // AsStdFunction() method to create std::function proxy forwarding to |
| // original object's Call. Example: |
| // |
| // TEST(FooTest, RunsCallbackWithBarArgument) { |
| // MockFunction<int(string)> callback; |
| // EXPECT_CALL(callback, Call("bar")).WillOnce(Return(1)); |
| // Foo(callback.AsStdFunction()); |
| // } |
| // |
| // The internal::SignatureOfT<F> indirection allows to use other types |
| // than just function signature type. This is typically useful when |
| // providing a mock for a predefined std::function type. Example: |
| // |
| // using FilterPredicate = std::function<bool(string)>; |
| // void MyFilterAlgorithm(FilterPredicate predicate); |
| // |
| // TEST(FooTest, FilterPredicateAlwaysAccepts) { |
| // MockFunction<FilterPredicate> predicateMock; |
| // EXPECT_CALL(predicateMock, Call(_)).WillRepeatedly(Return(true)); |
| // MyFilterAlgorithm(predicateMock.AsStdFunction()); |
| // } |
| template <typename F> |
| class MockFunction : public internal::MockFunction<internal::SignatureOfT<F>> { |
| using Base = internal::MockFunction<internal::SignatureOfT<F>>; |
| |
| public: |
| using Base::Base; |
| }; |
| |
| // The style guide prohibits "using" statements in a namespace scope |
| // inside a header file. However, the MockSpec class template is |
| // meant to be defined in the ::testing namespace. The following line |
| // is just a trick for working around a bug in MSVC 8.0, which cannot |
| // handle it if we define MockSpec in ::testing. |
| using internal::MockSpec; |
| |
| // Const(x) is a convenient function for obtaining a const reference |
| // to x. This is useful for setting expectations on an overloaded |
| // const mock method, e.g. |
| // |
| // class MockFoo : public FooInterface { |
| // public: |
| // MOCK_METHOD0(Bar, int()); |
| // MOCK_CONST_METHOD0(Bar, int&()); |
| // }; |
| // |
| // MockFoo foo; |
| // // Expects a call to non-const MockFoo::Bar(). |
| // EXPECT_CALL(foo, Bar()); |
| // // Expects a call to const MockFoo::Bar(). |
| // EXPECT_CALL(Const(foo), Bar()); |
| template <typename T> |
| inline const T& Const(const T& x) { return x; } |
| |
| // Constructs an Expectation object that references and co-owns exp. |
| inline Expectation::Expectation(internal::ExpectationBase& exp) // NOLINT |
| : expectation_base_(exp.GetHandle().expectation_base()) {} |
| |
| } // namespace testing |
| |
| GTEST_DISABLE_MSC_WARNINGS_POP_() // 4251 |
| |
| // Implementation for ON_CALL and EXPECT_CALL macros. A separate macro is |
| // required to avoid compile errors when the name of the method used in call is |
| // a result of macro expansion. See CompilesWithMethodNameExpandedFromMacro |
| // tests in internal/gmock-spec-builders_test.cc for more details. |
| // |
| // This macro supports statements both with and without parameter matchers. If |
| // the parameter list is omitted, gMock will accept any parameters, which allows |
| // tests to be written that don't need to encode the number of method |
| // parameter. This technique may only be used for non-overloaded methods. |
| // |
| // // These are the same: |
| // ON_CALL(mock, NoArgsMethod()).WillByDefault(...); |
| // ON_CALL(mock, NoArgsMethod).WillByDefault(...); |
| // |
| // // As are these: |
| // ON_CALL(mock, TwoArgsMethod(_, _)).WillByDefault(...); |
| // ON_CALL(mock, TwoArgsMethod).WillByDefault(...); |
| // |
| // // Can also specify args if you want, of course: |
| // ON_CALL(mock, TwoArgsMethod(_, 45)).WillByDefault(...); |
| // |
| // // Overloads work as long as you specify parameters: |
| // ON_CALL(mock, OverloadedMethod(_)).WillByDefault(...); |
| // ON_CALL(mock, OverloadedMethod(_, _)).WillByDefault(...); |
| // |
| // // Oops! Which overload did you want? |
| // ON_CALL(mock, OverloadedMethod).WillByDefault(...); |
| // => ERROR: call to member function 'gmock_OverloadedMethod' is ambiguous |
| // |
| // How this works: The mock class uses two overloads of the gmock_Method |
| // expectation setter method plus an operator() overload on the MockSpec object. |
| // In the matcher list form, the macro expands to: |
| // |
| // // This statement: |
| // ON_CALL(mock, TwoArgsMethod(_, 45))... |
| // |
| // // ...expands to: |
| // mock.gmock_TwoArgsMethod(_, 45)(WithoutMatchers(), nullptr)... |
| // |-------------v---------------||------------v-------------| |
| // invokes first overload swallowed by operator() |
| // |
| // // ...which is essentially: |
| // mock.gmock_TwoArgsMethod(_, 45)... |
| // |
| // Whereas the form without a matcher list: |
| // |
| // // This statement: |
| // ON_CALL(mock, TwoArgsMethod)... |
| // |
| // // ...expands to: |
| // mock.gmock_TwoArgsMethod(WithoutMatchers(), nullptr)... |
| // |-----------------------v--------------------------| |
| // invokes second overload |
| // |
| // // ...which is essentially: |
| // mock.gmock_TwoArgsMethod(_, _)... |
| // |
| // The WithoutMatchers() argument is used to disambiguate overloads and to |
| // block the caller from accidentally invoking the second overload directly. The |
| // second argument is an internal type derived from the method signature. The |
| // failure to disambiguate two overloads of this method in the ON_CALL statement |
| // is how we block callers from setting expectations on overloaded methods. |
| #define GMOCK_ON_CALL_IMPL_(mock_expr, Setter, call) \ |
| ((mock_expr).gmock_##call)(::testing::internal::GetWithoutMatchers(), \ |
| nullptr) \ |
| .Setter(__FILE__, __LINE__, #mock_expr, #call) |
| |
| #define ON_CALL(obj, call) \ |
| GMOCK_ON_CALL_IMPL_(obj, InternalDefaultActionSetAt, call) |
| |
| #define EXPECT_CALL(obj, call) \ |
| GMOCK_ON_CALL_IMPL_(obj, InternalExpectedAt, call) |
| |
| #endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_SPEC_BUILDERS_H_ |
| |
| namespace testing { |
| namespace internal { |
| template <typename T> |
| using identity_t = T; |
| |
| template <typename Pattern> |
| struct ThisRefAdjuster { |
| template <typename T> |
| using AdjustT = typename std::conditional< |
| std::is_const<typename std::remove_reference<Pattern>::type>::value, |
| typename std::conditional<std::is_lvalue_reference<Pattern>::value, |
| const T&, const T&&>::type, |
| typename std::conditional<std::is_lvalue_reference<Pattern>::value, T&, |
| T&&>::type>::type; |
| |
| template <typename MockType> |
| static AdjustT<MockType> Adjust(const MockType& mock) { |
| return static_cast<AdjustT<MockType>>(const_cast<MockType&>(mock)); |
| } |
| }; |
| |
| } // namespace internal |
| |
| // The style guide prohibits "using" statements in a namespace scope |
| // inside a header file. However, the FunctionMocker class template |
| // is meant to be defined in the ::testing namespace. The following |
| // line is just a trick for working around a bug in MSVC 8.0, which |
| // cannot handle it if we define FunctionMocker in ::testing. |
| using internal::FunctionMocker; |
| } // namespace testing |
| |
| #define MOCK_METHOD(...) \ |
| GMOCK_PP_VARIADIC_CALL(GMOCK_INTERNAL_MOCK_METHOD_ARG_, __VA_ARGS__) |
| |
| #define GMOCK_INTERNAL_MOCK_METHOD_ARG_1(...) \ |
| GMOCK_INTERNAL_WRONG_ARITY(__VA_ARGS__) |
| |
| #define GMOCK_INTERNAL_MOCK_METHOD_ARG_2(...) \ |
| GMOCK_INTERNAL_WRONG_ARITY(__VA_ARGS__) |
| |
| #define GMOCK_INTERNAL_MOCK_METHOD_ARG_3(_Ret, _MethodName, _Args) \ |
| GMOCK_INTERNAL_MOCK_METHOD_ARG_4(_Ret, _MethodName, _Args, ()) |
| |
| #define GMOCK_INTERNAL_MOCK_METHOD_ARG_4(_Ret, _MethodName, _Args, _Spec) \ |
| GMOCK_INTERNAL_ASSERT_PARENTHESIS(_Args); \ |
| GMOCK_INTERNAL_ASSERT_PARENTHESIS(_Spec); \ |
| GMOCK_INTERNAL_ASSERT_VALID_SIGNATURE( \ |
| GMOCK_PP_NARG0 _Args, GMOCK_INTERNAL_SIGNATURE(_Ret, _Args)); \ |
| GMOCK_INTERNAL_ASSERT_VALID_SPEC(_Spec) \ |
| GMOCK_INTERNAL_MOCK_METHOD_IMPL( \ |
| GMOCK_PP_NARG0 _Args, _MethodName, GMOCK_INTERNAL_HAS_CONST(_Spec), \ |
| GMOCK_INTERNAL_HAS_OVERRIDE(_Spec), GMOCK_INTERNAL_HAS_FINAL(_Spec), \ |
| GMOCK_INTERNAL_GET_NOEXCEPT_SPEC(_Spec), \ |
| GMOCK_INTERNAL_GET_CALLTYPE(_Spec), GMOCK_INTERNAL_GET_REF_SPEC(_Spec), \ |
| (GMOCK_INTERNAL_SIGNATURE(_Ret, _Args))) |
| |
| #define GMOCK_INTERNAL_MOCK_METHOD_ARG_5(...) \ |
| GMOCK_INTERNAL_WRONG_ARITY(__VA_ARGS__) |
| |
| #define GMOCK_INTERNAL_MOCK_METHOD_ARG_6(...) \ |
| GMOCK_INTERNAL_WRONG_ARITY(__VA_ARGS__) |
| |
| #define GMOCK_INTERNAL_MOCK_METHOD_ARG_7(...) \ |
| GMOCK_INTERNAL_WRONG_ARITY(__VA_ARGS__) |
| |
| #define GMOCK_INTERNAL_WRONG_ARITY(...) \ |
| static_assert( \ |
| false, \ |
| "MOCK_METHOD must be called with 3 or 4 arguments. _Ret, " \ |
| "_MethodName, _Args and optionally _Spec. _Args and _Spec must be " \ |
| "enclosed in parentheses. If _Ret is a type with unprotected commas, " \ |
| "it must also be enclosed in parentheses.") |
| |
| #define GMOCK_INTERNAL_ASSERT_PARENTHESIS(_Tuple) \ |
| static_assert( \ |
| GMOCK_PP_IS_ENCLOSED_PARENS(_Tuple), \ |
| GMOCK_PP_STRINGIZE(_Tuple) " should be enclosed in parentheses.") |
| |
| #define GMOCK_INTERNAL_ASSERT_VALID_SIGNATURE(_N, ...) \ |
| static_assert( \ |
| std::is_function<__VA_ARGS__>::value, \ |
| "Signature must be a function type, maybe return type contains " \ |
| "unprotected comma."); \ |
| static_assert( \ |
| ::testing::tuple_size<typename ::testing::internal::Function< \ |
| __VA_ARGS__>::ArgumentTuple>::value == _N, \ |
| "This method does not take " GMOCK_PP_STRINGIZE( \ |
| _N) " arguments. Parenthesize all types with unprotected commas.") |
| |
| #define GMOCK_INTERNAL_ASSERT_VALID_SPEC(_Spec) \ |
| GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_ASSERT_VALID_SPEC_ELEMENT, ~, _Spec) |
| |
| #define GMOCK_INTERNAL_MOCK_METHOD_IMPL(_N, _MethodName, _Constness, \ |
| _Override, _Final, _NoexceptSpec, \ |
| _CallType, _RefSpec, _Signature) \ |
| typename ::testing::internal::Function<GMOCK_PP_REMOVE_PARENS( \ |
| _Signature)>::Result \ |
| GMOCK_INTERNAL_EXPAND(_CallType) \ |
| _MethodName(GMOCK_PP_REPEAT(GMOCK_INTERNAL_PARAMETER, _Signature, _N)) \ |
| GMOCK_PP_IF(_Constness, const, ) _RefSpec _NoexceptSpec \ |
| GMOCK_PP_IF(_Override, override, ) GMOCK_PP_IF(_Final, final, ) { \ |
| GMOCK_MOCKER_(_N, _Constness, _MethodName) \ |
| .SetOwnerAndName(this, #_MethodName); \ |
| return GMOCK_MOCKER_(_N, _Constness, _MethodName) \ |
| .Invoke(GMOCK_PP_REPEAT(GMOCK_INTERNAL_FORWARD_ARG, _Signature, _N)); \ |
| } \ |
| ::testing::MockSpec<GMOCK_PP_REMOVE_PARENS(_Signature)> gmock_##_MethodName( \ |
| GMOCK_PP_REPEAT(GMOCK_INTERNAL_MATCHER_PARAMETER, _Signature, _N)) \ |
| GMOCK_PP_IF(_Constness, const, ) _RefSpec { \ |
| GMOCK_MOCKER_(_N, _Constness, _MethodName).RegisterOwner(this); \ |
| return GMOCK_MOCKER_(_N, _Constness, _MethodName) \ |
| .With(GMOCK_PP_REPEAT(GMOCK_INTERNAL_MATCHER_ARGUMENT, , _N)); \ |
| } \ |
| ::testing::MockSpec<GMOCK_PP_REMOVE_PARENS(_Signature)> gmock_##_MethodName( \ |
| const ::testing::internal::WithoutMatchers&, \ |
| GMOCK_PP_IF(_Constness, const, )::testing::internal::Function< \ |
| GMOCK_PP_REMOVE_PARENS(_Signature)>*) const _RefSpec _NoexceptSpec { \ |
| return ::testing::internal::ThisRefAdjuster<GMOCK_PP_IF( \ |
| _Constness, const, ) int _RefSpec>::Adjust(*this) \ |
| .gmock_##_MethodName(GMOCK_PP_REPEAT( \ |
| GMOCK_INTERNAL_A_MATCHER_ARGUMENT, _Signature, _N)); \ |
| } \ |
| mutable ::testing::FunctionMocker<GMOCK_PP_REMOVE_PARENS(_Signature)> \ |
| GMOCK_MOCKER_(_N, _Constness, _MethodName) |
| |
| #define GMOCK_INTERNAL_EXPAND(...) __VA_ARGS__ |
| |
| // Five Valid modifiers. |
| #define GMOCK_INTERNAL_HAS_CONST(_Tuple) \ |
| GMOCK_PP_HAS_COMMA(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_DETECT_CONST, ~, _Tuple)) |
| |
| #define GMOCK_INTERNAL_HAS_OVERRIDE(_Tuple) \ |
| GMOCK_PP_HAS_COMMA( \ |
| GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_DETECT_OVERRIDE, ~, _Tuple)) |
| |
| #define GMOCK_INTERNAL_HAS_FINAL(_Tuple) \ |
| GMOCK_PP_HAS_COMMA(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_DETECT_FINAL, ~, _Tuple)) |
| |
| #define GMOCK_INTERNAL_GET_NOEXCEPT_SPEC(_Tuple) \ |
| GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_NOEXCEPT_SPEC_IF_NOEXCEPT, ~, _Tuple) |
| |
| #define GMOCK_INTERNAL_NOEXCEPT_SPEC_IF_NOEXCEPT(_i, _, _elem) \ |
| GMOCK_PP_IF( \ |
| GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_NOEXCEPT(_i, _, _elem)), \ |
| _elem, ) |
| |
| #define GMOCK_INTERNAL_GET_REF_SPEC(_Tuple) \ |
| GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_REF_SPEC_IF_REF, ~, _Tuple) |
| |
| #define GMOCK_INTERNAL_REF_SPEC_IF_REF(_i, _, _elem) \ |
| GMOCK_PP_IF(GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_REF(_i, _, _elem)), \ |
| GMOCK_PP_CAT(GMOCK_INTERNAL_UNPACK_, _elem), ) |
| |
| #define GMOCK_INTERNAL_GET_CALLTYPE(_Tuple) \ |
| GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_GET_CALLTYPE_IMPL, ~, _Tuple) |
| |
| #define GMOCK_INTERNAL_ASSERT_VALID_SPEC_ELEMENT(_i, _, _elem) \ |
| static_assert( \ |
| (GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_CONST(_i, _, _elem)) + \ |
| GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_OVERRIDE(_i, _, _elem)) + \ |
| GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_FINAL(_i, _, _elem)) + \ |
| GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_NOEXCEPT(_i, _, _elem)) + \ |
| GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_REF(_i, _, _elem)) + \ |
| GMOCK_INTERNAL_IS_CALLTYPE(_elem)) == 1, \ |
| GMOCK_PP_STRINGIZE( \ |
| _elem) " cannot be recognized as a valid specification modifier."); |
| |
| // Modifiers implementation. |
| #define GMOCK_INTERNAL_DETECT_CONST(_i, _, _elem) \ |
| GMOCK_PP_CAT(GMOCK_INTERNAL_DETECT_CONST_I_, _elem) |
| |
| #define GMOCK_INTERNAL_DETECT_CONST_I_const , |
| |
| #define GMOCK_INTERNAL_DETECT_OVERRIDE(_i, _, _elem) \ |
| GMOCK_PP_CAT(GMOCK_INTERNAL_DETECT_OVERRIDE_I_, _elem) |
| |
| #define GMOCK_INTERNAL_DETECT_OVERRIDE_I_override , |
| |
| #define GMOCK_INTERNAL_DETECT_FINAL(_i, _, _elem) \ |
| GMOCK_PP_CAT(GMOCK_INTERNAL_DETECT_FINAL_I_, _elem) |
| |
| #define GMOCK_INTERNAL_DETECT_FINAL_I_final , |
| |
| #define GMOCK_INTERNAL_DETECT_NOEXCEPT(_i, _, _elem) \ |
| GMOCK_PP_CAT(GMOCK_INTERNAL_DETECT_NOEXCEPT_I_, _elem) |
| |
| #define GMOCK_INTERNAL_DETECT_NOEXCEPT_I_noexcept , |
| |
| #define GMOCK_INTERNAL_DETECT_REF(_i, _, _elem) \ |
| GMOCK_PP_CAT(GMOCK_INTERNAL_DETECT_REF_I_, _elem) |
| |
| #define GMOCK_INTERNAL_DETECT_REF_I_ref , |
| |
| #define GMOCK_INTERNAL_UNPACK_ref(x) x |
| |
| #define GMOCK_INTERNAL_GET_CALLTYPE_IMPL(_i, _, _elem) \ |
| GMOCK_PP_IF(GMOCK_INTERNAL_IS_CALLTYPE(_elem), \ |
| GMOCK_INTERNAL_GET_VALUE_CALLTYPE, GMOCK_PP_EMPTY) \ |
| (_elem) |
| |
| // TODO(iserna): GMOCK_INTERNAL_IS_CALLTYPE and |
| // GMOCK_INTERNAL_GET_VALUE_CALLTYPE needed more expansions to work on windows |
| // maybe they can be simplified somehow. |
| #define GMOCK_INTERNAL_IS_CALLTYPE(_arg) \ |
| GMOCK_INTERNAL_IS_CALLTYPE_I( \ |
| GMOCK_PP_CAT(GMOCK_INTERNAL_IS_CALLTYPE_HELPER_, _arg)) |
| #define GMOCK_INTERNAL_IS_CALLTYPE_I(_arg) GMOCK_PP_IS_ENCLOSED_PARENS(_arg) |
| |
| #define GMOCK_INTERNAL_GET_VALUE_CALLTYPE(_arg) \ |
| GMOCK_INTERNAL_GET_VALUE_CALLTYPE_I( \ |
| GMOCK_PP_CAT(GMOCK_INTERNAL_IS_CALLTYPE_HELPER_, _arg)) |
| #define GMOCK_INTERNAL_GET_VALUE_CALLTYPE_I(_arg) \ |
| GMOCK_PP_IDENTITY _arg |
| |
| #define GMOCK_INTERNAL_IS_CALLTYPE_HELPER_Calltype |
| |
| // Note: The use of `identity_t` here allows _Ret to represent return types that |
| // would normally need to be specified in a different way. For example, a method |
| // returning a function pointer must be written as |
| // |
| // fn_ptr_return_t (*method(method_args_t...))(fn_ptr_args_t...) |
| // |
| // But we only support placing the return type at the beginning. To handle this, |
| // we wrap all calls in identity_t, so that a declaration will be expanded to |
| // |
| // identity_t<fn_ptr_return_t (*)(fn_ptr_args_t...)> method(method_args_t...) |
| // |
| // This allows us to work around the syntactic oddities of function/method |
| // types. |
| #define GMOCK_INTERNAL_SIGNATURE(_Ret, _Args) \ |
| ::testing::internal::identity_t<GMOCK_PP_IF(GMOCK_PP_IS_BEGIN_PARENS(_Ret), \ |
| GMOCK_PP_REMOVE_PARENS, \ |
| GMOCK_PP_IDENTITY)(_Ret)>( \ |
| GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_GET_TYPE, _, _Args)) |
| |
| #define GMOCK_INTERNAL_GET_TYPE(_i, _, _elem) \ |
| GMOCK_PP_COMMA_IF(_i) \ |
| GMOCK_PP_IF(GMOCK_PP_IS_BEGIN_PARENS(_elem), GMOCK_PP_REMOVE_PARENS, \ |
| GMOCK_PP_IDENTITY) \ |
| (_elem) |
| |
| #define GMOCK_INTERNAL_PARAMETER(_i, _Signature, _) \ |
| GMOCK_PP_COMMA_IF(_i) \ |
| GMOCK_INTERNAL_ARG_O(_i, GMOCK_PP_REMOVE_PARENS(_Signature)) \ |
| gmock_a##_i |
| |
| #define GMOCK_INTERNAL_FORWARD_ARG(_i, _Signature, _) \ |
| GMOCK_PP_COMMA_IF(_i) \ |
| ::std::forward<GMOCK_INTERNAL_ARG_O( \ |
| _i, GMOCK_PP_REMOVE_PARENS(_Signature))>(gmock_a##_i) |
| |
| #define GMOCK_INTERNAL_MATCHER_PARAMETER(_i, _Signature, _) \ |
| GMOCK_PP_COMMA_IF(_i) \ |
| GMOCK_INTERNAL_MATCHER_O(_i, GMOCK_PP_REMOVE_PARENS(_Signature)) \ |
| gmock_a##_i |
| |
| #define GMOCK_INTERNAL_MATCHER_ARGUMENT(_i, _1, _2) \ |
| GMOCK_PP_COMMA_IF(_i) \ |
| gmock_a##_i |
| |
| #define GMOCK_INTERNAL_A_MATCHER_ARGUMENT(_i, _Signature, _) \ |
| GMOCK_PP_COMMA_IF(_i) \ |
| ::testing::A<GMOCK_INTERNAL_ARG_O(_i, GMOCK_PP_REMOVE_PARENS(_Signature))>() |
| |
| #define GMOCK_INTERNAL_ARG_O(_i, ...) \ |
| typename ::testing::internal::Function<__VA_ARGS__>::template Arg<_i>::type |
| |
| #define GMOCK_INTERNAL_MATCHER_O(_i, ...) \ |
| const ::testing::Matcher<typename ::testing::internal::Function< \ |
| __VA_ARGS__>::template Arg<_i>::type>& |
| |
| #define MOCK_METHOD0(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 0, __VA_ARGS__) |
| #define MOCK_METHOD1(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 1, __VA_ARGS__) |
| #define MOCK_METHOD2(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 2, __VA_ARGS__) |
| #define MOCK_METHOD3(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 3, __VA_ARGS__) |
| #define MOCK_METHOD4(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 4, __VA_ARGS__) |
| #define MOCK_METHOD5(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 5, __VA_ARGS__) |
| #define MOCK_METHOD6(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 6, __VA_ARGS__) |
| #define MOCK_METHOD7(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 7, __VA_ARGS__) |
| #define MOCK_METHOD8(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 8, __VA_ARGS__) |
| #define MOCK_METHOD9(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 9, __VA_ARGS__) |
| #define MOCK_METHOD10(m, ...) \ |
| GMOCK_INTERNAL_MOCK_METHODN(, , m, 10, __VA_ARGS__) |
| |
| #define MOCK_CONST_METHOD0(m, ...) \ |
| GMOCK_INTERNAL_MOCK_METHODN(const, , m, 0, __VA_ARGS__) |
| #define MOCK_CONST_METHOD1(m, ...) \ |
| GMOCK_INTERNAL_MOCK_METHODN(const, , m, 1, __VA_ARGS__) |
| #define MOCK_CONST_METHOD2(m, ...) \ |
| GMOCK_INTERNAL_MOCK_METHODN(const, , m, 2, __VA_ARGS__) |
| #define MOCK_CONST_METHOD3(m, ...) \ |
| GMOCK_INTERNAL_MOCK_METHODN(const, , m, 3, __VA_ARGS__) |
| #define MOCK_CONST_METHOD4(m, ...) \ |
| GMOCK_INTERNAL_MOCK_METHODN(const, , m, 4, __VA_ARGS__) |
| #define MOCK_CONST_METHOD5(m, ...) \ |
| GMOCK_INTERNAL_MOCK_METHODN(const, , m, 5, __VA_ARGS__) |
| #define MOCK_CONST_METHOD6(m, ...) \ |
| GMOCK_INTERNAL_MOCK_METHODN(const, , m, 6, __VA_ARGS__) |
| #define MOCK_CONST_METHOD7(m, ...) \ |
| GMOCK_INTERNAL_MOCK_METHODN(const, , m, 7, __VA_ARGS__) |
| #define MOCK_CONST_METHOD8(m, ...) \ |
| GMOCK_INTERNAL_MOCK_METHODN(const, , m, 8, __VA_ARGS__) |
| #define MOCK_CONST_METHOD9(m, ...) \ |
| GMOCK_INTERNAL_MOCK_METHODN(const, , m, 9, __VA_ARGS__) |
| #define MOCK_CONST_METHOD10(m, ...) \ |
| GMOCK_INTERNAL_MOCK_METHODN(const, , m, 10, __VA_ARGS__) |
| |
| #define MOCK_METHOD0_T(m, ...) MOCK_METHOD0(m, __VA_ARGS__) |
| #define MOCK_METHOD1_T(m, ...) MOCK_METHOD1(m, __VA_ARGS__) |
| #define MOCK_METHOD2_T(m, ...) MOCK_METHOD2(m, __VA_ARGS__) |
| #define MOCK_METHOD3_T(m, ...) MOCK_METHOD3(m, __VA_ARGS__) |
| #define MOCK_METHOD4_T(m, ...) MOCK_METHOD4(m, __VA_ARGS__) |
| #define MOCK_METHOD5_T(m, ...) MOCK_METHOD5(m, __VA_ARGS__) |
| #define MOCK_METHOD6_T(m, ...) MOCK_METHOD6(m, __VA_ARGS__) |
| #define MOCK_METHOD7_T(m, ...) MOCK_METHOD7(m, __VA_ARGS__) |
| #define MOCK_METHOD8_T(m, ...) MOCK_METHOD8(m, __VA_ARGS__) |
| #define MOCK_METHOD9_T(m, ...) MOCK_METHOD9(m, __VA_ARGS__) |
| #define MOCK_METHOD10_T(m, ...) MOCK_METHOD10(m, __VA_ARGS__) |
| |
| #define MOCK_CONST_METHOD0_T(m, ...) MOCK_CONST_METHOD0(m, __VA_ARGS__) |
| #define MOCK_CONST_METHOD1_T(m, ...) MOCK_CONST_METHOD1(m, __VA_ARGS__) |
| #define MOCK_CONST_METHOD2_T(m, ...) MOCK_CONST_METHOD2(m, __VA_ARGS__) |
| #define MOCK_CONST_METHOD3_T(m, ...) MOCK_CONST_METHOD3(m, __VA_ARGS__) |
| #define MOCK_CONST_METHOD4_T(m, ...) MOCK_CONST_METHOD4(m, __VA_ARGS__) |
| #define MOCK_CONST_METHOD5_T(m, ...) MOCK_CONST_METHOD5(m, __VA_ARGS__) |
| #define MOCK_CONST_METHOD6_T(m, ...) MOCK_CONST_METHOD6(m, __VA_ARGS__) |
| #define MOCK_CONST_METHOD7_T(m, ...) MOCK_CONST_METHOD7(m, __VA_ARGS__) |
| #define MOCK_CONST_METHOD8_T(m, ...) MOCK_CONST_METHOD8(m, __VA_ARGS__) |
| #define MOCK_CONST_METHOD9_T(m, ...) MOCK_CONST_METHOD9(m, __VA_ARGS__) |
| #define MOCK_CONST_METHOD10_T(m, ...) MOCK_CONST_METHOD10(m, __VA_ARGS__) |
| |
| #define MOCK_METHOD0_WITH_CALLTYPE(ct, m, ...) \ |
| GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 0, __VA_ARGS__) |
| #define MOCK_METHOD1_WITH_CALLTYPE(ct, m, ...) \ |
| GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 1, __VA_ARGS__) |
| #define MOCK_METHOD2_WITH_CALLTYPE(ct, m, ...) \ |
| GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 2, __VA_ARGS__) |
| #define MOCK_METHOD3_WITH_CALLTYPE(ct, m, ...) \ |
| GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 3, __VA_ARGS__) |
| #define MOCK_METHOD4_WITH_CALLTYPE(ct, m, ...) \ |
| GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 4, __VA_ARGS__) |
| #define MOCK_METHOD5_WITH_CALLTYPE(ct, m, ...) \ |
| GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 5, __VA_ARGS__) |
| #define MOCK_METHOD6_WITH_CALLTYPE(ct, m, ...) \ |
| GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 6, __VA_ARGS__) |
| #define MOCK_METHOD7_WITH_CALLTYPE(ct, m, ...) \ |
| GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 7, __VA_ARGS__) |
| #define MOCK_METHOD8_WITH_CALLTYPE(ct, m, ...) \ |
| GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 8, __VA_ARGS__) |
| #define MOCK_METHOD9_WITH_CALLTYPE(ct, m, ...) \ |
| GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 9, __VA_ARGS__) |
| #define MOCK_METHOD10_WITH_CALLTYPE(ct, m, ...) \ |
| GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 10, __VA_ARGS__) |
| |
| #define MOCK_CONST_METHOD0_WITH_CALLTYPE(ct, m, ...) \ |
| GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 0, __VA_ARGS__) |
| #define MOCK_CONST_METHOD1_WITH_CALLTYPE(ct, m, ...) \ |
| GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 1, __VA_ARGS__) |
| #define MOCK_CONST_METHOD2_WITH_CALLTYPE(ct, m, ...) \ |
| GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 2, __VA_ARGS__) |
| #define MOCK_CONST_METHOD3_WITH_CALLTYPE(ct, m, ...) \ |
| GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 3, __VA_ARGS__) |
| #define MOCK_CONST_METHOD4_WITH_CALLTYPE(ct, m, ...) \ |
| GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 4, __VA_ARGS__) |
| #define MOCK_CONST_METHOD5_WITH_CALLTYPE(ct, m, ...) \ |
| GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 5, __VA_ARGS__) |
| #define MOCK_CONST_METHOD6_WITH_CALLTYPE(ct, m, ...) \ |
| GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 6, __VA_ARGS__) |
| #define MOCK_CONST_METHOD7_WITH_CALLTYPE(ct, m, ...) \ |
| GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 7, __VA_ARGS__) |
| #define MOCK_CONST_METHOD8_WITH_CALLTYPE(ct, m, ...) \ |
| GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 8, __VA_ARGS__) |
| #define MOCK_CONST_METHOD9_WITH_CALLTYPE(ct, m, ...) \ |
| GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 9, __VA_ARGS__) |
| #define MOCK_CONST_METHOD10_WITH_CALLTYPE(ct, m, ...) \ |
| GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 10, __VA_ARGS__) |
| |
| #define MOCK_METHOD0_T_WITH_CALLTYPE(ct, m, ...) \ |
| MOCK_METHOD0_WITH_CALLTYPE(ct, m, __VA_ARGS__) |
| #define MOCK_METHOD1_T_WITH_CALLTYPE(ct, m, ...) \ |
| MOCK_METHOD1_WITH_CALLTYPE(ct, m, __VA_ARGS__) |
| #define MOCK_METHOD2_T_WITH_CALLTYPE(ct, m, ...) \ |
| MOCK_METHOD2_WITH_CALLTYPE(ct, m, __VA_ARGS__) |
| #define MOCK_METHOD3_T_WITH_CALLTYPE(ct, m, ...) \ |
| MOCK_METHOD3_WITH_CALLTYPE(ct, m, __VA_ARGS__) |
| #define MOCK_METHOD4_T_WITH_CALLTYPE(ct, m, ...) \ |
| MOCK_METHOD4_WITH_CALLTYPE(ct, m, __VA_ARGS__) |
| #define MOCK_METHOD5_T_WITH_CALLTYPE(ct, m, ...) \ |
| MOCK_METHOD5_WITH_CALLTYPE(ct, m, __VA_ARGS__) |
| #define MOCK_METHOD6_T_WITH_CALLTYPE(ct, m, ...) \ |
| MOCK_METHOD6_WITH_CALLTYPE(ct, m, __VA_ARGS__) |
| #define MOCK_METHOD7_T_WITH_CALLTYPE(ct, m, ...) \ |
| MOCK_METHOD7_WITH_CALLTYPE(ct, m, __VA_ARGS__) |
| #define MOCK_METHOD8_T_WITH_CALLTYPE(ct, m, ...) \ |
| MOCK_METHOD8_WITH_CALLTYPE(ct, m, __VA_ARGS__) |
| #define MOCK_METHOD9_T_WITH_CALLTYPE(ct, m, ...) \ |
| MOCK_METHOD9_WITH_CALLTYPE(ct, m, __VA_ARGS__) |
| #define MOCK_METHOD10_T_WITH_CALLTYPE(ct, m, ...) \ |
| MOCK_METHOD10_WITH_CALLTYPE(ct, m, __VA_ARGS__) |
| |
| #define MOCK_CONST_METHOD0_T_WITH_CALLTYPE(ct, m, ...) \ |
| MOCK_CONST_METHOD0_WITH_CALLTYPE(ct, m, __VA_ARGS__) |
| #define MOCK_CONST_METHOD1_T_WITH_CALLTYPE(ct, m, ...) \ |
| MOCK_CONST_METHOD1_WITH_CALLTYPE(ct, m, __VA_ARGS__) |
| #define MOCK_CONST_METHOD2_T_WITH_CALLTYPE(ct, m, ...) \ |
| MOCK_CONST_METHOD2_WITH_CALLTYPE(ct, m, __VA_ARGS__) |
| #define MOCK_CONST_METHOD3_T_WITH_CALLTYPE(ct, m, ...) \ |
| MOCK_CONST_METHOD3_WITH_CALLTYPE(ct, m, __VA_ARGS__) |
| #define MOCK_CONST_METHOD4_T_WITH_CALLTYPE(ct, m, ...) \ |
| MOCK_CONST_METHOD4_WITH_CALLTYPE(ct, m, __VA_ARGS__) |
| #define MOCK_CONST_METHOD5_T_WITH_CALLTYPE(ct, m, ...) \ |
| MOCK_CONST_METHOD5_WITH_CALLTYPE(ct, m, __VA_ARGS__) |
| #define MOCK_CONST_METHOD6_T_WITH_CALLTYPE(ct, m, ...) \ |
| MOCK_CONST_METHOD6_WITH_CALLTYPE(ct, m, __VA_ARGS__) |
| #define MOCK_CONST_METHOD7_T_WITH_CALLTYPE(ct, m, ...) \ |
| MOCK_CONST_METHOD7_WITH_CALLTYPE(ct, m, __VA_ARGS__) |
| #define MOCK_CONST_METHOD8_T_WITH_CALLTYPE(ct, m, ...) \ |
| MOCK_CONST_METHOD8_WITH_CALLTYPE(ct, m, __VA_ARGS__) |
| #define MOCK_CONST_METHOD9_T_WITH_CALLTYPE(ct, m, ...) \ |
| MOCK_CONST_METHOD9_WITH_CALLTYPE(ct, m, __VA_ARGS__) |
| #define MOCK_CONST_METHOD10_T_WITH_CALLTYPE(ct, m, ...) \ |
| MOCK_CONST_METHOD10_WITH_CALLTYPE(ct, m, __VA_ARGS__) |
| |
| #define GMOCK_INTERNAL_MOCK_METHODN(constness, ct, Method, args_num, ...) \ |
| GMOCK_INTERNAL_ASSERT_VALID_SIGNATURE( \ |
| args_num, ::testing::internal::identity_t<__VA_ARGS__>); \ |
| GMOCK_INTERNAL_MOCK_METHOD_IMPL( \ |
| args_num, Method, GMOCK_PP_NARG0(constness), 0, 0, , ct, , \ |
| (::testing::internal::identity_t<__VA_ARGS__>)) |
| |
| #define GMOCK_MOCKER_(arity, constness, Method) \ |
| GTEST_CONCAT_TOKEN_(gmock##constness##arity##_##Method##_, __LINE__) |
| |
| #endif // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_FUNCTION_MOCKER_H_ |
| // Copyright 2007, Google Inc. |
| // All rights reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following disclaimer |
| // in the documentation and/or other materials provided with the |
| // distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| |
| // Google Mock - a framework for writing C++ mock classes. |
| // |
| // This file implements some commonly used variadic actions. |
| |
| // GOOGLETEST_CM0002 DO NOT DELETE |
| |
| #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MORE_ACTIONS_H_ |
| #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MORE_ACTIONS_H_ |
| |
| #include <memory> |
| #include <utility> |
| |
| |
| // Include any custom callback actions added by the local installation. |
| // GOOGLETEST_CM0002 DO NOT DELETE |
| |
| #ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_GENERATED_ACTIONS_H_ |
| #define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_GENERATED_ACTIONS_H_ |
| |
| #endif // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_GENERATED_ACTIONS_H_ |
| |
| // Sometimes you want to give an action explicit template parameters |
| // that cannot be inferred from its value parameters. ACTION() and |
| // ACTION_P*() don't support that. ACTION_TEMPLATE() remedies that |
| // and can be viewed as an extension to ACTION() and ACTION_P*(). |
| // |
| // The syntax: |
| // |
| // ACTION_TEMPLATE(ActionName, |
| // HAS_m_TEMPLATE_PARAMS(kind1, name1, ..., kind_m, name_m), |
| // AND_n_VALUE_PARAMS(p1, ..., p_n)) { statements; } |
| // |
| // defines an action template that takes m explicit template |
| // parameters and n value parameters. name_i is the name of the i-th |
| // template parameter, and kind_i specifies whether it's a typename, |
| // an integral constant, or a template. p_i is the name of the i-th |
| // value parameter. |
| // |
| // Example: |
| // |
| // // DuplicateArg<k, T>(output) converts the k-th argument of the mock |
| // // function to type T and copies it to *output. |
| // ACTION_TEMPLATE(DuplicateArg, |
| // HAS_2_TEMPLATE_PARAMS(int, k, typename, T), |
| // AND_1_VALUE_PARAMS(output)) { |
| // *output = T(::std::get<k>(args)); |
| // } |
| // ... |
| // int n; |
| // EXPECT_CALL(mock, Foo(_, _)) |
| // .WillOnce(DuplicateArg<1, unsigned char>(&n)); |
| // |
| // To create an instance of an action template, write: |
| // |
| // ActionName<t1, ..., t_m>(v1, ..., v_n) |
| // |
| // where the ts are the template arguments and the vs are the value |
| // arguments. The value argument types are inferred by the compiler. |
| // If you want to explicitly specify the value argument types, you can |
| // provide additional template arguments: |
| // |
| // ActionName<t1, ..., t_m, u1, ..., u_k>(v1, ..., v_n) |
| // |
| // where u_i is the desired type of v_i. |
| // |
| // ACTION_TEMPLATE and ACTION/ACTION_P* can be overloaded on the |
| // number of value parameters, but not on the number of template |
| // parameters. Without the restriction, the meaning of the following |
| // is unclear: |
| // |
| // OverloadedAction<int, bool>(x); |
| // |
| // Are we using a single-template-parameter action where 'bool' refers |
| // to the type of x, or are we using a two-template-parameter action |
| // where the compiler is asked to infer the type of x? |
| // |
| // Implementation notes: |
| // |
| // GMOCK_INTERNAL_*_HAS_m_TEMPLATE_PARAMS and |
| // GMOCK_INTERNAL_*_AND_n_VALUE_PARAMS are internal macros for |
| // implementing ACTION_TEMPLATE. The main trick we use is to create |
| // new macro invocations when expanding a macro. For example, we have |
| // |
| // #define ACTION_TEMPLATE(name, template_params, value_params) |
| // ... GMOCK_INTERNAL_DECL_##template_params ... |
| // |
| // which causes ACTION_TEMPLATE(..., HAS_1_TEMPLATE_PARAMS(typename, T), ...) |
| // to expand to |
| // |
| // ... GMOCK_INTERNAL_DECL_HAS_1_TEMPLATE_PARAMS(typename, T) ... |
| // |
| // Since GMOCK_INTERNAL_DECL_HAS_1_TEMPLATE_PARAMS is a macro, the |
| // preprocessor will continue to expand it to |
| // |
| // ... typename T ... |
| // |
| // This technique conforms to the C++ standard and is portable. It |
| // allows us to implement action templates using O(N) code, where N is |
| // the maximum number of template/value parameters supported. Without |
| // using it, we'd have to devote O(N^2) amount of code to implement all |
| // combinations of m and n. |
| |
| // Declares the template parameters. |
| #define GMOCK_INTERNAL_DECL_HAS_1_TEMPLATE_PARAMS(kind0, name0) kind0 name0 |
| #define GMOCK_INTERNAL_DECL_HAS_2_TEMPLATE_PARAMS(kind0, name0, kind1, \ |
| name1) kind0 name0, kind1 name1 |
| #define GMOCK_INTERNAL_DECL_HAS_3_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ |
| kind2, name2) kind0 name0, kind1 name1, kind2 name2 |
| #define GMOCK_INTERNAL_DECL_HAS_4_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ |
| kind2, name2, kind3, name3) kind0 name0, kind1 name1, kind2 name2, \ |
| kind3 name3 |
| #define GMOCK_INTERNAL_DECL_HAS_5_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ |
| kind2, name2, kind3, name3, kind4, name4) kind0 name0, kind1 name1, \ |
| kind2 name2, kind3 name3, kind4 name4 |
| #define GMOCK_INTERNAL_DECL_HAS_6_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ |
| kind2, name2, kind3, name3, kind4, name4, kind5, name5) kind0 name0, \ |
| kind1 name1, kind2 name2, kind3 name3, kind4 name4, kind5 name5 |
| #define GMOCK_INTERNAL_DECL_HAS_7_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ |
| kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, \ |
| name6) kind0 name0, kind1 name1, kind2 name2, kind3 name3, kind4 name4, \ |
| kind5 name5, kind6 name6 |
| #define GMOCK_INTERNAL_DECL_HAS_8_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ |
| kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, name6, \ |
| kind7, name7) kind0 name0, kind1 name1, kind2 name2, kind3 name3, \ |
| kind4 name4, kind5 name5, kind6 name6, kind7 name7 |
| #define GMOCK_INTERNAL_DECL_HAS_9_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ |
| kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, name6, \ |
| kind7, name7, kind8, name8) kind0 name0, kind1 name1, kind2 name2, \ |
| kind3 name3, kind4 name4, kind5 name5, kind6 name6, kind7 name7, \ |
| kind8 name8 |
| #define GMOCK_INTERNAL_DECL_HAS_10_TEMPLATE_PARAMS(kind0, name0, kind1, \ |
| name1, kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, \ |
| name6, kind7, name7, kind8, name8, kind9, name9) kind0 name0, \ |
| kind1 name1, kind2 name2, kind3 name3, kind4 name4, kind5 name5, \ |
| kind6 name6, kind7 name7, kind8 name8, kind9 name9 |
| |
| // Lists the template parameters. |
| #define GMOCK_INTERNAL_LIST_HAS_1_TEMPLATE_PARAMS(kind0, name0) name0 |
| #define GMOCK_INTERNAL_LIST_HAS_2_TEMPLATE_PARAMS(kind0, name0, kind1, \ |
| name1) name0, name1 |
| #define GMOCK_INTERNAL_LIST_HAS_3_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ |
| kind2, name2) name0, name1, name2 |
| #define GMOCK_INTERNAL_LIST_HAS_4_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ |
| kind2, name2, kind3, name3) name0, name1, name2, name3 |
| #define GMOCK_INTERNAL_LIST_HAS_5_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ |
| kind2, name2, kind3, name3, kind4, name4) name0, name1, name2, name3, \ |
| name4 |
| #define GMOCK_INTERNAL_LIST_HAS_6_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ |
| kind2, name2, kind3, name3, kind4, name4, kind5, name5) name0, name1, \ |
| name2, name3, name4, name5 |
| #define GMOCK_INTERNAL_LIST_HAS_7_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ |
| kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, \ |
| name6) name0, name1, name2, name3, name4, name5, name6 |
| #define GMOCK_INTERNAL_LIST_HAS_8_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ |
| kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, name6, \ |
| kind7, name7) name0, name1, name2, name3, name4, name5, name6, name7 |
| #define GMOCK_INTERNAL_LIST_HAS_9_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ |
| kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, name6, \ |
| kind7, name7, kind8, name8) name0, name1, name2, name3, name4, name5, \ |
| name6, name7, name8 |
| #define GMOCK_INTERNAL_LIST_HAS_10_TEMPLATE_PARAMS(kind0, name0, kind1, \ |
| name1, kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, \ |
| name6, kind7, name7, kind8, name8, kind9, name9) name0, name1, name2, \ |
| name3, name4, name5, name6, name7, name8, name9 |
| |
| // Declares the types of value parameters. |
| #define GMOCK_INTERNAL_DECL_TYPE_AND_0_VALUE_PARAMS() |
| #define GMOCK_INTERNAL_DECL_TYPE_AND_1_VALUE_PARAMS(p0) , typename p0##_type |
| #define GMOCK_INTERNAL_DECL_TYPE_AND_2_VALUE_PARAMS(p0, p1) , \ |
| typename p0##_type, typename p1##_type |
| #define GMOCK_INTERNAL_DECL_TYPE_AND_3_VALUE_PARAMS(p0, p1, p2) , \ |
| typename p0##_type, typename p1##_type, typename p2##_type |
| #define GMOCK_INTERNAL_DECL_TYPE_AND_4_VALUE_PARAMS(p0, p1, p2, p3) , \ |
| typename p0##_type, typename p1##_type, typename p2##_type, \ |
| typename p3##_type |
| #define GMOCK_INTERNAL_DECL_TYPE_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4) , \ |
| typename p0##_type, typename p1##_type, typename p2##_type, \ |
| typename p3##_type, typename p4##_type |
| #define GMOCK_INTERNAL_DECL_TYPE_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5) , \ |
| typename p0##_type, typename p1##_type, typename p2##_type, \ |
| typename p3##_type, typename p4##_type, typename p5##_type |
| #define GMOCK_INTERNAL_DECL_TYPE_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ |
| p6) , typename p0##_type, typename p1##_type, typename p2##_type, \ |
| typename p3##_type, typename p4##_type, typename p5##_type, \ |
| typename p6##_type |
| #define GMOCK_INTERNAL_DECL_TYPE_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ |
| p6, p7) , typename p0##_type, typename p1##_type, typename p2##_type, \ |
| typename p3##_type, typename p4##_type, typename p5##_type, \ |
| typename p6##_type, typename p7##_type |
| #define GMOCK_INTERNAL_DECL_TYPE_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ |
| p6, p7, p8) , typename p0##_type, typename p1##_type, typename p2##_type, \ |
| typename p3##_type, typename p4##_type, typename p5##_type, \ |
| typename p6##_type, typename p7##_type, typename p8##_type |
| #define GMOCK_INTERNAL_DECL_TYPE_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ |
| p6, p7, p8, p9) , typename p0##_type, typename p1##_type, \ |
| typename p2##_type, typename p3##_type, typename p4##_type, \ |
| typename p5##_type, typename p6##_type, typename p7##_type, \ |
| typename p8##_type, typename p9##_type |
| |
| // Initializes the value parameters. |
| #define GMOCK_INTERNAL_INIT_AND_0_VALUE_PARAMS()\ |
| () |
| #define GMOCK_INTERNAL_INIT_AND_1_VALUE_PARAMS(p0)\ |
| (p0##_type gmock_p0) : p0(::std::move(gmock_p0)) |
| #define GMOCK_INTERNAL_INIT_AND_2_VALUE_PARAMS(p0, p1)\ |
| (p0##_type gmock_p0, p1##_type gmock_p1) : p0(::std::move(gmock_p0)), \ |
| p1(::std::move(gmock_p1)) |
| #define GMOCK_INTERNAL_INIT_AND_3_VALUE_PARAMS(p0, p1, p2)\ |
| (p0##_type gmock_p0, p1##_type gmock_p1, \ |
| p2##_type gmock_p2) : p0(::std::move(gmock_p0)), \ |
| p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)) |
| #define GMOCK_INTERNAL_INIT_AND_4_VALUE_PARAMS(p0, p1, p2, p3)\ |
| (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ |
| p3##_type gmock_p3) : p0(::std::move(gmock_p0)), \ |
| p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \ |
| p3(::std::move(gmock_p3)) |
| #define GMOCK_INTERNAL_INIT_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4)\ |
| (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ |
| p3##_type gmock_p3, p4##_type gmock_p4) : p0(::std::move(gmock_p0)), \ |
| p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \ |
| p3(::std::move(gmock_p3)), p4(::std::move(gmock_p4)) |
| #define GMOCK_INTERNAL_INIT_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5)\ |
| (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ |
| p3##_type gmock_p3, p4##_type gmock_p4, \ |
| p5##_type gmock_p5) : p0(::std::move(gmock_p0)), \ |
| p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \ |
| p3(::std::move(gmock_p3)), p4(::std::move(gmock_p4)), \ |
| p5(::std::move(gmock_p5)) |
| #define GMOCK_INTERNAL_INIT_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6)\ |
| (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ |
| p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \ |
| p6##_type gmock_p6) : p0(::std::move(gmock_p0)), \ |
| p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \ |
| p3(::std::move(gmock_p3)), p4(::std::move(gmock_p4)), \ |
| p5(::std::move(gmock_p5)), p6(::std::move(gmock_p6)) |
| #define GMOCK_INTERNAL_INIT_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, p7)\ |
| (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ |
| p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \ |
| p6##_type gmock_p6, p7##_type gmock_p7) : p0(::std::move(gmock_p0)), \ |
| p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \ |
| p3(::std::move(gmock_p3)), p4(::std::move(gmock_p4)), \ |
| p5(::std::move(gmock_p5)), p6(::std::move(gmock_p6)), \ |
| p7(::std::move(gmock_p7)) |
| #define GMOCK_INTERNAL_INIT_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ |
| p7, p8)\ |
| (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ |
| p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \ |
| p6##_type gmock_p6, p7##_type gmock_p7, \ |
| p8##_type gmock_p8) : p0(::std::move(gmock_p0)), \ |
| p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \ |
| p3(::std::move(gmock_p3)), p4(::std::move(gmock_p4)), \ |
| p5(::std::move(gmock_p5)), p6(::std::move(gmock_p6)), \ |
| p7(::std::move(gmock_p7)), p8(::std::move(gmock_p8)) |
| #define GMOCK_INTERNAL_INIT_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ |
| p7, p8, p9)\ |
| (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ |
| p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \ |
| p6##_type gmock_p6, p7##_type gmock_p7, p8##_type gmock_p8, \ |
| p9##_type gmock_p9) : p0(::std::move(gmock_p0)), \ |
| p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \ |
| p3(::std::move(gmock_p3)), p4(::std::move(gmock_p4)), \ |
| p5(::std::move(gmock_p5)), p6(::std::move(gmock_p6)), \ |
| p7(::std::move(gmock_p7)), p8(::std::move(gmock_p8)), \ |
| p9(::std::move(gmock_p9)) |
| |
| // Defines the copy constructor |
| #define GMOCK_INTERNAL_DEFN_COPY_AND_0_VALUE_PARAMS() \ |
| {} // Avoid https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82134 |
| #define GMOCK_INTERNAL_DEFN_COPY_AND_1_VALUE_PARAMS(...) = default; |
| #define GMOCK_INTERNAL_DEFN_COPY_AND_2_VALUE_PARAMS(...) = default; |
| #define GMOCK_INTERNAL_DEFN_COPY_AND_3_VALUE_PARAMS(...) = default; |
| #define GMOCK_INTERNAL_DEFN_COPY_AND_4_VALUE_PARAMS(...) = default; |
| #define GMOCK_INTERNAL_DEFN_COPY_AND_5_VALUE_PARAMS(...) = default; |
| #define GMOCK_INTERNAL_DEFN_COPY_AND_6_VALUE_PARAMS(...) = default; |
| #define GMOCK_INTERNAL_DEFN_COPY_AND_7_VALUE_PARAMS(...) = default; |
| #define GMOCK_INTERNAL_DEFN_COPY_AND_8_VALUE_PARAMS(...) = default; |
| #define GMOCK_INTERNAL_DEFN_COPY_AND_9_VALUE_PARAMS(...) = default; |
| #define GMOCK_INTERNAL_DEFN_COPY_AND_10_VALUE_PARAMS(...) = default; |
| |
| // Declares the fields for storing the value parameters. |
| #define GMOCK_INTERNAL_DEFN_AND_0_VALUE_PARAMS() |
| #define GMOCK_INTERNAL_DEFN_AND_1_VALUE_PARAMS(p0) p0##_type p0; |
| #define GMOCK_INTERNAL_DEFN_AND_2_VALUE_PARAMS(p0, p1) p0##_type p0; \ |
| p1##_type p1; |
| #define GMOCK_INTERNAL_DEFN_AND_3_VALUE_PARAMS(p0, p1, p2) p0##_type p0; \ |
| p1##_type p1; p2##_type p2; |
| #define GMOCK_INTERNAL_DEFN_AND_4_VALUE_PARAMS(p0, p1, p2, p3) p0##_type p0; \ |
| p1##_type p1; p2##_type p2; p3##_type p3; |
| #define GMOCK_INTERNAL_DEFN_AND_5_VALUE_PARAMS(p0, p1, p2, p3, \ |
| p4) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; p4##_type p4; |
| #define GMOCK_INTERNAL_DEFN_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, \ |
| p5) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; p4##_type p4; \ |
| p5##_type p5; |
| #define GMOCK_INTERNAL_DEFN_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ |
| p6) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; p4##_type p4; \ |
| p5##_type p5; p6##_type p6; |
| #define GMOCK_INTERNAL_DEFN_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ |
| p7) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; p4##_type p4; \ |
| p5##_type p5; p6##_type p6; p7##_type p7; |
| #define GMOCK_INTERNAL_DEFN_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ |
| p7, p8) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; \ |
| p4##_type p4; p5##_type p5; p6##_type p6; p7##_type p7; p8##_type p8; |
| #define GMOCK_INTERNAL_DEFN_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ |
| p7, p8, p9) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; \ |
| p4##_type p4; p5##_type p5; p6##_type p6; p7##_type p7; p8##_type p8; \ |
| p9##_type p9; |
| |
| // Lists the value parameters. |
| #define GMOCK_INTERNAL_LIST_AND_0_VALUE_PARAMS() |
| #define GMOCK_INTERNAL_LIST_AND_1_VALUE_PARAMS(p0) p0 |
| #define GMOCK_INTERNAL_LIST_AND_2_VALUE_PARAMS(p0, p1) p0, p1 |
| #define GMOCK_INTERNAL_LIST_AND_3_VALUE_PARAMS(p0, p1, p2) p0, p1, p2 |
| #define GMOCK_INTERNAL_LIST_AND_4_VALUE_PARAMS(p0, p1, p2, p3) p0, p1, p2, p3 |
| #define GMOCK_INTERNAL_LIST_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4) p0, p1, \ |
| p2, p3, p4 |
| #define GMOCK_INTERNAL_LIST_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5) p0, \ |
| p1, p2, p3, p4, p5 |
| #define GMOCK_INTERNAL_LIST_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ |
| p6) p0, p1, p2, p3, p4, p5, p6 |
| #define GMOCK_INTERNAL_LIST_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ |
| p7) p0, p1, p2, p3, p4, p5, p6, p7 |
| #define GMOCK_INTERNAL_LIST_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ |
| p7, p8) p0, p1, p2, p3, p4, p5, p6, p7, p8 |
| #define GMOCK_INTERNAL_LIST_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ |
| p7, p8, p9) p0, p1, p2, p3, p4, p5, p6, p7, p8, p9 |
| |
| // Lists the value parameter types. |
| #define GMOCK_INTERNAL_LIST_TYPE_AND_0_VALUE_PARAMS() |
| #define GMOCK_INTERNAL_LIST_TYPE_AND_1_VALUE_PARAMS(p0) , p0##_type |
| #define GMOCK_INTERNAL_LIST_TYPE_AND_2_VALUE_PARAMS(p0, p1) , p0##_type, \ |
| p1##_type |
| #define GMOCK_INTERNAL_LIST_TYPE_AND_3_VALUE_PARAMS(p0, p1, p2) , p0##_type, \ |
| p1##_type, p2##_type |
| #define GMOCK_INTERNAL_LIST_TYPE_AND_4_VALUE_PARAMS(p0, p1, p2, p3) , \ |
| p0##_type, p1##_type, p2##_type, p3##_type |
| #define GMOCK_INTERNAL_LIST_TYPE_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4) , \ |
| p0##_type, p1##_type, p2##_type, p3##_type, p4##_type |
| #define GMOCK_INTERNAL_LIST_TYPE_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5) , \ |
| p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, p5##_type |
| #define GMOCK_INTERNAL_LIST_TYPE_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ |
| p6) , p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, p5##_type, \ |
| p6##_type |
| #define GMOCK_INTERNAL_LIST_TYPE_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ |
| p6, p7) , p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \ |
| p5##_type, p6##_type, p7##_type |
| #define GMOCK_INTERNAL_LIST_TYPE_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ |
| p6, p7, p8) , p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \ |
| p5##_type, p6##_type, p7##_type, p8##_type |
| #define GMOCK_INTERNAL_LIST_TYPE_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ |
| p6, p7, p8, p9) , p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \ |
| p5##_type, p6##_type, p7##_type, p8##_type, p9##_type |
| |
| // Declares the value parameters. |
| #define GMOCK_INTERNAL_DECL_AND_0_VALUE_PARAMS() |
| #define GMOCK_INTERNAL_DECL_AND_1_VALUE_PARAMS(p0) p0##_type p0 |
| #define GMOCK_INTERNAL_DECL_AND_2_VALUE_PARAMS(p0, p1) p0##_type p0, \ |
| p1##_type p1 |
| #define GMOCK_INTERNAL_DECL_AND_3_VALUE_PARAMS(p0, p1, p2) p0##_type p0, \ |
| p1##_type p1, p2##_type p2 |
| #define GMOCK_INTERNAL_DECL_AND_4_VALUE_PARAMS(p0, p1, p2, p3) p0##_type p0, \ |
| p1##_type p1, p2##_type p2, p3##_type p3 |
| #define GMOCK_INTERNAL_DECL_AND_5_VALUE_PARAMS(p0, p1, p2, p3, \ |
| p4) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, p4##_type p4 |
| #define GMOCK_INTERNAL_DECL_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, \ |
| p5) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, p4##_type p4, \ |
| p5##_type p5 |
| #define GMOCK_INTERNAL_DECL_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ |
| p6) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, p4##_type p4, \ |
| p5##_type p5, p6##_type p6 |
| #define GMOCK_INTERNAL_DECL_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ |
| p7) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, p4##_type p4, \ |
| p5##_type p5, p6##_type p6, p7##_type p7 |
| #define GMOCK_INTERNAL_DECL_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ |
| p7, p8) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, \ |
| p4##_type p4, p5##_type p5, p6##_type p6, p7##_type p7, p8##_type p8 |
| #define GMOCK_INTERNAL_DECL_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ |
| p7, p8, p9) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, \ |
| p4##_type p4, p5##_type p5, p6##_type p6, p7##_type p7, p8##_type p8, \ |
| p9##_type p9 |
| |
| // The suffix of the class template implementing the action template. |
| #define GMOCK_INTERNAL_COUNT_AND_0_VALUE_PARAMS() |
| #define GMOCK_INTERNAL_COUNT_AND_1_VALUE_PARAMS(p0) P |
| #define GMOCK_INTERNAL_COUNT_AND_2_VALUE_PARAMS(p0, p1) P2 |
| #define GMOCK_INTERNAL_COUNT_AND_3_VALUE_PARAMS(p0, p1, p2) P3 |
| #define GMOCK_INTERNAL_COUNT_AND_4_VALUE_PARAMS(p0, p1, p2, p3) P4 |
| #define GMOCK_INTERNAL_COUNT_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4) P5 |
| #define GMOCK_INTERNAL_COUNT_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5) P6 |
| #define GMOCK_INTERNAL_COUNT_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6) P7 |
| #define GMOCK_INTERNAL_COUNT_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ |
| p7) P8 |
| #define GMOCK_INTERNAL_COUNT_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ |
| p7, p8) P9 |
| #define GMOCK_INTERNAL_COUNT_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ |
| p7, p8, p9) P10 |
| |
| // The name of the class template implementing the action template. |
| #define GMOCK_ACTION_CLASS_(name, value_params)\ |
| GTEST_CONCAT_TOKEN_(name##Action, GMOCK_INTERNAL_COUNT_##value_params) |
| |
| #define ACTION_TEMPLATE(name, template_params, value_params) \ |
| template <GMOCK_INTERNAL_DECL_##template_params \ |
| GMOCK_INTERNAL_DECL_TYPE_##value_params> \ |
| class GMOCK_ACTION_CLASS_(name, value_params) { \ |
| public: \ |
| explicit GMOCK_ACTION_CLASS_(name, value_params)( \ |
| GMOCK_INTERNAL_DECL_##value_params) \ |
| GMOCK_PP_IF(GMOCK_PP_IS_EMPTY(GMOCK_INTERNAL_COUNT_##value_params), \ |
| = default; , \ |
| : impl_(std::make_shared<gmock_Impl>( \ |
| GMOCK_INTERNAL_LIST_##value_params)) { }) \ |
| GMOCK_ACTION_CLASS_(name, value_params)( \ |
| const GMOCK_ACTION_CLASS_(name, value_params)&) noexcept \ |
| GMOCK_INTERNAL_DEFN_COPY_##value_params \ |
| GMOCK_ACTION_CLASS_(name, value_params)( \ |
| GMOCK_ACTION_CLASS_(name, value_params)&&) noexcept \ |
| GMOCK_INTERNAL_DEFN_COPY_##value_params \ |
| template <typename F> \ |
| operator ::testing::Action<F>() const { \ |
| return GMOCK_PP_IF( \ |
| GMOCK_PP_IS_EMPTY(GMOCK_INTERNAL_COUNT_##value_params), \ |
| (::testing::internal::MakeAction<F, gmock_Impl>()), \ |
| (::testing::internal::MakeAction<F>(impl_))); \ |
| } \ |
| private: \ |
| class gmock_Impl { \ |
| public: \ |
| explicit gmock_Impl GMOCK_INTERNAL_INIT_##value_params {} \ |
| template <typename function_type, typename return_type, \ |
| typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \ |
| return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \ |
| GMOCK_INTERNAL_DEFN_##value_params \ |
| }; \ |
| GMOCK_PP_IF(GMOCK_PP_IS_EMPTY(GMOCK_INTERNAL_COUNT_##value_params), \ |
| , std::shared_ptr<const gmock_Impl> impl_;) \ |
| }; \ |
| template <GMOCK_INTERNAL_DECL_##template_params \ |
| GMOCK_INTERNAL_DECL_TYPE_##value_params> \ |
| GMOCK_ACTION_CLASS_(name, value_params)< \ |
| GMOCK_INTERNAL_LIST_##template_params \ |
| GMOCK_INTERNAL_LIST_TYPE_##value_params> name( \ |
| GMOCK_INTERNAL_DECL_##value_params) GTEST_MUST_USE_RESULT_; \ |
| template <GMOCK_INTERNAL_DECL_##template_params \ |
| GMOCK_INTERNAL_DECL_TYPE_##value_params> \ |
| inline GMOCK_ACTION_CLASS_(name, value_params)< \ |
| GMOCK_INTERNAL_LIST_##template_params \ |
| GMOCK_INTERNAL_LIST_TYPE_##value_params> name( \ |
| GMOCK_INTERNAL_DECL_##value_params) { \ |
| return GMOCK_ACTION_CLASS_(name, value_params)< \ |
| GMOCK_INTERNAL_LIST_##template_params \ |
| GMOCK_INTERNAL_LIST_TYPE_##value_params>( \ |
| GMOCK_INTERNAL_LIST_##value_params); \ |
| } \ |
| template <GMOCK_INTERNAL_DECL_##template_params \ |
| GMOCK_INTERNAL_DECL_TYPE_##value_params> \ |
| template <typename function_type, typename return_type, typename args_type, \ |
| GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \ |
| return_type GMOCK_ACTION_CLASS_(name, value_params)< \ |
| GMOCK_INTERNAL_LIST_##template_params \ |
| GMOCK_INTERNAL_LIST_TYPE_##value_params>::gmock_Impl::gmock_PerformImpl( \ |
| GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const |
| |
| namespace testing { |
| |
| // The ACTION*() macros trigger warning C4100 (unreferenced formal |
| // parameter) in MSVC with -W4. Unfortunately they cannot be fixed in |
| // the macro definition, as the warnings are generated when the macro |
| // is expanded and macro expansion cannot contain #pragma. Therefore |
| // we suppress them here. |
| #ifdef _MSC_VER |
| # pragma warning(push) |
| # pragma warning(disable:4100) |
| #endif |
| |
| namespace internal { |
| |
| // internal::InvokeArgument - a helper for InvokeArgument action. |
| // The basic overloads are provided here for generic functors. |
| // Overloads for other custom-callables are provided in the |
| // internal/custom/gmock-generated-actions.h header. |
| template <typename F, typename... Args> |
| auto InvokeArgument(F f, Args... args) -> decltype(f(args...)) { |
| return f(args...); |
| } |
| |
| template <std::size_t index, typename... Params> |
| struct InvokeArgumentAction { |
| template <typename... Args> |
| auto operator()(Args&&... args) const -> decltype(internal::InvokeArgument( |
| std::get<index>(std::forward_as_tuple(std::forward<Args>(args)...)), |
| std::declval<const Params&>()...)) { |
| internal::FlatTuple<Args&&...> args_tuple(FlatTupleConstructTag{}, |
| std::forward<Args>(args)...); |
| return params.Apply([&](const Params&... unpacked_params) { |
| auto&& callable = args_tuple.template Get<index>(); |
| return internal::InvokeArgument( |
| std::forward<decltype(callable)>(callable), unpacked_params...); |
| }); |
| } |
| |
| internal::FlatTuple<Params...> params; |
| }; |
| |
| } // namespace internal |
| |
| // The InvokeArgument<N>(a1, a2, ..., a_k) action invokes the N-th |
| // (0-based) argument, which must be a k-ary callable, of the mock |
| // function, with arguments a1, a2, ..., a_k. |
| // |
| // Notes: |
| // |
| // 1. The arguments are passed by value by default. If you need to |
| // pass an argument by reference, wrap it inside std::ref(). For |
| // example, |
| // |
| // InvokeArgument<1>(5, string("Hello"), std::ref(foo)) |
| // |
| // passes 5 and string("Hello") by value, and passes foo by |
| // reference. |
| // |
| // 2. If the callable takes an argument by reference but std::ref() is |
| // not used, it will receive the reference to a copy of the value, |
| // instead of the original value. For example, when the 0-th |
| // argument of the mock function takes a const string&, the action |
| // |
| // InvokeArgument<0>(string("Hello")) |
| // |
| // makes a copy of the temporary string("Hello") object and passes a |
| // reference of the copy, instead of the original temporary object, |
| // to the callable. This makes it easy for a user to define an |
| // InvokeArgument action from temporary values and have it performed |
| // later. |
| template <std::size_t index, typename... Params> |
| internal::InvokeArgumentAction<index, typename std::decay<Params>::type...> |
| InvokeArgument(Params&&... params) { |
| return {internal::FlatTuple<typename std::decay<Params>::type...>( |
| internal::FlatTupleConstructTag{}, std::forward<Params>(params)...)}; |
| } |
| |
| #ifdef _MSC_VER |
| # pragma warning(pop) |
| #endif |
| |
| } // namespace testing |
| |
| #endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MORE_ACTIONS_H_ |
| // Copyright 2013, Google Inc. |
| // All rights reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following disclaimer |
| // in the documentation and/or other materials provided with the |
| // distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| |
| // Google Mock - a framework for writing C++ mock classes. |
| // |
| // This file implements some matchers that depend on gmock-matchers.h. |
| // |
| // Note that tests are implemented in gmock-matchers_test.cc rather than |
| // gmock-more-matchers-test.cc. |
| |
| // GOOGLETEST_CM0002 DO NOT DELETE |
| |
| #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MORE_MATCHERS_H_ |
| #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MORE_MATCHERS_H_ |
| |
| |
| namespace testing { |
| |
| // Silence C4100 (unreferenced formal |
| // parameter) for MSVC |
| #ifdef _MSC_VER |
| # pragma warning(push) |
| # pragma warning(disable:4100) |
| #if (_MSC_VER == 1900) |
| // and silence C4800 (C4800: 'int *const ': forcing value |
| // to bool 'true' or 'false') for MSVC 14 |
| # pragma warning(disable:4800) |
| #endif |
| #endif |
| |
| // Defines a matcher that matches an empty container. The container must |
| // support both size() and empty(), which all STL-like containers provide. |
| MATCHER(IsEmpty, negation ? "isn't empty" : "is empty") { |
| if (arg.empty()) { |
| return true; |
| } |
| *result_listener << "whose size is " << arg.size(); |
| return false; |
| } |
| |
| // Define a matcher that matches a value that evaluates in boolean |
| // context to true. Useful for types that define "explicit operator |
| // bool" operators and so can't be compared for equality with true |
| // and false. |
| MATCHER(IsTrue, negation ? "is false" : "is true") { |
| return static_cast<bool>(arg); |
| } |
| |
| // Define a matcher that matches a value that evaluates in boolean |
| // context to false. Useful for types that define "explicit operator |
| // bool" operators and so can't be compared for equality with true |
| // and false. |
| MATCHER(IsFalse, negation ? "is true" : "is false") { |
| return !static_cast<bool>(arg); |
| } |
| |
| #ifdef _MSC_VER |
| # pragma warning(pop) |
| #endif |
| |
| |
| } // namespace testing |
| |
| #endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MORE_MATCHERS_H_ |
| // Copyright 2008, Google Inc. |
| // All rights reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following disclaimer |
| // in the documentation and/or other materials provided with the |
| // distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| |
| // Implements class templates NiceMock, NaggyMock, and StrictMock. |
| // |
| // Given a mock class MockFoo that is created using Google Mock, |
| // NiceMock<MockFoo> is a subclass of MockFoo that allows |
| // uninteresting calls (i.e. calls to mock methods that have no |
| // EXPECT_CALL specs), NaggyMock<MockFoo> is a subclass of MockFoo |
| // that prints a warning when an uninteresting call occurs, and |
| // StrictMock<MockFoo> is a subclass of MockFoo that treats all |
| // uninteresting calls as errors. |
| // |
| // Currently a mock is naggy by default, so MockFoo and |
| // NaggyMock<MockFoo> behave like the same. However, we will soon |
| // switch the default behavior of mocks to be nice, as that in general |
| // leads to more maintainable tests. When that happens, MockFoo will |
| // stop behaving like NaggyMock<MockFoo> and start behaving like |
| // NiceMock<MockFoo>. |
| // |
| // NiceMock, NaggyMock, and StrictMock "inherit" the constructors of |
| // their respective base class. Therefore you can write |
| // NiceMock<MockFoo>(5, "a") to construct a nice mock where MockFoo |
| // has a constructor that accepts (int, const char*), for example. |
| // |
| // A known limitation is that NiceMock<MockFoo>, NaggyMock<MockFoo>, |
| // and StrictMock<MockFoo> only works for mock methods defined using |
| // the MOCK_METHOD* family of macros DIRECTLY in the MockFoo class. |
| // If a mock method is defined in a base class of MockFoo, the "nice" |
| // or "strict" modifier may not affect it, depending on the compiler. |
| // In particular, nesting NiceMock, NaggyMock, and StrictMock is NOT |
| // supported. |
| |
| // GOOGLETEST_CM0002 DO NOT DELETE |
| |
| #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_NICE_STRICT_H_ |
| #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_NICE_STRICT_H_ |
| |
| #include <type_traits> |
| |
| |
| namespace testing { |
| template <class MockClass> |
| class NiceMock; |
| template <class MockClass> |
| class NaggyMock; |
| template <class MockClass> |
| class StrictMock; |
| |
| namespace internal { |
| template <typename T> |
| std::true_type StrictnessModifierProbe(const NiceMock<T>&); |
| template <typename T> |
| std::true_type StrictnessModifierProbe(const NaggyMock<T>&); |
| template <typename T> |
| std::true_type StrictnessModifierProbe(const StrictMock<T>&); |
| std::false_type StrictnessModifierProbe(...); |
| |
| template <typename T> |
| constexpr bool HasStrictnessModifier() { |
| return decltype(StrictnessModifierProbe(std::declval<const T&>()))::value; |
| } |
| |
| // Base classes that register and deregister with testing::Mock to alter the |
| // default behavior around uninteresting calls. Inheriting from one of these |
| // classes first and then MockClass ensures the MockClass constructor is run |
| // after registration, and that the MockClass destructor runs before |
| // deregistration. This guarantees that MockClass's constructor and destructor |
| // run with the same level of strictness as its instance methods. |
| |
| #if GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_MINGW && \ |
| (defined(_MSC_VER) || defined(__clang__)) |
| // We need to mark these classes with this declspec to ensure that |
| // the empty base class optimization is performed. |
| #define GTEST_INTERNAL_EMPTY_BASE_CLASS __declspec(empty_bases) |
| #else |
| #define GTEST_INTERNAL_EMPTY_BASE_CLASS |
| #endif |
| |
| template <typename Base> |
| class NiceMockImpl { |
| public: |
| NiceMockImpl() { ::testing::Mock::AllowUninterestingCalls(this); } |
| |
| ~NiceMockImpl() { ::testing::Mock::UnregisterCallReaction(this); } |
| }; |
| |
| template <typename Base> |
| class NaggyMockImpl { |
| public: |
| NaggyMockImpl() { ::testing::Mock::WarnUninterestingCalls(this); } |
| |
| ~NaggyMockImpl() { ::testing::Mock::UnregisterCallReaction(this); } |
| }; |
| |
| template <typename Base> |
| class StrictMockImpl { |
| public: |
| StrictMockImpl() { ::testing::Mock::FailUninterestingCalls(this); } |
| |
| ~StrictMockImpl() { ::testing::Mock::UnregisterCallReaction(this); } |
| }; |
| |
| } // namespace internal |
| |
| template <class MockClass> |
| class GTEST_INTERNAL_EMPTY_BASE_CLASS NiceMock |
| : private internal::NiceMockImpl<MockClass>, |
| public MockClass { |
| public: |
| static_assert(!internal::HasStrictnessModifier<MockClass>(), |
| "Can't apply NiceMock to a class hierarchy that already has a " |
| "strictness modifier. See " |
| "https://google.github.io/googletest/" |
| "gmock_cook_book.html#NiceStrictNaggy"); |
| NiceMock() : MockClass() { |
| static_assert(sizeof(*this) == sizeof(MockClass), |
| "The impl subclass shouldn't introduce any padding"); |
| } |
| |
| // Ideally, we would inherit base class's constructors through a using |
| // declaration, which would preserve their visibility. However, many existing |
| // tests rely on the fact that current implementation reexports protected |
| // constructors as public. These tests would need to be cleaned up first. |
| |
| // Single argument constructor is special-cased so that it can be |
| // made explicit. |
| template <typename A> |
| explicit NiceMock(A&& arg) : MockClass(std::forward<A>(arg)) { |
| static_assert(sizeof(*this) == sizeof(MockClass), |
| "The impl subclass shouldn't introduce any padding"); |
| } |
| |
| template <typename TArg1, typename TArg2, typename... An> |
| NiceMock(TArg1&& arg1, TArg2&& arg2, An&&... args) |
| : MockClass(std::forward<TArg1>(arg1), std::forward<TArg2>(arg2), |
| std::forward<An>(args)...) { |
| static_assert(sizeof(*this) == sizeof(MockClass), |
| "The impl subclass shouldn't introduce any padding"); |
| } |
| |
| private: |
| GTEST_DISALLOW_COPY_AND_ASSIGN_(NiceMock); |
| }; |
| |
| template <class MockClass> |
| class GTEST_INTERNAL_EMPTY_BASE_CLASS NaggyMock |
| : private internal::NaggyMockImpl<MockClass>, |
| public MockClass { |
| static_assert(!internal::HasStrictnessModifier<MockClass>(), |
| "Can't apply NaggyMock to a class hierarchy that already has a " |
| "strictness modifier. See " |
| "https://google.github.io/googletest/" |
| "gmock_cook_book.html#NiceStrictNaggy"); |
| |
| public: |
| NaggyMock() : MockClass() { |
| static_assert(sizeof(*this) == sizeof(MockClass), |
| "The impl subclass shouldn't introduce any padding"); |
| } |
| |
| // Ideally, we would inherit base class's constructors through a using |
| // declaration, which would preserve their visibility. However, many existing |
| // tests rely on the fact that current implementation reexports protected |
| // constructors as public. These tests would need to be cleaned up first. |
| |
| // Single argument constructor is special-cased so that it can be |
| // made explicit. |
| template <typename A> |
| explicit NaggyMock(A&& arg) : MockClass(std::forward<A>(arg)) { |
| static_assert(sizeof(*this) == sizeof(MockClass), |
| "The impl subclass shouldn't introduce any padding"); |
| } |
| |
| template <typename TArg1, typename TArg2, typename... An> |
| NaggyMock(TArg1&& arg1, TArg2&& arg2, An&&... args) |
| : MockClass(std::forward<TArg1>(arg1), std::forward<TArg2>(arg2), |
| std::forward<An>(args)...) { |
| static_assert(sizeof(*this) == sizeof(MockClass), |
| "The impl subclass shouldn't introduce any padding"); |
| } |
| |
| private: |
| GTEST_DISALLOW_COPY_AND_ASSIGN_(NaggyMock); |
| }; |
| |
| template <class MockClass> |
| class GTEST_INTERNAL_EMPTY_BASE_CLASS StrictMock |
| : private internal::StrictMockImpl<MockClass>, |
| public MockClass { |
| public: |
| static_assert( |
| !internal::HasStrictnessModifier<MockClass>(), |
| "Can't apply StrictMock to a class hierarchy that already has a " |
| "strictness modifier. See " |
| "https://google.github.io/googletest/" |
| "gmock_cook_book.html#NiceStrictNaggy"); |
| StrictMock() : MockClass() { |
| static_assert(sizeof(*this) == sizeof(MockClass), |
| "The impl subclass shouldn't introduce any padding"); |
| } |
| |
| // Ideally, we would inherit base class's constructors through a using |
| // declaration, which would preserve their visibility. However, many existing |
| // tests rely on the fact that current implementation reexports protected |
| // constructors as public. These tests would need to be cleaned up first. |
| |
| // Single argument constructor is special-cased so that it can be |
| // made explicit. |
| template <typename A> |
| explicit StrictMock(A&& arg) : MockClass(std::forward<A>(arg)) { |
| static_assert(sizeof(*this) == sizeof(MockClass), |
| "The impl subclass shouldn't introduce any padding"); |
| } |
| |
| template <typename TArg1, typename TArg2, typename... An> |
| StrictMock(TArg1&& arg1, TArg2&& arg2, An&&... args) |
| : MockClass(std::forward<TArg1>(arg1), std::forward<TArg2>(arg2), |
| std::forward<An>(args)...) { |
| static_assert(sizeof(*this) == sizeof(MockClass), |
| "The impl subclass shouldn't introduce any padding"); |
| } |
| |
| private: |
| GTEST_DISALLOW_COPY_AND_ASSIGN_(StrictMock); |
| }; |
| |
| #undef GTEST_INTERNAL_EMPTY_BASE_CLASS |
| |
| } // namespace testing |
| |
| #endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_NICE_STRICT_H_ |
| |
| namespace testing { |
| |
| // Declares Google Mock flags that we want a user to use programmatically. |
| GMOCK_DECLARE_bool_(catch_leaked_mocks); |
| GMOCK_DECLARE_string_(verbose); |
| GMOCK_DECLARE_int32_(default_mock_behavior); |
| |
| // Initializes Google Mock. This must be called before running the |
| // tests. In particular, it parses the command line for the flags |
| // that Google Mock recognizes. Whenever a Google Mock flag is seen, |
| // it is removed from argv, and *argc is decremented. |
| // |
| // No value is returned. Instead, the Google Mock flag variables are |
| // updated. |
| // |
| // Since Google Test is needed for Google Mock to work, this function |
| // also initializes Google Test and parses its flags, if that hasn't |
| // been done. |
| GTEST_API_ void InitGoogleMock(int* argc, char** argv); |
| |
| // This overloaded version can be used in Windows programs compiled in |
| // UNICODE mode. |
| GTEST_API_ void InitGoogleMock(int* argc, wchar_t** argv); |
| |
| // This overloaded version can be used on Arduino/embedded platforms where |
| // there is no argc/argv. |
| GTEST_API_ void InitGoogleMock(); |
| |
| } // namespace testing |
| |
| #endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_H_ |