| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2015 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: richie.stebbing@gmail.com (Richard Stebbing) | 
 |  | 
 | #include "ceres/dynamic_compressed_row_sparse_matrix.h" | 
 |  | 
 | #include <memory> | 
 |  | 
 | #include "ceres/casts.h" | 
 | #include "ceres/compressed_row_sparse_matrix.h" | 
 | #include "ceres/internal/eigen.h" | 
 | #include "ceres/linear_least_squares_problems.h" | 
 | #include "ceres/triplet_sparse_matrix.h" | 
 | #include "gtest/gtest.h" | 
 |  | 
 | namespace ceres { | 
 | namespace internal { | 
 |  | 
 | using std::copy; | 
 | using std::vector; | 
 |  | 
 | class DynamicCompressedRowSparseMatrixTest : public ::testing::Test { | 
 |  protected: | 
 |   void SetUp() final { | 
 |     num_rows = 7; | 
 |     num_cols = 4; | 
 |  | 
 |     // The number of additional elements reserved when `Finalize` is called | 
 |     // should have no effect on the number of rows, columns or nonzeros. | 
 |     // Set this to some nonzero value to be sure. | 
 |     num_additional_elements = 13; | 
 |  | 
 |     expected_num_nonzeros = num_rows * num_cols - std::min(num_rows, num_cols); | 
 |  | 
 |     InitialiseDenseReference(); | 
 |     InitialiseSparseMatrixReferences(); | 
 |  | 
 |     dcrsm = std::make_unique<DynamicCompressedRowSparseMatrix>( | 
 |         num_rows, num_cols, 0); | 
 |   } | 
 |  | 
 |   void Finalize() { dcrsm->Finalize(num_additional_elements); } | 
 |  | 
 |   void InitialiseDenseReference() { | 
 |     dense.resize(num_rows, num_cols); | 
 |     dense.setZero(); | 
 |     int num_nonzeros = 0; | 
 |     for (int i = 0; i < (num_rows * num_cols); ++i) { | 
 |       const int r = i / num_cols, c = i % num_cols; | 
 |       if (r != c) { | 
 |         dense(r, c) = i + 1; | 
 |         ++num_nonzeros; | 
 |       } | 
 |     } | 
 |     ASSERT_EQ(num_nonzeros, expected_num_nonzeros); | 
 |   } | 
 |  | 
 |   void InitialiseSparseMatrixReferences() { | 
 |     vector<int> rows, cols; | 
 |     vector<double> values; | 
 |     for (int i = 0; i < (num_rows * num_cols); ++i) { | 
 |       const int r = i / num_cols, c = i % num_cols; | 
 |       if (r != c) { | 
 |         rows.push_back(r); | 
 |         cols.push_back(c); | 
 |         values.push_back(i + 1); | 
 |       } | 
 |     } | 
 |     ASSERT_EQ(values.size(), expected_num_nonzeros); | 
 |  | 
 |     tsm = std::make_unique<TripletSparseMatrix>( | 
 |         num_rows, num_cols, expected_num_nonzeros); | 
 |     copy(rows.begin(), rows.end(), tsm->mutable_rows()); | 
 |     copy(cols.begin(), cols.end(), tsm->mutable_cols()); | 
 |     copy(values.begin(), values.end(), tsm->mutable_values()); | 
 |     tsm->set_num_nonzeros(values.size()); | 
 |  | 
 |     Matrix dense_from_tsm; | 
 |     tsm->ToDenseMatrix(&dense_from_tsm); | 
 |     ASSERT_TRUE((dense.array() == dense_from_tsm.array()).all()); | 
 |  | 
 |     crsm = CompressedRowSparseMatrix::FromTripletSparseMatrix(*tsm); | 
 |     Matrix dense_from_crsm; | 
 |     crsm->ToDenseMatrix(&dense_from_crsm); | 
 |     ASSERT_TRUE((dense.array() == dense_from_crsm.array()).all()); | 
 |   } | 
 |  | 
 |   void InsertNonZeroEntriesFromDenseReference() { | 
 |     for (int r = 0; r < num_rows; ++r) { | 
 |       for (int c = 0; c < num_cols; ++c) { | 
 |         const double& v = dense(r, c); | 
 |         if (v != 0.0) { | 
 |           dcrsm->InsertEntry(r, c, v); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   void ExpectEmpty() { | 
 |     EXPECT_EQ(dcrsm->num_rows(), num_rows); | 
 |     EXPECT_EQ(dcrsm->num_cols(), num_cols); | 
 |     EXPECT_EQ(dcrsm->num_nonzeros(), 0); | 
 |  | 
 |     Matrix dense_from_dcrsm; | 
 |     dcrsm->ToDenseMatrix(&dense_from_dcrsm); | 
 |     EXPECT_EQ(dense_from_dcrsm.rows(), num_rows); | 
 |     EXPECT_EQ(dense_from_dcrsm.cols(), num_cols); | 
 |     EXPECT_TRUE((dense_from_dcrsm.array() == 0.0).all()); | 
 |   } | 
 |  | 
 |   void ExpectEqualToDenseReference() { | 
 |     Matrix dense_from_dcrsm; | 
 |     dcrsm->ToDenseMatrix(&dense_from_dcrsm); | 
 |     EXPECT_TRUE((dense.array() == dense_from_dcrsm.array()).all()); | 
 |   } | 
 |  | 
 |   void ExpectEqualToCompressedRowSparseMatrixReference() { | 
 |     using ConstIntVectorRef = Eigen::Map<const Eigen::VectorXi>; | 
 |  | 
 |     ConstIntVectorRef crsm_rows(crsm->rows(), crsm->num_rows() + 1); | 
 |     ConstIntVectorRef dcrsm_rows(dcrsm->rows(), dcrsm->num_rows() + 1); | 
 |     EXPECT_TRUE((crsm_rows.array() == dcrsm_rows.array()).all()); | 
 |  | 
 |     ConstIntVectorRef crsm_cols(crsm->cols(), crsm->num_nonzeros()); | 
 |     ConstIntVectorRef dcrsm_cols(dcrsm->cols(), dcrsm->num_nonzeros()); | 
 |     EXPECT_TRUE((crsm_cols.array() == dcrsm_cols.array()).all()); | 
 |  | 
 |     ConstVectorRef crsm_values(crsm->values(), crsm->num_nonzeros()); | 
 |     ConstVectorRef dcrsm_values(dcrsm->values(), dcrsm->num_nonzeros()); | 
 |     EXPECT_TRUE((crsm_values.array() == dcrsm_values.array()).all()); | 
 |   } | 
 |  | 
 |   int num_rows; | 
 |   int num_cols; | 
 |  | 
 |   int num_additional_elements; | 
 |  | 
 |   int expected_num_nonzeros; | 
 |  | 
 |   Matrix dense; | 
 |   std::unique_ptr<TripletSparseMatrix> tsm; | 
 |   std::unique_ptr<CompressedRowSparseMatrix> crsm; | 
 |  | 
 |   std::unique_ptr<DynamicCompressedRowSparseMatrix> dcrsm; | 
 | }; | 
 |  | 
 | TEST_F(DynamicCompressedRowSparseMatrixTest, Initialization) { | 
 |   ExpectEmpty(); | 
 |  | 
 |   Finalize(); | 
 |   ExpectEmpty(); | 
 | } | 
 |  | 
 | TEST_F(DynamicCompressedRowSparseMatrixTest, InsertEntryAndFinalize) { | 
 |   InsertNonZeroEntriesFromDenseReference(); | 
 |   ExpectEmpty(); | 
 |  | 
 |   Finalize(); | 
 |   ExpectEqualToDenseReference(); | 
 |   ExpectEqualToCompressedRowSparseMatrixReference(); | 
 | } | 
 |  | 
 | TEST_F(DynamicCompressedRowSparseMatrixTest, ClearRows) { | 
 |   InsertNonZeroEntriesFromDenseReference(); | 
 |   Finalize(); | 
 |   ExpectEqualToDenseReference(); | 
 |   ExpectEqualToCompressedRowSparseMatrixReference(); | 
 |  | 
 |   dcrsm->ClearRows(0, 0); | 
 |   Finalize(); | 
 |   ExpectEqualToDenseReference(); | 
 |   ExpectEqualToCompressedRowSparseMatrixReference(); | 
 |  | 
 |   dcrsm->ClearRows(0, num_rows); | 
 |   ExpectEqualToCompressedRowSparseMatrixReference(); | 
 |  | 
 |   Finalize(); | 
 |   ExpectEmpty(); | 
 |  | 
 |   InsertNonZeroEntriesFromDenseReference(); | 
 |   dcrsm->ClearRows(1, 2); | 
 |   Finalize(); | 
 |   dense.block(1, 0, 2, num_cols).setZero(); | 
 |   ExpectEqualToDenseReference(); | 
 |  | 
 |   InitialiseDenseReference(); | 
 | } | 
 |  | 
 | }  // namespace internal | 
 | }  // namespace ceres |