|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. | 
|  | // http://code.google.com/p/ceres-solver/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  |  | 
|  | #include "ceres/sparse_normal_cholesky_solver.h" | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <cstring> | 
|  | #include <ctime> | 
|  |  | 
|  | #ifndef CERES_NO_CXSPARSE | 
|  | #include "cs.h" | 
|  | #endif | 
|  |  | 
|  | #include "ceres/compressed_row_sparse_matrix.h" | 
|  | #include "ceres/linear_solver.h" | 
|  | #include "ceres/suitesparse.h" | 
|  | #include "ceres/triplet_sparse_matrix.h" | 
|  | #include "ceres/internal/eigen.h" | 
|  | #include "ceres/internal/scoped_ptr.h" | 
|  | #include "ceres/types.h" | 
|  |  | 
|  | namespace ceres { | 
|  | namespace internal { | 
|  |  | 
|  | SparseNormalCholeskySolver::SparseNormalCholeskySolver( | 
|  | const LinearSolver::Options& options) | 
|  | : options_(options) { | 
|  | #ifndef CERES_NO_SUITESPARSE | 
|  | factor_ = NULL; | 
|  | #endif | 
|  |  | 
|  | #ifndef CERES_NO_CXSPARSE | 
|  | cxsparse_factor_ = NULL; | 
|  | #endif  // CERES_NO_CXSPARSE | 
|  | } | 
|  |  | 
|  | SparseNormalCholeskySolver::~SparseNormalCholeskySolver() { | 
|  | #ifndef CERES_NO_SUITESPARSE | 
|  | if (factor_ != NULL) { | 
|  | ss_.Free(factor_); | 
|  | factor_ = NULL; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifndef CERES_NO_CXSPARSE | 
|  | if (cxsparse_factor_ != NULL) { | 
|  | cxsparse_.Free(cxsparse_factor_); | 
|  | cxsparse_factor_ = NULL; | 
|  | } | 
|  | #endif  // CERES_NO_CXSPARSE | 
|  | } | 
|  |  | 
|  | LinearSolver::Summary SparseNormalCholeskySolver::SolveImpl( | 
|  | CompressedRowSparseMatrix* A, | 
|  | const double* b, | 
|  | const LinearSolver::PerSolveOptions& per_solve_options, | 
|  | double * x) { | 
|  | switch (options_.sparse_linear_algebra_library) { | 
|  | case SUITE_SPARSE: | 
|  | return SolveImplUsingSuiteSparse(A, b, per_solve_options, x); | 
|  | case CX_SPARSE: | 
|  | return SolveImplUsingCXSparse(A, b, per_solve_options, x); | 
|  | default: | 
|  | LOG(FATAL) << "Unknown sparse linear algebra library : " | 
|  | << options_.sparse_linear_algebra_library; | 
|  | } | 
|  |  | 
|  | LOG(FATAL) << "Unknown sparse linear algebra library : " | 
|  | << options_.sparse_linear_algebra_library; | 
|  | return LinearSolver::Summary(); | 
|  | } | 
|  |  | 
|  | #ifndef CERES_NO_CXSPARSE | 
|  | LinearSolver::Summary SparseNormalCholeskySolver::SolveImplUsingCXSparse( | 
|  | CompressedRowSparseMatrix* A, | 
|  | const double* b, | 
|  | const LinearSolver::PerSolveOptions& per_solve_options, | 
|  | double * x) { | 
|  | LinearSolver::Summary summary; | 
|  | summary.num_iterations = 1; | 
|  | const int num_cols = A->num_cols(); | 
|  | Vector Atb = Vector::Zero(num_cols); | 
|  | A->LeftMultiply(b, Atb.data()); | 
|  |  | 
|  | if (per_solve_options.D != NULL) { | 
|  | // Temporarily append a diagonal block to the A matrix, but undo | 
|  | // it before returning the matrix to the user. | 
|  | CompressedRowSparseMatrix D(per_solve_options.D, num_cols); | 
|  | A->AppendRows(D); | 
|  | } | 
|  |  | 
|  | VectorRef(x, num_cols).setZero(); | 
|  |  | 
|  | // Wrap the augmented Jacobian in a compressed sparse column matrix. | 
|  | cs_di At = cxsparse_.CreateSparseMatrixTransposeView(A); | 
|  |  | 
|  | // Compute the normal equations. J'J delta = J'f and solve them | 
|  | // using a sparse Cholesky factorization. Notice that when compared | 
|  | // to SuiteSparse we have to explicitly compute the transpose of Jt, | 
|  | // and then the normal equations before they can be | 
|  | // factorized. CHOLMOD/SuiteSparse on the other hand can just work | 
|  | // off of Jt to compute the Cholesky factorization of the normal | 
|  | // equations. | 
|  | cs_di* A2 = cs_transpose(&At, 1); | 
|  | cs_di* AtA = cs_multiply(&At,A2); | 
|  |  | 
|  | cxsparse_.Free(A2); | 
|  | if (per_solve_options.D != NULL) { | 
|  | A->DeleteRows(num_cols); | 
|  | } | 
|  |  | 
|  | // Compute symbolic factorization if not available. | 
|  | if (cxsparse_factor_ == NULL) { | 
|  | cxsparse_factor_ = CHECK_NOTNULL(cxsparse_.AnalyzeCholesky(AtA)); | 
|  | } | 
|  |  | 
|  | // Solve the linear system. | 
|  | if (cxsparse_.SolveCholesky(AtA, cxsparse_factor_, Atb.data())) { | 
|  | VectorRef(x, Atb.rows()) = Atb; | 
|  | summary.termination_type = TOLERANCE; | 
|  | } | 
|  |  | 
|  | cxsparse_.Free(AtA); | 
|  | return summary; | 
|  | } | 
|  | #else | 
|  | LinearSolver::Summary SparseNormalCholeskySolver::SolveImplUsingCXSparse( | 
|  | CompressedRowSparseMatrix* A, | 
|  | const double* b, | 
|  | const LinearSolver::PerSolveOptions& per_solve_options, | 
|  | double * x) { | 
|  | LOG(FATAL) << "No CXSparse support in Ceres."; | 
|  |  | 
|  | // Unreachable but MSVC does not know this. | 
|  | return LinearSolver::Summary(); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifndef CERES_NO_SUITESPARSE | 
|  | LinearSolver::Summary SparseNormalCholeskySolver::SolveImplUsingSuiteSparse( | 
|  | CompressedRowSparseMatrix* A, | 
|  | const double* b, | 
|  | const LinearSolver::PerSolveOptions& per_solve_options, | 
|  | double * x) { | 
|  | const time_t start_time = time(NULL); | 
|  | const int num_cols = A->num_cols(); | 
|  |  | 
|  | LinearSolver::Summary summary; | 
|  | Vector Atb = Vector::Zero(num_cols); | 
|  | A->LeftMultiply(b, Atb.data()); | 
|  |  | 
|  | if (per_solve_options.D != NULL) { | 
|  | // Temporarily append a diagonal block to the A matrix, but undo it before | 
|  | // returning the matrix to the user. | 
|  | CompressedRowSparseMatrix D(per_solve_options.D, num_cols); | 
|  | A->AppendRows(D); | 
|  | } | 
|  |  | 
|  | VectorRef(x, num_cols).setZero(); | 
|  |  | 
|  | scoped_ptr<cholmod_sparse> lhs(ss_.CreateSparseMatrixTransposeView(A)); | 
|  | CHECK_NOTNULL(lhs.get()); | 
|  |  | 
|  | cholmod_dense* rhs = ss_.CreateDenseVector(Atb.data(), num_cols, num_cols); | 
|  | const time_t init_time = time(NULL); | 
|  |  | 
|  | if (factor_ == NULL) { | 
|  | if (options_.use_block_amd) { | 
|  | factor_ = ss_.BlockAnalyzeCholesky(lhs.get(), | 
|  | A->col_blocks(), | 
|  | A->row_blocks()); | 
|  | } else { | 
|  | factor_ = ss_.AnalyzeCholesky(lhs.get()); | 
|  | } | 
|  |  | 
|  | if (VLOG_IS_ON(2)) { | 
|  | cholmod_print_common("Symbolic Analysis", ss_.mutable_cc()); | 
|  | } | 
|  | } | 
|  |  | 
|  | CHECK_NOTNULL(factor_); | 
|  |  | 
|  | const time_t symbolic_time = time(NULL); | 
|  |  | 
|  | cholmod_dense* sol = ss_.SolveCholesky(lhs.get(), factor_, rhs); | 
|  | const time_t solve_time = time(NULL); | 
|  |  | 
|  | ss_.Free(rhs); | 
|  | rhs = NULL; | 
|  |  | 
|  | if (per_solve_options.D != NULL) { | 
|  | A->DeleteRows(num_cols); | 
|  | } | 
|  |  | 
|  | summary.num_iterations = 1; | 
|  | if (sol != NULL) { | 
|  | memcpy(x, sol->x, num_cols * sizeof(*x)); | 
|  |  | 
|  | ss_.Free(sol); | 
|  | sol = NULL; | 
|  | summary.termination_type = TOLERANCE; | 
|  | } | 
|  |  | 
|  | const time_t cleanup_time = time(NULL); | 
|  | VLOG(2) << "time (sec) total: " << (cleanup_time - start_time) | 
|  | << " init: " << (init_time - start_time) | 
|  | << " symbolic: " << (symbolic_time - init_time) | 
|  | << " solve: " << (solve_time - symbolic_time) | 
|  | << " cleanup: " << (cleanup_time - solve_time); | 
|  | return summary; | 
|  | } | 
|  | #else | 
|  | LinearSolver::Summary SparseNormalCholeskySolver::SolveImplUsingSuiteSparse( | 
|  | CompressedRowSparseMatrix* A, | 
|  | const double* b, | 
|  | const LinearSolver::PerSolveOptions& per_solve_options, | 
|  | double * x) { | 
|  | LOG(FATAL) << "No SuiteSparse support in Ceres."; | 
|  |  | 
|  | // Unreachable but MSVC does not know this. | 
|  | return LinearSolver::Summary(); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | }   // namespace internal | 
|  | }   // namespace ceres |