| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2023 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: jodebo_beck@gmx.de (Johannes Beck) |
| // |
| |
| #ifndef CERES_PUBLIC_INTERNAL_LINE_PARAMETERIZATION_H_ |
| #define CERES_PUBLIC_INTERNAL_LINE_PARAMETERIZATION_H_ |
| |
| #include "householder_vector.h" |
| |
| namespace ceres { |
| |
| template <int AmbientSpaceDimension> |
| bool LineParameterization<AmbientSpaceDimension>::Plus( |
| const double* x_ptr, |
| const double* delta_ptr, |
| double* x_plus_delta_ptr) const { |
| // We seek a box plus operator of the form |
| // |
| // [o*, d*] = Plus([o, d], [delta_o, delta_d]) |
| // |
| // where o is the origin point, d is the direction vector, delta_o is |
| // the delta of the origin point and delta_d the delta of the direction and |
| // o* and d* is the updated origin point and direction. |
| // |
| // We separate the Plus operator into the origin point and directional part |
| // d* = Plus_d(d, delta_d) |
| // o* = Plus_o(o, d, delta_o) |
| // |
| // The direction update function Plus_d is the same as for the homogeneous |
| // vector parameterization: |
| // |
| // d* = H_{v(d)} [0.5 sinc(0.5 |delta_d|) delta_d, cos(0.5 |delta_d|)]^T |
| // |
| // where H is the householder matrix |
| // H_{v} = I - (2 / |v|^2) v v^T |
| // and |
| // v(d) = d - sign(d_n) |d| e_n. |
| // |
| // The origin point update function Plus_o is defined as |
| // |
| // o* = o + H_{v(d)} [0.5 delta_o, 0]^T. |
| |
| static constexpr int kDim = AmbientSpaceDimension; |
| using AmbientVector = Eigen::Matrix<double, kDim, 1>; |
| using AmbientVectorRef = Eigen::Map<Eigen::Matrix<double, kDim, 1>>; |
| using ConstAmbientVectorRef = |
| Eigen::Map<const Eigen::Matrix<double, kDim, 1>>; |
| using ConstTangentVectorRef = |
| Eigen::Map<const Eigen::Matrix<double, kDim - 1, 1>>; |
| |
| ConstAmbientVectorRef o(x_ptr); |
| ConstAmbientVectorRef d(x_ptr + kDim); |
| |
| ConstTangentVectorRef delta_o(delta_ptr); |
| ConstTangentVectorRef delta_d(delta_ptr + kDim - 1); |
| AmbientVectorRef o_plus_delta(x_plus_delta_ptr); |
| AmbientVectorRef d_plus_delta(x_plus_delta_ptr + kDim); |
| |
| const double norm_delta_d = delta_d.norm(); |
| |
| o_plus_delta = o; |
| |
| // Shortcut for zero delta direction. |
| if (norm_delta_d == 0.0) { |
| d_plus_delta = d; |
| |
| if (delta_o.isZero(0.0)) { |
| return true; |
| } |
| } |
| |
| // Calculate the householder transformation which is needed for f_d and f_o. |
| AmbientVector v; |
| double beta; |
| |
| // NOTE: The explicit template arguments are needed here because |
| // ComputeHouseholderVector is templated and some versions of MSVC |
| // have trouble deducing the type of v automatically. |
| internal::ComputeHouseholderVector<ConstAmbientVectorRef, double, kDim>( |
| d, &v, &beta); |
| |
| if (norm_delta_d != 0.0) { |
| // Map the delta from the minimum representation to the over parameterized |
| // homogeneous vector. See section A6.9.2 on page 624 of Hartley & Zisserman |
| // (2nd Edition) for a detailed description. Note there is a typo on Page |
| // 625, line 4 so check the book errata. |
| const double norm_delta_div_2 = 0.5 * norm_delta_d; |
| const double sin_delta_by_delta = |
| std::sin(norm_delta_div_2) / norm_delta_div_2; |
| |
| // Apply the delta update to remain on the unit sphere. See section A6.9.3 |
| // on page 625 of Hartley & Zisserman (2nd Edition) for a detailed |
| // description. |
| AmbientVector y; |
| y.template head<kDim - 1>() = 0.5 * sin_delta_by_delta * delta_d; |
| y[kDim - 1] = std::cos(norm_delta_div_2); |
| |
| d_plus_delta = d.norm() * (y - v * (beta * (v.transpose() * y))); |
| } |
| |
| // The null space is in the direction of the line, so the tangent space is |
| // perpendicular to the line direction. This is achieved by using the |
| // householder matrix of the direction and allow only movements |
| // perpendicular to e_n. |
| // |
| // The factor of 0.5 is used to be consistent with the line direction |
| // update. |
| AmbientVector y; |
| y << 0.5 * delta_o, 0; |
| o_plus_delta += y - v * (beta * (v.transpose() * y)); |
| |
| return true; |
| } |
| |
| template <int AmbientSpaceDimension> |
| bool LineParameterization<AmbientSpaceDimension>::ComputeJacobian( |
| const double* x_ptr, double* jacobian_ptr) const { |
| static constexpr int kDim = AmbientSpaceDimension; |
| using AmbientVector = Eigen::Matrix<double, kDim, 1>; |
| using ConstAmbientVectorRef = |
| Eigen::Map<const Eigen::Matrix<double, kDim, 1>>; |
| using MatrixRef = Eigen::Map< |
| Eigen::Matrix<double, 2 * kDim, 2 * (kDim - 1), Eigen::RowMajor>>; |
| |
| ConstAmbientVectorRef d(x_ptr + kDim); |
| MatrixRef jacobian(jacobian_ptr); |
| |
| // Clear the Jacobian as only half of the matrix is not zero. |
| jacobian.setZero(); |
| |
| AmbientVector v; |
| double beta; |
| |
| // NOTE: The explicit template arguments are needed here because |
| // ComputeHouseholderVector is templated and some versions of MSVC |
| // have trouble deducing the type of v automatically. |
| internal::ComputeHouseholderVector<ConstAmbientVectorRef, double, kDim>( |
| d, &v, &beta); |
| |
| // The Jacobian is equal to J = 0.5 * H.leftCols(kDim - 1) where H is |
| // the Householder matrix (H = I - beta * v * v') for the origin point. For |
| // the line direction part the Jacobian is scaled by the norm of the |
| // direction. |
| for (int i = 0; i < kDim - 1; ++i) { |
| jacobian.block(0, i, kDim, 1) = -0.5 * beta * v(i) * v; |
| jacobian.col(i)(i) += 0.5; |
| } |
| |
| jacobian.template block<kDim, kDim - 1>(kDim, kDim - 1) = |
| jacobian.template block<kDim, kDim - 1>(0, 0) * d.norm(); |
| return true; |
| } |
| |
| } // namespace ceres |
| |
| #endif // CERES_PUBLIC_INTERNAL_LINE_PARAMETERIZATION_H_ |