| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2015 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
 |  | 
 | #include "ceres/compressed_col_sparse_matrix_utils.h" | 
 |  | 
 | #include <algorithm> | 
 | #include <numeric> | 
 |  | 
 | #include "Eigen/SparseCore" | 
 | #include "ceres/internal/export.h" | 
 | #include "ceres/triplet_sparse_matrix.h" | 
 | #include "glog/logging.h" | 
 | #include "gtest/gtest.h" | 
 |  | 
 | namespace ceres { | 
 | namespace internal { | 
 |  | 
 | using std::vector; | 
 |  | 
 | TEST(_, BlockPermutationToScalarPermutation) { | 
 |   vector<int> blocks; | 
 |   //  Block structure | 
 |   //  0  --1-  ---2---  ---3---  4 | 
 |   // [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] | 
 |   blocks.push_back(1); | 
 |   blocks.push_back(2); | 
 |   blocks.push_back(3); | 
 |   blocks.push_back(3); | 
 |   blocks.push_back(1); | 
 |  | 
 |   // Block ordering | 
 |   // [1, 0, 2, 4, 5] | 
 |   vector<int> block_ordering; | 
 |   block_ordering.push_back(1); | 
 |   block_ordering.push_back(0); | 
 |   block_ordering.push_back(2); | 
 |   block_ordering.push_back(4); | 
 |   block_ordering.push_back(3); | 
 |  | 
 |   // Expected ordering | 
 |   // [1, 2, 0, 3, 4, 5, 9, 6, 7, 8] | 
 |   vector<int> expected_scalar_ordering; | 
 |   expected_scalar_ordering.push_back(1); | 
 |   expected_scalar_ordering.push_back(2); | 
 |   expected_scalar_ordering.push_back(0); | 
 |   expected_scalar_ordering.push_back(3); | 
 |   expected_scalar_ordering.push_back(4); | 
 |   expected_scalar_ordering.push_back(5); | 
 |   expected_scalar_ordering.push_back(9); | 
 |   expected_scalar_ordering.push_back(6); | 
 |   expected_scalar_ordering.push_back(7); | 
 |   expected_scalar_ordering.push_back(8); | 
 |  | 
 |   vector<int> scalar_ordering; | 
 |   BlockOrderingToScalarOrdering(blocks, block_ordering, &scalar_ordering); | 
 |   EXPECT_EQ(scalar_ordering.size(), expected_scalar_ordering.size()); | 
 |   for (int i = 0; i < expected_scalar_ordering.size(); ++i) { | 
 |     EXPECT_EQ(scalar_ordering[i], expected_scalar_ordering[i]); | 
 |   } | 
 | } | 
 |  | 
 | static void FillBlock(const vector<int>& row_blocks, | 
 |                       const vector<int>& col_blocks, | 
 |                       const int row_block_id, | 
 |                       const int col_block_id, | 
 |                       vector<Eigen::Triplet<double>>* triplets) { | 
 |   const int row_offset = | 
 |       std::accumulate(&row_blocks[0], &row_blocks[row_block_id], 0); | 
 |   const int col_offset = | 
 |       std::accumulate(&col_blocks[0], &col_blocks[col_block_id], 0); | 
 |   for (int r = 0; r < row_blocks[row_block_id]; ++r) { | 
 |     for (int c = 0; c < col_blocks[col_block_id]; ++c) { | 
 |       triplets->push_back( | 
 |           Eigen::Triplet<double>(row_offset + r, col_offset + c, 1.0)); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | TEST(_, ScalarMatrixToBlockMatrix) { | 
 |   // Block sparsity. | 
 |   // | 
 |   //     [1 2 3 2] | 
 |   // [1]  x   x | 
 |   // [2]    x   x | 
 |   // [2]  x x | 
 |   // num_nonzeros = 1 + 3 + 4 + 4 + 1 + 2 = 15 | 
 |  | 
 |   vector<int> col_blocks; | 
 |   col_blocks.push_back(1); | 
 |   col_blocks.push_back(2); | 
 |   col_blocks.push_back(3); | 
 |   col_blocks.push_back(2); | 
 |  | 
 |   vector<int> row_blocks; | 
 |   row_blocks.push_back(1); | 
 |   row_blocks.push_back(2); | 
 |   row_blocks.push_back(2); | 
 |  | 
 |   const int num_rows = | 
 |       std::accumulate(row_blocks.begin(), row_blocks.end(), 0.0); | 
 |   const int num_cols = | 
 |       std::accumulate(col_blocks.begin(), col_blocks.end(), 0.0); | 
 |  | 
 |   vector<Eigen::Triplet<double>> triplets; | 
 |   FillBlock(row_blocks, col_blocks, 0, 0, &triplets); | 
 |   FillBlock(row_blocks, col_blocks, 2, 0, &triplets); | 
 |   FillBlock(row_blocks, col_blocks, 1, 1, &triplets); | 
 |   FillBlock(row_blocks, col_blocks, 2, 1, &triplets); | 
 |   FillBlock(row_blocks, col_blocks, 0, 2, &triplets); | 
 |   FillBlock(row_blocks, col_blocks, 1, 3, &triplets); | 
 |   Eigen::SparseMatrix<double> sparse_matrix(num_rows, num_cols); | 
 |   sparse_matrix.setFromTriplets(triplets.begin(), triplets.end()); | 
 |  | 
 |   vector<int> expected_compressed_block_rows; | 
 |   expected_compressed_block_rows.push_back(0); | 
 |   expected_compressed_block_rows.push_back(2); | 
 |   expected_compressed_block_rows.push_back(1); | 
 |   expected_compressed_block_rows.push_back(2); | 
 |   expected_compressed_block_rows.push_back(0); | 
 |   expected_compressed_block_rows.push_back(1); | 
 |  | 
 |   vector<int> expected_compressed_block_cols; | 
 |   expected_compressed_block_cols.push_back(0); | 
 |   expected_compressed_block_cols.push_back(2); | 
 |   expected_compressed_block_cols.push_back(4); | 
 |   expected_compressed_block_cols.push_back(5); | 
 |   expected_compressed_block_cols.push_back(6); | 
 |  | 
 |   vector<int> compressed_block_rows; | 
 |   vector<int> compressed_block_cols; | 
 |   CompressedColumnScalarMatrixToBlockMatrix(sparse_matrix.innerIndexPtr(), | 
 |                                             sparse_matrix.outerIndexPtr(), | 
 |                                             row_blocks, | 
 |                                             col_blocks, | 
 |                                             &compressed_block_rows, | 
 |                                             &compressed_block_cols); | 
 |  | 
 |   EXPECT_EQ(compressed_block_rows, expected_compressed_block_rows); | 
 |   EXPECT_EQ(compressed_block_cols, expected_compressed_block_cols); | 
 | } | 
 |  | 
 | class SolveUpperTriangularTest : public ::testing::Test { | 
 |  protected: | 
 |   void SetUp() override { | 
 |     cols.resize(5); | 
 |     rows.resize(7); | 
 |     values.resize(7); | 
 |  | 
 |     cols[0] = 0; | 
 |     rows[0] = 0; | 
 |     values[0] = 0.50754; | 
 |  | 
 |     cols[1] = 1; | 
 |     rows[1] = 1; | 
 |     values[1] = 0.80483; | 
 |  | 
 |     cols[2] = 2; | 
 |     rows[2] = 1; | 
 |     values[2] = 0.14120; | 
 |     rows[3] = 2; | 
 |     values[3] = 0.3; | 
 |  | 
 |     cols[3] = 4; | 
 |     rows[4] = 0; | 
 |     values[4] = 0.77696; | 
 |     rows[5] = 1; | 
 |     values[5] = 0.41860; | 
 |     rows[6] = 3; | 
 |     values[6] = 0.88979; | 
 |  | 
 |     cols[4] = 7; | 
 |   } | 
 |  | 
 |   vector<int> cols; | 
 |   vector<int> rows; | 
 |   vector<double> values; | 
 | }; | 
 |  | 
 | TEST_F(SolveUpperTriangularTest, SolveInPlace) { | 
 |   double rhs_and_solution[] = {1.0, 1.0, 2.0, 2.0}; | 
 |   const double expected[] = {-1.4706, -1.0962, 6.6667, 2.2477}; | 
 |  | 
 |   SolveUpperTriangularInPlace<int>( | 
 |       cols.size() - 1, &rows[0], &cols[0], &values[0], rhs_and_solution); | 
 |  | 
 |   for (int i = 0; i < 4; ++i) { | 
 |     EXPECT_NEAR(rhs_and_solution[i], expected[i], 1e-4) << i; | 
 |   } | 
 | } | 
 |  | 
 | TEST_F(SolveUpperTriangularTest, TransposeSolveInPlace) { | 
 |   double rhs_and_solution[] = {1.0, 1.0, 2.0, 2.0}; | 
 |   double expected[] = {1.970288, 1.242498, 6.081864, -0.057255}; | 
 |  | 
 |   SolveUpperTriangularTransposeInPlace<int>( | 
 |       cols.size() - 1, &rows[0], &cols[0], &values[0], rhs_and_solution); | 
 |  | 
 |   for (int i = 0; i < 4; ++i) { | 
 |     EXPECT_NEAR(rhs_and_solution[i], expected[i], 1e-4) << i; | 
 |   } | 
 | } | 
 |  | 
 | TEST_F(SolveUpperTriangularTest, RTRSolveWithSparseRHS) { | 
 |   double solution[4]; | 
 |   // clang-format off | 
 |   double expected[] = { 6.8420e+00,   1.0057e+00,  -1.4907e-16,  -1.9335e+00, | 
 |                         1.0057e+00,   2.2275e+00,  -1.9493e+00,  -6.5693e-01, | 
 |                         -1.4907e-16,  -1.9493e+00,   1.1111e+01,   9.7381e-17, | 
 |                         -1.9335e+00,  -6.5693e-01,   9.7381e-17,   1.2631e+00 }; | 
 |   // clang-format on | 
 |  | 
 |   for (int i = 0; i < 4; ++i) { | 
 |     SolveRTRWithSparseRHS<int>( | 
 |         cols.size() - 1, &rows[0], &cols[0], &values[0], i, solution); | 
 |     for (int j = 0; j < 4; ++j) { | 
 |       EXPECT_NEAR(solution[j], expected[4 * i + j], 1e-3) << i; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | }  // namespace internal | 
 | }  // namespace ceres |