|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2015 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: keir@google.com (Keir Mierle) | 
|  | // | 
|  | // Computation of the Jacobian matrix for vector-valued functions of multiple | 
|  | // variables, using automatic differentiation based on the implementation of | 
|  | // dual numbers in jet.h. Before reading the rest of this file, it is adivsable | 
|  | // to read jet.h's header comment in detail. | 
|  | // | 
|  | // The helper wrapper AutoDiff::Differentiate() computes the jacobian of | 
|  | // functors with templated operator() taking this form: | 
|  | // | 
|  | //   struct F { | 
|  | //     template<typename T> | 
|  | //     bool operator()(const T *x, const T *y, ..., T *z) { | 
|  | //       // Compute z[] based on x[], y[], ... | 
|  | //       // return true if computation succeeded, false otherwise. | 
|  | //     } | 
|  | //   }; | 
|  | // | 
|  | // All inputs and outputs may be vector-valued. | 
|  | // | 
|  | // To understand how jets are used to compute the jacobian, a | 
|  | // picture may help. Consider a vector-valued function, F, returning 3 | 
|  | // dimensions and taking a vector-valued parameter of 4 dimensions: | 
|  | // | 
|  | //     y            x | 
|  | //   [ * ]    F   [ * ] | 
|  | //   [ * ]  <---  [ * ] | 
|  | //   [ * ]        [ * ] | 
|  | //                [ * ] | 
|  | // | 
|  | // Similar to the 2-parameter example for f described in jet.h, computing the | 
|  | // jacobian dy/dx is done by substutiting a suitable jet object for x and all | 
|  | // intermediate steps of the computation of F. Since x is has 4 dimensions, use | 
|  | // a Jet<double, 4>. | 
|  | // | 
|  | // Before substituting a jet object for x, the dual components are set | 
|  | // appropriately for each dimension of x: | 
|  | // | 
|  | //          y                       x | 
|  | //   [ * | * * * * ]    f   [ * | 1 0 0 0 ]   x0 | 
|  | //   [ * | * * * * ]  <---  [ * | 0 1 0 0 ]   x1 | 
|  | //   [ * | * * * * ]        [ * | 0 0 1 0 ]   x2 | 
|  | //         ---+---          [ * | 0 0 0 1 ]   x3 | 
|  | //            |                   ^ ^ ^ ^ | 
|  | //          dy/dx                 | | | +----- infinitesimal for x3 | 
|  | //                                | | +------- infinitesimal for x2 | 
|  | //                                | +--------- infinitesimal for x1 | 
|  | //                                +----------- infinitesimal for x0 | 
|  | // | 
|  | // The reason to set the internal 4x4 submatrix to the identity is that we wish | 
|  | // to take the derivative of y separately with respect to each dimension of x. | 
|  | // Each column of the 4x4 identity is therefore for a single component of the | 
|  | // independent variable x. | 
|  | // | 
|  | // Then the jacobian of the mapping, dy/dx, is the 3x4 sub-matrix of the | 
|  | // extended y vector, indicated in the above diagram. | 
|  | // | 
|  | // Functors with multiple parameters | 
|  | // --------------------------------- | 
|  | // In practice, it is often convenient to use a function f of two or more | 
|  | // vector-valued parameters, for example, x[3] and z[6]. Unfortunately, the jet | 
|  | // framework is designed for a single-parameter vector-valued input. The wrapper | 
|  | // in this file addresses this issue adding support for functions with one or | 
|  | // more parameter vectors. | 
|  | // | 
|  | // To support multiple parameters, all the parameter vectors are concatenated | 
|  | // into one and treated as a single parameter vector, except that since the | 
|  | // functor expects different inputs, we need to construct the jets as if they | 
|  | // were part of a single parameter vector. The extended jets are passed | 
|  | // separately for each parameter. | 
|  | // | 
|  | // For example, consider a functor F taking two vector parameters, p[2] and | 
|  | // q[3], and producing an output y[4]: | 
|  | // | 
|  | //   struct F { | 
|  | //     template<typename T> | 
|  | //     bool operator()(const T *p, const T *q, T *z) { | 
|  | //       // ... | 
|  | //     } | 
|  | //   }; | 
|  | // | 
|  | // In this case, the necessary jet type is Jet<double, 5>. Here is a | 
|  | // visualization of the jet objects in this case: | 
|  | // | 
|  | //          Dual components for p ----+ | 
|  | //                                    | | 
|  | //                                   -+- | 
|  | //           y                 [ * | 1 0 | 0 0 0 ]    --- p[0] | 
|  | //                             [ * | 0 1 | 0 0 0 ]    --- p[1] | 
|  | //   [ * | . . | + + + ]         | | 
|  | //   [ * | . . | + + + ]         v | 
|  | //   [ * | . . | + + + ]  <--- F(p, q) | 
|  | //   [ * | . . | + + + ]            ^ | 
|  | //         ^^^   ^^^^^              | | 
|  | //        dy/dp  dy/dq            [ * | 0 0 | 1 0 0 ] --- q[0] | 
|  | //                                [ * | 0 0 | 0 1 0 ] --- q[1] | 
|  | //                                [ * | 0 0 | 0 0 1 ] --- q[2] | 
|  | //                                            --+-- | 
|  | //                                              | | 
|  | //          Dual components for q --------------+ | 
|  | // | 
|  | // where the 4x2 submatrix (marked with ".") and 4x3 submatrix (marked with "+" | 
|  | // of y in the above diagram are the derivatives of y with respect to p and q | 
|  | // respectively. This is how autodiff works for functors taking multiple vector | 
|  | // valued arguments (up to 6). | 
|  | // | 
|  | // Jacobian NULL pointers | 
|  | // ---------------------- | 
|  | // In general, the functions below will accept NULL pointers for all or some of | 
|  | // the Jacobian parameters, meaning that those Jacobians will not be computed. | 
|  |  | 
|  | #ifndef CERES_PUBLIC_INTERNAL_AUTODIFF_H_ | 
|  | #define CERES_PUBLIC_INTERNAL_AUTODIFF_H_ | 
|  |  | 
|  | #include <stddef.h> | 
|  |  | 
|  | #include "ceres/jet.h" | 
|  | #include "ceres/internal/eigen.h" | 
|  | #include "ceres/internal/fixed_array.h" | 
|  | #include "ceres/internal/variadic_evaluate.h" | 
|  | #include "glog/logging.h" | 
|  |  | 
|  | namespace ceres { | 
|  | namespace internal { | 
|  |  | 
|  | // Extends src by a 1st order pertubation for every dimension and puts it in | 
|  | // dst. The size of src is N. Since this is also used for perturbations in | 
|  | // blocked arrays, offset is used to shift which part of the jet the | 
|  | // perturbation occurs. This is used to set up the extended x augmented by an | 
|  | // identity matrix. The JetT type should be a Jet type, and T should be a | 
|  | // numeric type (e.g. double). For example, | 
|  | // | 
|  | //             0   1 2   3 4 5   6 7 8 | 
|  | //   dst[0]  [ * | . . | 1 0 0 | . . . ] | 
|  | //   dst[1]  [ * | . . | 0 1 0 | . . . ] | 
|  | //   dst[2]  [ * | . . | 0 0 1 | . . . ] | 
|  | // | 
|  | // is what would get put in dst if N was 3, offset was 3, and the jet type JetT | 
|  | // was 8-dimensional. | 
|  | template <typename JetT, typename T, int N> | 
|  | inline void Make1stOrderPerturbation(int offset, const T* src, JetT* dst) { | 
|  | DCHECK(src); | 
|  | DCHECK(dst); | 
|  | for (int j = 0; j < N; ++j) { | 
|  | dst[j].a = src[j]; | 
|  | dst[j].v.setZero(); | 
|  | dst[j].v[offset + j] = T(1.0); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Takes the 0th order part of src, assumed to be a Jet type, and puts it in | 
|  | // dst. This is used to pick out the "vector" part of the extended y. | 
|  | template <typename JetT, typename T> | 
|  | inline void Take0thOrderPart(int M, const JetT *src, T dst) { | 
|  | DCHECK(src); | 
|  | for (int i = 0; i < M; ++i) { | 
|  | dst[i] = src[i].a; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Takes N 1st order parts, starting at index N0, and puts them in the M x N | 
|  | // matrix 'dst'. This is used to pick out the "matrix" parts of the extended y. | 
|  | template <typename JetT, typename T, int N0, int N> | 
|  | inline void Take1stOrderPart(const int M, const JetT *src, T *dst) { | 
|  | DCHECK(src); | 
|  | DCHECK(dst); | 
|  | for (int i = 0; i < M; ++i) { | 
|  | Eigen::Map<Eigen::Matrix<T, N, 1>>(dst + N * i, N) = | 
|  | src[i].v.template segment<N>(N0); | 
|  | } | 
|  | } | 
|  |  | 
|  | // This is in a struct because default template parameters on a | 
|  | // function are not supported in C++03 (though it is available in | 
|  | // C++0x). N0 through N9 are the dimension of the input arguments to | 
|  | // the user supplied functor. | 
|  | template <typename Functor, typename T, | 
|  | int N0 = 0, int N1 = 0, int N2 = 0, int N3 = 0, int N4 = 0, | 
|  | int N5 = 0, int N6 = 0, int N7 = 0, int N8 = 0, int N9 = 0> | 
|  | struct AutoDiff { | 
|  | static bool Differentiate(const Functor& functor, | 
|  | T const *const *parameters, | 
|  | int num_outputs, | 
|  | T *function_value, | 
|  | T **jacobians) { | 
|  | // This block breaks the 80 column rule to keep it somewhat readable. | 
|  | DCHECK_GT(num_outputs, 0); | 
|  | DCHECK((!N1 && !N2 && !N3 && !N4 && !N5 && !N6 && !N7 && !N8 && !N9) || | 
|  | ((N1 > 0) && !N2 && !N3 && !N4 && !N5 && !N6 && !N7 && !N8 && !N9) || | 
|  | ((N1 > 0) && (N2 > 0) && !N3 && !N4 && !N5 && !N6 && !N7 && !N8 && !N9) ||                                   // NOLINT | 
|  | ((N1 > 0) && (N2 > 0) && (N3 > 0) && !N4 && !N5 && !N6 && !N7 && !N8 && !N9) ||                              // NOLINT | 
|  | ((N1 > 0) && (N2 > 0) && (N3 > 0) && (N4 > 0) && !N5 && !N6 && !N7 && !N8 && !N9) ||                         // NOLINT | 
|  | ((N1 > 0) && (N2 > 0) && (N3 > 0) && (N4 > 0) && (N5 > 0) && !N6 && !N7 && !N8 && !N9) ||                    // NOLINT | 
|  | ((N1 > 0) && (N2 > 0) && (N3 > 0) && (N4 > 0) && (N5 > 0) && (N6 > 0) && !N7 && !N8 && !N9) ||               // NOLINT | 
|  | ((N1 > 0) && (N2 > 0) && (N3 > 0) && (N4 > 0) && (N5 > 0) && (N6 > 0) && (N7 > 0) && !N8 && !N9) ||          // NOLINT | 
|  | ((N1 > 0) && (N2 > 0) && (N3 > 0) && (N4 > 0) && (N5 > 0) && (N6 > 0) && (N7 > 0) && (N8 > 0) && !N9) ||     // NOLINT | 
|  | ((N1 > 0) && (N2 > 0) && (N3 > 0) && (N4 > 0) && (N5 > 0) && (N6 > 0) && (N7 > 0) && (N8 > 0) && (N9 > 0)))  // NOLINT | 
|  | << "Zero block cannot precede a non-zero block. Block sizes are " | 
|  | << "(ignore trailing 0s): " << N0 << ", " << N1 << ", " << N2 << ", " | 
|  | << N3 << ", " << N4 << ", " << N5 << ", " << N6 << ", " << N7 << ", " | 
|  | << N8 << ", " << N9; | 
|  |  | 
|  | typedef Jet<T, N0 + N1 + N2 + N3 + N4 + N5 + N6 + N7 + N8 + N9> JetT; | 
|  | FixedArray<JetT, (256 * 7) / sizeof(JetT)> x( | 
|  | N0 + N1 + N2 + N3 + N4 + N5 + N6 + N7 + N8 + N9 + num_outputs); | 
|  |  | 
|  | // These are the positions of the respective jets in the fixed array x. | 
|  | const int jet0  = 0; | 
|  | const int jet1  = N0; | 
|  | const int jet2  = N0 + N1; | 
|  | const int jet3  = N0 + N1 + N2; | 
|  | const int jet4  = N0 + N1 + N2 + N3; | 
|  | const int jet5  = N0 + N1 + N2 + N3 + N4; | 
|  | const int jet6  = N0 + N1 + N2 + N3 + N4 + N5; | 
|  | const int jet7  = N0 + N1 + N2 + N3 + N4 + N5 + N6; | 
|  | const int jet8  = N0 + N1 + N2 + N3 + N4 + N5 + N6 + N7; | 
|  | const int jet9  = N0 + N1 + N2 + N3 + N4 + N5 + N6 + N7 + N8; | 
|  |  | 
|  | const JetT *unpacked_parameters[10] = { | 
|  | x.get() + jet0, | 
|  | x.get() + jet1, | 
|  | x.get() + jet2, | 
|  | x.get() + jet3, | 
|  | x.get() + jet4, | 
|  | x.get() + jet5, | 
|  | x.get() + jet6, | 
|  | x.get() + jet7, | 
|  | x.get() + jet8, | 
|  | x.get() + jet9, | 
|  | }; | 
|  |  | 
|  | JetT* output = x.get() + N0 + N1 + N2 + N3 + N4 + N5 + N6 + N7 + N8 + N9; | 
|  |  | 
|  | // Invalidate the output Jets, so that we can detect if the user | 
|  | // did not assign values to all of them. | 
|  | for (int i = 0; i < num_outputs; ++i) { | 
|  | output[i].a = kImpossibleValue; | 
|  | output[i].v.setConstant(kImpossibleValue); | 
|  | } | 
|  |  | 
|  | #define CERES_MAKE_1ST_ORDER_PERTURBATION(i)                            \ | 
|  | if (N ## i) {                                                       \ | 
|  | internal::Make1stOrderPerturbation<JetT, T, N ## i>(              \ | 
|  | jet ## i,                                                     \ | 
|  | parameters[i],                                                \ | 
|  | x.get() + jet ## i);                                          \ | 
|  | } | 
|  | CERES_MAKE_1ST_ORDER_PERTURBATION(0); | 
|  | CERES_MAKE_1ST_ORDER_PERTURBATION(1); | 
|  | CERES_MAKE_1ST_ORDER_PERTURBATION(2); | 
|  | CERES_MAKE_1ST_ORDER_PERTURBATION(3); | 
|  | CERES_MAKE_1ST_ORDER_PERTURBATION(4); | 
|  | CERES_MAKE_1ST_ORDER_PERTURBATION(5); | 
|  | CERES_MAKE_1ST_ORDER_PERTURBATION(6); | 
|  | CERES_MAKE_1ST_ORDER_PERTURBATION(7); | 
|  | CERES_MAKE_1ST_ORDER_PERTURBATION(8); | 
|  | CERES_MAKE_1ST_ORDER_PERTURBATION(9); | 
|  | #undef CERES_MAKE_1ST_ORDER_PERTURBATION | 
|  |  | 
|  | if (!VariadicEvaluate<Functor, JetT, | 
|  | N0, N1, N2, N3, N4, N5, N6, N7, N8, N9>::Call( | 
|  | functor, unpacked_parameters, output)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | internal::Take0thOrderPart(num_outputs, output, function_value); | 
|  |  | 
|  | #define CERES_TAKE_1ST_ORDER_PERTURBATION(i) \ | 
|  | if (N ## i) { \ | 
|  | if (jacobians[i]) { \ | 
|  | internal::Take1stOrderPart<JetT, T, \ | 
|  | jet ## i, \ | 
|  | N ## i>(num_outputs, \ | 
|  | output, \ | 
|  | jacobians[i]); \ | 
|  | } \ | 
|  | } | 
|  | CERES_TAKE_1ST_ORDER_PERTURBATION(0); | 
|  | CERES_TAKE_1ST_ORDER_PERTURBATION(1); | 
|  | CERES_TAKE_1ST_ORDER_PERTURBATION(2); | 
|  | CERES_TAKE_1ST_ORDER_PERTURBATION(3); | 
|  | CERES_TAKE_1ST_ORDER_PERTURBATION(4); | 
|  | CERES_TAKE_1ST_ORDER_PERTURBATION(5); | 
|  | CERES_TAKE_1ST_ORDER_PERTURBATION(6); | 
|  | CERES_TAKE_1ST_ORDER_PERTURBATION(7); | 
|  | CERES_TAKE_1ST_ORDER_PERTURBATION(8); | 
|  | CERES_TAKE_1ST_ORDER_PERTURBATION(9); | 
|  | #undef CERES_TAKE_1ST_ORDER_PERTURBATION | 
|  | return true; | 
|  | } | 
|  | }; | 
|  |  | 
|  | }  // namespace internal | 
|  | }  // namespace ceres | 
|  |  | 
|  | #endif  // CERES_PUBLIC_INTERNAL_AUTODIFF_H_ |