| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2015 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: moll.markus@arcor.de (Markus Moll) | 
 | //         sameeragarwal@google.com (Sameer Agarwal) | 
 |  | 
 | #include "ceres/polynomial.h" | 
 |  | 
 | #include <limits> | 
 | #include <cmath> | 
 | #include <cstddef> | 
 | #include <algorithm> | 
 | #include "gtest/gtest.h" | 
 | #include "ceres/test_util.h" | 
 |  | 
 | namespace ceres { | 
 | namespace internal { | 
 |  | 
 | using std::vector; | 
 |  | 
 | namespace { | 
 |  | 
 | // For IEEE-754 doubles, machine precision is about 2e-16. | 
 | const double kEpsilon = 1e-13; | 
 | const double kEpsilonLoose = 1e-9; | 
 |  | 
 | // Return the constant polynomial p(x) = 1.23. | 
 | Vector ConstantPolynomial(double value) { | 
 |   Vector poly(1); | 
 |   poly(0) = value; | 
 |   return poly; | 
 | } | 
 |  | 
 | // Return the polynomial p(x) = poly(x) * (x - root). | 
 | Vector AddRealRoot(const Vector& poly, double root) { | 
 |   Vector poly2(poly.size() + 1); | 
 |   poly2.setZero(); | 
 |   poly2.head(poly.size()) += poly; | 
 |   poly2.tail(poly.size()) -= root * poly; | 
 |   return poly2; | 
 | } | 
 |  | 
 | // Return the polynomial | 
 | // p(x) = poly(x) * (x - real - imag*i) * (x - real + imag*i). | 
 | Vector AddComplexRootPair(const Vector& poly, double real, double imag) { | 
 |   Vector poly2(poly.size() + 2); | 
 |   poly2.setZero(); | 
 |   // Multiply poly by x^2 - 2real + abs(real,imag)^2 | 
 |   poly2.head(poly.size()) += poly; | 
 |   poly2.segment(1, poly.size()) -= 2 * real * poly; | 
 |   poly2.tail(poly.size()) += (real*real + imag*imag) * poly; | 
 |   return poly2; | 
 | } | 
 |  | 
 | // Sort the entries in a vector. | 
 | // Needed because the roots are not returned in sorted order. | 
 | Vector SortVector(const Vector& in) { | 
 |   Vector out(in); | 
 |   std::sort(out.data(), out.data() + out.size()); | 
 |   return out; | 
 | } | 
 |  | 
 | // Run a test with the polynomial defined by the N real roots in roots_real. | 
 | // If use_real is false, NULL is passed as the real argument to | 
 | // FindPolynomialRoots. If use_imaginary is false, NULL is passed as the | 
 | // imaginary argument to FindPolynomialRoots. | 
 | template<int N> | 
 | void RunPolynomialTestRealRoots(const double (&real_roots)[N], | 
 |                                 bool use_real, | 
 |                                 bool use_imaginary, | 
 |                                 double epsilon) { | 
 |   Vector real; | 
 |   Vector imaginary; | 
 |   Vector poly = ConstantPolynomial(1.23); | 
 |   for (int i = 0; i < N; ++i) { | 
 |     poly = AddRealRoot(poly, real_roots[i]); | 
 |   } | 
 |   Vector* const real_ptr = use_real ? &real : NULL; | 
 |   Vector* const imaginary_ptr = use_imaginary ? &imaginary : NULL; | 
 |   bool success = FindPolynomialRoots(poly, real_ptr, imaginary_ptr); | 
 |  | 
 |   EXPECT_EQ(success, true); | 
 |   if (use_real) { | 
 |     EXPECT_EQ(real.size(), N); | 
 |     real = SortVector(real); | 
 |     ExpectArraysClose(N, real.data(), real_roots, epsilon); | 
 |   } | 
 |   if (use_imaginary) { | 
 |     EXPECT_EQ(imaginary.size(), N); | 
 |     const Vector zeros = Vector::Zero(N); | 
 |     ExpectArraysClose(N, imaginary.data(), zeros.data(), epsilon); | 
 |   } | 
 | } | 
 | }  // namespace | 
 |  | 
 | TEST(Polynomial, InvalidPolynomialOfZeroLengthIsRejected) { | 
 |   // Vector poly(0) is an ambiguous constructor call, so | 
 |   // use the constructor with explicit column count. | 
 |   Vector poly(0, 1); | 
 |   Vector real; | 
 |   Vector imag; | 
 |   bool success = FindPolynomialRoots(poly, &real, &imag); | 
 |  | 
 |   EXPECT_EQ(success, false); | 
 | } | 
 |  | 
 | TEST(Polynomial, ConstantPolynomialReturnsNoRoots) { | 
 |   Vector poly = ConstantPolynomial(1.23); | 
 |   Vector real; | 
 |   Vector imag; | 
 |   bool success = FindPolynomialRoots(poly, &real, &imag); | 
 |  | 
 |   EXPECT_EQ(success, true); | 
 |   EXPECT_EQ(real.size(), 0); | 
 |   EXPECT_EQ(imag.size(), 0); | 
 | } | 
 |  | 
 | TEST(Polynomial, LinearPolynomialWithPositiveRootWorks) { | 
 |   const double roots[1] = { 42.42 }; | 
 |   RunPolynomialTestRealRoots(roots, true, true, kEpsilon); | 
 | } | 
 |  | 
 | TEST(Polynomial, LinearPolynomialWithNegativeRootWorks) { | 
 |   const double roots[1] = { -42.42 }; | 
 |   RunPolynomialTestRealRoots(roots, true, true, kEpsilon); | 
 | } | 
 |  | 
 | TEST(Polynomial, QuadraticPolynomialWithPositiveRootsWorks) { | 
 |   const double roots[2] = { 1.0, 42.42 }; | 
 |   RunPolynomialTestRealRoots(roots, true, true, kEpsilon); | 
 | } | 
 |  | 
 | TEST(Polynomial, QuadraticPolynomialWithOneNegativeRootWorks) { | 
 |   const double roots[2] = { -42.42, 1.0 }; | 
 |   RunPolynomialTestRealRoots(roots, true, true, kEpsilon); | 
 | } | 
 |  | 
 | TEST(Polynomial, QuadraticPolynomialWithTwoNegativeRootsWorks) { | 
 |   const double roots[2] = { -42.42, -1.0 }; | 
 |   RunPolynomialTestRealRoots(roots, true, true, kEpsilon); | 
 | } | 
 |  | 
 | TEST(Polynomial, QuadraticPolynomialWithCloseRootsWorks) { | 
 |   const double roots[2] = { 42.42, 42.43 }; | 
 |   RunPolynomialTestRealRoots(roots, true, false, kEpsilonLoose); | 
 | } | 
 |  | 
 | TEST(Polynomial, QuadraticPolynomialWithComplexRootsWorks) { | 
 |   Vector real; | 
 |   Vector imag; | 
 |  | 
 |   Vector poly = ConstantPolynomial(1.23); | 
 |   poly = AddComplexRootPair(poly, 42.42, 4.2); | 
 |   bool success = FindPolynomialRoots(poly, &real, &imag); | 
 |  | 
 |   EXPECT_EQ(success, true); | 
 |   EXPECT_EQ(real.size(), 2); | 
 |   EXPECT_EQ(imag.size(), 2); | 
 |   ExpectClose(real(0), 42.42, kEpsilon); | 
 |   ExpectClose(real(1), 42.42, kEpsilon); | 
 |   ExpectClose(std::abs(imag(0)), 4.2, kEpsilon); | 
 |   ExpectClose(std::abs(imag(1)), 4.2, kEpsilon); | 
 |   ExpectClose(std::abs(imag(0) + imag(1)), 0.0, kEpsilon); | 
 | } | 
 |  | 
 | TEST(Polynomial, QuarticPolynomialWorks) { | 
 |   const double roots[4] = { 1.23e-4, 1.23e-1, 1.23e+2, 1.23e+5 }; | 
 |   RunPolynomialTestRealRoots(roots, true, true, kEpsilon); | 
 | } | 
 |  | 
 | TEST(Polynomial, QuarticPolynomialWithTwoClustersOfCloseRootsWorks) { | 
 |   const double roots[4] = { 1.23e-1, 2.46e-1, 1.23e+5, 2.46e+5 }; | 
 |   RunPolynomialTestRealRoots(roots, true, true, kEpsilonLoose); | 
 | } | 
 |  | 
 | TEST(Polynomial, QuarticPolynomialWithTwoZeroRootsWorks) { | 
 |   const double roots[4] = { -42.42, 0.0, 0.0, 42.42 }; | 
 |   RunPolynomialTestRealRoots(roots, true, true, 2 * kEpsilonLoose); | 
 | } | 
 |  | 
 | TEST(Polynomial, QuarticMonomialWorks) { | 
 |   const double roots[4] = { 0.0, 0.0, 0.0, 0.0 }; | 
 |   RunPolynomialTestRealRoots(roots, true, true, kEpsilon); | 
 | } | 
 |  | 
 | TEST(Polynomial, NullPointerAsImaginaryPartWorks) { | 
 |   const double roots[4] = { 1.23e-4, 1.23e-1, 1.23e+2, 1.23e+5 }; | 
 |   RunPolynomialTestRealRoots(roots, true, false, kEpsilon); | 
 | } | 
 |  | 
 | TEST(Polynomial, NullPointerAsRealPartWorks) { | 
 |   const double roots[4] = { 1.23e-4, 1.23e-1, 1.23e+2, 1.23e+5 }; | 
 |   RunPolynomialTestRealRoots(roots, false, true, kEpsilon); | 
 | } | 
 |  | 
 | TEST(Polynomial, BothOutputArgumentsNullWorks) { | 
 |   const double roots[4] = { 1.23e-4, 1.23e-1, 1.23e+2, 1.23e+5 }; | 
 |   RunPolynomialTestRealRoots(roots, false, false, kEpsilon); | 
 | } | 
 |  | 
 | TEST(Polynomial, DifferentiateConstantPolynomial) { | 
 |   // p(x) = 1; | 
 |   Vector polynomial(1); | 
 |   polynomial(0) = 1.0; | 
 |   const Vector derivative = DifferentiatePolynomial(polynomial); | 
 |   EXPECT_EQ(derivative.rows(), 1); | 
 |   EXPECT_EQ(derivative(0), 0); | 
 | } | 
 |  | 
 | TEST(Polynomial, DifferentiateQuadraticPolynomial) { | 
 |   // p(x) = x^2 + 2x + 3; | 
 |   Vector polynomial(3); | 
 |   polynomial(0) = 1.0; | 
 |   polynomial(1) = 2.0; | 
 |   polynomial(2) = 3.0; | 
 |  | 
 |   const Vector derivative = DifferentiatePolynomial(polynomial); | 
 |   EXPECT_EQ(derivative.rows(), 2); | 
 |   EXPECT_EQ(derivative(0), 2.0); | 
 |   EXPECT_EQ(derivative(1), 2.0); | 
 | } | 
 |  | 
 | TEST(Polynomial, MinimizeConstantPolynomial) { | 
 |   // p(x) = 1; | 
 |   Vector polynomial(1); | 
 |   polynomial(0) = 1.0; | 
 |  | 
 |   double optimal_x = 0.0; | 
 |   double optimal_value = 0.0; | 
 |   double min_x = 0.0; | 
 |   double max_x = 1.0; | 
 |   MinimizePolynomial(polynomial, min_x, max_x, &optimal_x, &optimal_value); | 
 |  | 
 |   EXPECT_EQ(optimal_value, 1.0); | 
 |   EXPECT_LE(optimal_x, max_x); | 
 |   EXPECT_GE(optimal_x, min_x); | 
 | } | 
 |  | 
 | TEST(Polynomial, MinimizeLinearPolynomial) { | 
 |   // p(x) = x - 2 | 
 |   Vector polynomial(2); | 
 |  | 
 |   polynomial(0) = 1.0; | 
 |   polynomial(1) = 2.0; | 
 |  | 
 |   double optimal_x = 0.0; | 
 |   double optimal_value = 0.0; | 
 |   double min_x = 0.0; | 
 |   double max_x = 1.0; | 
 |   MinimizePolynomial(polynomial, min_x, max_x, &optimal_x, &optimal_value); | 
 |  | 
 |   EXPECT_EQ(optimal_x, 0.0); | 
 |   EXPECT_EQ(optimal_value, 2.0); | 
 | } | 
 |  | 
 |  | 
 | TEST(Polynomial, MinimizeQuadraticPolynomial) { | 
 |   // p(x) = x^2 - 3 x + 2 | 
 |   // min_x = 3/2 | 
 |   // min_value = -1/4; | 
 |   Vector polynomial(3); | 
 |   polynomial(0) = 1.0; | 
 |   polynomial(1) = -3.0; | 
 |   polynomial(2) = 2.0; | 
 |  | 
 |   double optimal_x = 0.0; | 
 |   double optimal_value = 0.0; | 
 |   double min_x = -2.0; | 
 |   double max_x = 2.0; | 
 |   MinimizePolynomial(polynomial, min_x, max_x, &optimal_x, &optimal_value); | 
 |   EXPECT_EQ(optimal_x, 3.0/2.0); | 
 |   EXPECT_EQ(optimal_value, -1.0/4.0); | 
 |  | 
 |   min_x = -2.0; | 
 |   max_x = 1.0; | 
 |   MinimizePolynomial(polynomial, min_x, max_x, &optimal_x, &optimal_value); | 
 |   EXPECT_EQ(optimal_x, 1.0); | 
 |   EXPECT_EQ(optimal_value, 0.0); | 
 |  | 
 |   min_x = 2.0; | 
 |   max_x = 3.0; | 
 |   MinimizePolynomial(polynomial, min_x, max_x, &optimal_x, &optimal_value); | 
 |   EXPECT_EQ(optimal_x, 2.0); | 
 |   EXPECT_EQ(optimal_value, 0.0); | 
 | } | 
 |  | 
 | TEST(Polymomial, ConstantInterpolatingPolynomial) { | 
 |   // p(x) = 1.0 | 
 |   Vector true_polynomial(1); | 
 |   true_polynomial << 1.0; | 
 |  | 
 |   vector<FunctionSample> samples; | 
 |   FunctionSample sample; | 
 |   sample.x = 1.0; | 
 |   sample.value = 1.0; | 
 |   sample.value_is_valid = true; | 
 |   samples.push_back(sample); | 
 |  | 
 |   const Vector polynomial = FindInterpolatingPolynomial(samples); | 
 |   EXPECT_NEAR((true_polynomial - polynomial).norm(), 0.0, 1e-15); | 
 | } | 
 |  | 
 | TEST(Polynomial, LinearInterpolatingPolynomial) { | 
 |   // p(x) = 2x - 1 | 
 |   Vector true_polynomial(2); | 
 |   true_polynomial << 2.0, -1.0; | 
 |  | 
 |   vector<FunctionSample> samples; | 
 |   FunctionSample sample; | 
 |   sample.x = 1.0; | 
 |   sample.value = 1.0; | 
 |   sample.value_is_valid = true; | 
 |   sample.gradient = 2.0; | 
 |   sample.gradient_is_valid = true; | 
 |   samples.push_back(sample); | 
 |  | 
 |   const Vector polynomial = FindInterpolatingPolynomial(samples); | 
 |   EXPECT_NEAR((true_polynomial - polynomial).norm(), 0.0, 1e-15); | 
 | } | 
 |  | 
 | TEST(Polynomial, QuadraticInterpolatingPolynomial) { | 
 |   // p(x) = 2x^2 + 3x + 2 | 
 |   Vector true_polynomial(3); | 
 |   true_polynomial << 2.0, 3.0, 2.0; | 
 |  | 
 |   vector<FunctionSample> samples; | 
 |   { | 
 |     FunctionSample sample; | 
 |     sample.x = 1.0; | 
 |     sample.value = 7.0; | 
 |     sample.value_is_valid = true; | 
 |     sample.gradient = 7.0; | 
 |     sample.gradient_is_valid = true; | 
 |     samples.push_back(sample); | 
 |   } | 
 |  | 
 |   { | 
 |     FunctionSample sample; | 
 |     sample.x = -3.0; | 
 |     sample.value = 11.0; | 
 |     sample.value_is_valid = true; | 
 |     samples.push_back(sample); | 
 |   } | 
 |  | 
 |   Vector polynomial = FindInterpolatingPolynomial(samples); | 
 |   EXPECT_NEAR((true_polynomial - polynomial).norm(), 0.0, 1e-15); | 
 | } | 
 |  | 
 | TEST(Polynomial, DeficientCubicInterpolatingPolynomial) { | 
 |   // p(x) = 2x^2 + 3x + 2 | 
 |   Vector true_polynomial(4); | 
 |   true_polynomial << 0.0, 2.0, 3.0, 2.0; | 
 |  | 
 |   vector<FunctionSample> samples; | 
 |   { | 
 |     FunctionSample sample; | 
 |     sample.x = 1.0; | 
 |     sample.value = 7.0; | 
 |     sample.value_is_valid = true; | 
 |     sample.gradient = 7.0; | 
 |     sample.gradient_is_valid = true; | 
 |     samples.push_back(sample); | 
 |   } | 
 |  | 
 |   { | 
 |     FunctionSample sample; | 
 |     sample.x = -3.0; | 
 |     sample.value = 11.0; | 
 |     sample.value_is_valid = true; | 
 |     sample.gradient = -9; | 
 |     sample.gradient_is_valid = true; | 
 |     samples.push_back(sample); | 
 |   } | 
 |  | 
 |   const Vector polynomial = FindInterpolatingPolynomial(samples); | 
 |   EXPECT_NEAR((true_polynomial - polynomial).norm(), 0.0, 1e-14); | 
 | } | 
 |  | 
 |  | 
 | TEST(Polynomial, CubicInterpolatingPolynomialFromValues) { | 
 |   // p(x) = x^3 + 2x^2 + 3x + 2 | 
 |   Vector true_polynomial(4); | 
 |   true_polynomial << 1.0, 2.0, 3.0, 2.0; | 
 |  | 
 |   vector<FunctionSample> samples; | 
 |   { | 
 |     FunctionSample sample; | 
 |     sample.x = 1.0; | 
 |     sample.value = EvaluatePolynomial(true_polynomial, sample.x); | 
 |     sample.value_is_valid = true; | 
 |     samples.push_back(sample); | 
 |   } | 
 |  | 
 |   { | 
 |     FunctionSample sample; | 
 |     sample.x = -3.0; | 
 |     sample.value = EvaluatePolynomial(true_polynomial, sample.x); | 
 |     sample.value_is_valid = true; | 
 |     samples.push_back(sample); | 
 |   } | 
 |  | 
 |   { | 
 |     FunctionSample sample; | 
 |     sample.x = 2.0; | 
 |     sample.value = EvaluatePolynomial(true_polynomial, sample.x); | 
 |     sample.value_is_valid = true; | 
 |     samples.push_back(sample); | 
 |   } | 
 |  | 
 |   { | 
 |     FunctionSample sample; | 
 |     sample.x = 0.0; | 
 |     sample.value = EvaluatePolynomial(true_polynomial, sample.x); | 
 |     sample.value_is_valid = true; | 
 |     samples.push_back(sample); | 
 |   } | 
 |  | 
 |   const Vector polynomial = FindInterpolatingPolynomial(samples); | 
 |   EXPECT_NEAR((true_polynomial - polynomial).norm(), 0.0, 1e-14); | 
 | } | 
 |  | 
 | TEST(Polynomial, CubicInterpolatingPolynomialFromValuesAndOneGradient) { | 
 |   // p(x) = x^3 + 2x^2 + 3x + 2 | 
 |   Vector true_polynomial(4); | 
 |   true_polynomial << 1.0, 2.0, 3.0, 2.0; | 
 |   Vector true_gradient_polynomial = DifferentiatePolynomial(true_polynomial); | 
 |  | 
 |   vector<FunctionSample> samples; | 
 |   { | 
 |     FunctionSample sample; | 
 |     sample.x = 1.0; | 
 |     sample.value = EvaluatePolynomial(true_polynomial, sample.x); | 
 |     sample.value_is_valid = true; | 
 |     samples.push_back(sample); | 
 |   } | 
 |  | 
 |   { | 
 |     FunctionSample sample; | 
 |     sample.x = -3.0; | 
 |     sample.value = EvaluatePolynomial(true_polynomial, sample.x); | 
 |     sample.value_is_valid = true; | 
 |     samples.push_back(sample); | 
 |   } | 
 |  | 
 |   { | 
 |     FunctionSample sample; | 
 |     sample.x = 2.0; | 
 |     sample.value = EvaluatePolynomial(true_polynomial, sample.x); | 
 |     sample.value_is_valid = true; | 
 |     sample.gradient = EvaluatePolynomial(true_gradient_polynomial, sample.x); | 
 |     sample.gradient_is_valid = true; | 
 |     samples.push_back(sample); | 
 |   } | 
 |  | 
 |   const Vector polynomial = FindInterpolatingPolynomial(samples); | 
 |   EXPECT_NEAR((true_polynomial - polynomial).norm(), 0.0, 1e-14); | 
 | } | 
 |  | 
 | TEST(Polynomial, CubicInterpolatingPolynomialFromValuesAndGradients) { | 
 |   // p(x) = x^3 + 2x^2 + 3x + 2 | 
 |   Vector true_polynomial(4); | 
 |   true_polynomial << 1.0, 2.0, 3.0, 2.0; | 
 |   Vector true_gradient_polynomial = DifferentiatePolynomial(true_polynomial); | 
 |  | 
 |   vector<FunctionSample> samples; | 
 |   { | 
 |     FunctionSample sample; | 
 |     sample.x = -3.0; | 
 |     sample.value = EvaluatePolynomial(true_polynomial, sample.x); | 
 |     sample.value_is_valid = true; | 
 |     sample.gradient = EvaluatePolynomial(true_gradient_polynomial, sample.x); | 
 |     sample.gradient_is_valid = true; | 
 |     samples.push_back(sample); | 
 |   } | 
 |  | 
 |   { | 
 |     FunctionSample sample; | 
 |     sample.x = 2.0; | 
 |     sample.value = EvaluatePolynomial(true_polynomial, sample.x); | 
 |     sample.value_is_valid = true; | 
 |     sample.gradient = EvaluatePolynomial(true_gradient_polynomial, sample.x); | 
 |     sample.gradient_is_valid = true; | 
 |     samples.push_back(sample); | 
 |   } | 
 |  | 
 |   const Vector polynomial = FindInterpolatingPolynomial(samples); | 
 |   EXPECT_NEAR((true_polynomial - polynomial).norm(), 0.0, 1e-14); | 
 | } | 
 |  | 
 | }  // namespace internal | 
 | }  // namespace ceres |