| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2017 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: sameeragarwal@google.com (Sameer Agarwal) |
| |
| #include "ceres/sparse_cholesky.h" |
| |
| #include <numeric> |
| #include <vector> |
| |
| #include "Eigen/Dense" |
| #include "Eigen/SparseCore" |
| #include "ceres/block_sparse_matrix.h" |
| #include "ceres/compressed_row_sparse_matrix.h" |
| #include "ceres/inner_product_computer.h" |
| #include "ceres/internal/eigen.h" |
| #include "ceres/internal/scoped_ptr.h" |
| #include "ceres/random.h" |
| #include "glog/logging.h" |
| #include "gtest/gtest.h" |
| |
| namespace ceres { |
| namespace internal { |
| |
| BlockSparseMatrix* CreateRandomFullRankMatrix(const int num_col_blocks, |
| const int min_col_block_size, |
| const int max_col_block_size, |
| const double block_density) { |
| // Create a random matrix |
| BlockSparseMatrix::RandomMatrixOptions options; |
| options.num_col_blocks = num_col_blocks; |
| options.min_col_block_size = min_col_block_size; |
| options.max_col_block_size = max_col_block_size; |
| |
| options.num_row_blocks = 2 * num_col_blocks; |
| options.min_row_block_size = 1; |
| options.max_row_block_size = max_col_block_size; |
| options.block_density = block_density; |
| scoped_ptr<BlockSparseMatrix> random_matrix( |
| BlockSparseMatrix::CreateRandomMatrix(options)); |
| |
| // Add a diagonal block sparse matrix to make it full rank. |
| Vector diagonal = Vector::Ones(random_matrix->num_cols()); |
| scoped_ptr<BlockSparseMatrix> block_diagonal( |
| BlockSparseMatrix::CreateDiagonalMatrix( |
| diagonal.data(), random_matrix->block_structure()->cols)); |
| random_matrix->AppendRows(*block_diagonal); |
| return random_matrix.release(); |
| } |
| |
| bool ComputeExpectedSolution(const CompressedRowSparseMatrix& lhs, |
| const Vector& rhs, |
| Vector* solution) { |
| Matrix eigen_lhs; |
| lhs.ToDenseMatrix(&eigen_lhs); |
| if (lhs.storage_type() == CompressedRowSparseMatrix::UPPER_TRIANGULAR) { |
| Matrix full_lhs = eigen_lhs.selfadjointView<Eigen::Upper>(); |
| Eigen::LLT<Matrix, Eigen::Upper> llt = |
| eigen_lhs.selfadjointView<Eigen::Upper>().llt(); |
| if (llt.info() != Eigen::Success) { |
| return false; |
| } |
| *solution = llt.solve(rhs); |
| return (llt.info() == Eigen::Success); |
| } |
| |
| Matrix full_lhs = eigen_lhs.selfadjointView<Eigen::Lower>(); |
| Eigen::LLT<Matrix, Eigen::Lower> llt = |
| eigen_lhs.selfadjointView<Eigen::Lower>().llt(); |
| if (llt.info() != Eigen::Success) { |
| return false; |
| } |
| *solution = llt.solve(rhs); |
| return (llt.info() == Eigen::Success); |
| } |
| |
| void SparseCholeskySolverUnitTest( |
| const SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type, |
| const OrderingType ordering_type, |
| const bool use_block_structure, |
| const int num_blocks, |
| const int min_block_size, |
| const int max_block_size, |
| const double block_density) { |
| scoped_ptr<SparseCholesky> sparse_cholesky(SparseCholesky::Create( |
| sparse_linear_algebra_library_type, ordering_type)); |
| const CompressedRowSparseMatrix::StorageType storage_type = |
| sparse_cholesky->StorageType(); |
| |
| scoped_ptr<BlockSparseMatrix> m(CreateRandomFullRankMatrix( |
| num_blocks, min_block_size, max_block_size, block_density)); |
| scoped_ptr<InnerProductComputer> inner_product_computer( |
| InnerProductComputer::Create(*m, storage_type)); |
| inner_product_computer->Compute(); |
| CompressedRowSparseMatrix* lhs = inner_product_computer->mutable_result(); |
| |
| if (!use_block_structure) { |
| lhs->mutable_row_blocks()->clear(); |
| lhs->mutable_col_blocks()->clear(); |
| } |
| |
| Vector rhs = Vector::Random(lhs->num_rows()); |
| Vector expected(lhs->num_rows()); |
| Vector actual(lhs->num_rows()); |
| |
| EXPECT_TRUE(ComputeExpectedSolution(*lhs, rhs, &expected)); |
| std::string message; |
| EXPECT_EQ(sparse_cholesky->FactorAndSolve( |
| lhs, rhs.data(), actual.data(), &message), |
| LINEAR_SOLVER_SUCCESS); |
| Matrix eigen_lhs; |
| lhs->ToDenseMatrix(&eigen_lhs); |
| EXPECT_NEAR((actual - expected).norm() / actual.norm(), |
| 0.0, |
| std::numeric_limits<double>::epsilon() * 10) |
| << "\n" |
| << eigen_lhs; |
| } |
| |
| typedef ::testing::tuple<SparseLinearAlgebraLibraryType, OrderingType, bool> |
| Param; |
| |
| std::string ParamInfoToString(testing::TestParamInfo<Param> info) { |
| Param param = info.param; |
| std::stringstream ss; |
| ss << SparseLinearAlgebraLibraryTypeToString(::testing::get<0>(param)) << "_" |
| << (::testing::get<1>(param) == AMD ? "AMD" : "NATURAL") << "_" |
| << (::testing::get<2>(param) ? "UseBlockStructure" : "NoBlockStructure"); |
| return ss.str(); |
| } |
| |
| class SparseCholeskyTest : public ::testing::TestWithParam<Param> {}; |
| |
| TEST_P(SparseCholeskyTest, FactorAndSolve) { |
| SetRandomState(2982); |
| const int kMinNumBlocks = 1; |
| const int kMaxNumBlocks = 10; |
| const int kNumTrials = 10; |
| const int kMinBlockSize = 1; |
| const int kMaxBlockSize = 5; |
| |
| for (int num_blocks = kMinNumBlocks; num_blocks < kMaxNumBlocks; |
| ++num_blocks) { |
| for (int trial = 0; trial < kNumTrials; ++trial) { |
| const double block_density = std::max(0.1, RandDouble()); |
| Param param = GetParam(); |
| SparseCholeskySolverUnitTest(::testing::get<0>(param), |
| ::testing::get<1>(param), |
| ::testing::get<2>(param), |
| num_blocks, |
| kMinBlockSize, |
| kMaxBlockSize, |
| block_density); |
| } |
| } |
| } |
| |
| #ifndef CERES_NO_SUITESPARSE |
| INSTANTIATE_TEST_CASE_P(SuiteSparseCholesky, |
| SparseCholeskyTest, |
| ::testing::Combine(::testing::Values(SUITE_SPARSE), |
| ::testing::Values(AMD, NATURAL), |
| ::testing::Values(true, false)), |
| ParamInfoToString); |
| #endif |
| |
| #ifndef CERES_NO_CXSPARSE |
| INSTANTIATE_TEST_CASE_P(CXSparseCholesky, |
| SparseCholeskyTest, |
| ::testing::Combine(::testing::Values(CX_SPARSE), |
| ::testing::Values(AMD, NATURAL), |
| ::testing::Values(true, false)), |
| ParamInfoToString); |
| #endif |
| |
| #ifdef CERES_USE_EIGEN_SPARSE |
| INSTANTIATE_TEST_CASE_P(EigenSparseCholesky, |
| SparseCholeskyTest, |
| ::testing::Combine(::testing::Values(EIGEN_SPARSE), |
| ::testing::Values(AMD, NATURAL), |
| ::testing::Values(true, false)), |
| ParamInfoToString); |
| #endif |
| |
| } // namespace internal |
| } // namespace ceres |