| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. | 
 | // http://code.google.com/p/ceres-solver/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: jorg@google.com (Jorg Brown) | 
 | // | 
 | // This is an implementation designed to match the anticipated future TR2 | 
 | // implementation of the scoped_ptr class, and its closely-related brethren, | 
 | // scoped_array, scoped_ptr_malloc, and make_scoped_ptr. | 
 |  | 
 | #ifndef CERES_PUBLIC_INTERNAL_SCOPED_PTR_H_ | 
 | #define CERES_PUBLIC_INTERNAL_SCOPED_PTR_H_ | 
 |  | 
 | #include <assert.h> | 
 | #include <stdlib.h> | 
 | #include <cstddef> | 
 | #include <algorithm> | 
 |  | 
 | namespace ceres { | 
 | namespace internal { | 
 |  | 
 | template <class C> class scoped_ptr; | 
 | template <class C, class Free> class scoped_ptr_malloc; | 
 | template <class C> class scoped_array; | 
 |  | 
 | template <class C> | 
 | scoped_ptr<C> make_scoped_ptr(C *); | 
 |  | 
 | // A scoped_ptr<T> is like a T*, except that the destructor of | 
 | // scoped_ptr<T> automatically deletes the pointer it holds (if | 
 | // any). That is, scoped_ptr<T> owns the T object that it points | 
 | // to. Like a T*, a scoped_ptr<T> may hold either NULL or a pointer to | 
 | // a T object. Also like T*, scoped_ptr<T> is thread-compatible, and | 
 | // once you dereference it, you get the threadsafety guarantees of T. | 
 | // | 
 | // The size of a scoped_ptr is small: sizeof(scoped_ptr<C>) == sizeof(C*) | 
 | template <class C> | 
 | class scoped_ptr { | 
 |  public: | 
 |   // The element type | 
 |   typedef C element_type; | 
 |  | 
 |   // Constructor.  Defaults to intializing with NULL. | 
 |   // There is no way to create an uninitialized scoped_ptr. | 
 |   // The input parameter must be allocated with new. | 
 |   explicit scoped_ptr(C* p = NULL) : ptr_(p) { } | 
 |  | 
 |   // Destructor.  If there is a C object, delete it. | 
 |   // We don't need to test ptr_ == NULL because C++ does that for us. | 
 |   ~scoped_ptr() { | 
 |     enum { type_must_be_complete = sizeof(C) }; | 
 |     delete ptr_; | 
 |   } | 
 |  | 
 |   // Reset.  Deletes the current owned object, if any. | 
 |   // Then takes ownership of a new object, if given. | 
 |   // this->reset(this->get()) works. | 
 |   void reset(C* p = NULL) { | 
 |     if (p != ptr_) { | 
 |       enum { type_must_be_complete = sizeof(C) }; | 
 |       delete ptr_; | 
 |       ptr_ = p; | 
 |     } | 
 |   } | 
 |  | 
 |   // Accessors to get the owned object. | 
 |   // operator* and operator-> will assert() if there is no current object. | 
 |   C& operator*() const { | 
 |     assert(ptr_ != NULL); | 
 |     return *ptr_; | 
 |   } | 
 |   C* operator->() const  { | 
 |     assert(ptr_ != NULL); | 
 |     return ptr_; | 
 |   } | 
 |   C* get() const { return ptr_; } | 
 |  | 
 |   // Comparison operators. | 
 |   // These return whether a scoped_ptr and a raw pointer refer to | 
 |   // the same object, not just to two different but equal objects. | 
 |   bool operator==(const C* p) const { return ptr_ == p; } | 
 |   bool operator!=(const C* p) const { return ptr_ != p; } | 
 |  | 
 |   // Swap two scoped pointers. | 
 |   void swap(scoped_ptr& p2) { | 
 |     C* tmp = ptr_; | 
 |     ptr_ = p2.ptr_; | 
 |     p2.ptr_ = tmp; | 
 |   } | 
 |  | 
 |   // Release a pointer. | 
 |   // The return value is the current pointer held by this object. | 
 |   // If this object holds a NULL pointer, the return value is NULL. | 
 |   // After this operation, this object will hold a NULL pointer, | 
 |   // and will not own the object any more. | 
 |   C* release() { | 
 |     C* retVal = ptr_; | 
 |     ptr_ = NULL; | 
 |     return retVal; | 
 |   } | 
 |  | 
 |  private: | 
 |   C* ptr_; | 
 |  | 
 |   // google3 friend class that can access copy ctor (although if it actually | 
 |   // calls a copy ctor, there will be a problem) see below | 
 |   friend scoped_ptr<C> make_scoped_ptr<C>(C *p); | 
 |  | 
 |   // Forbid comparison of scoped_ptr types.  If C2 != C, it totally doesn't | 
 |   // make sense, and if C2 == C, it still doesn't make sense because you should | 
 |   // never have the same object owned by two different scoped_ptrs. | 
 |   template <class C2> bool operator==(scoped_ptr<C2> const& p2) const; | 
 |   template <class C2> bool operator!=(scoped_ptr<C2> const& p2) const; | 
 |  | 
 |   // Disallow evil constructors | 
 |   scoped_ptr(const scoped_ptr&); | 
 |   void operator=(const scoped_ptr&); | 
 | }; | 
 |  | 
 | // Free functions | 
 | template <class C> | 
 | inline void swap(scoped_ptr<C>& p1, scoped_ptr<C>& p2) { | 
 |   p1.swap(p2); | 
 | } | 
 |  | 
 | template <class C> | 
 | inline bool operator==(const C* p1, const scoped_ptr<C>& p2) { | 
 |   return p1 == p2.get(); | 
 | } | 
 |  | 
 | template <class C> | 
 | inline bool operator==(const C* p1, const scoped_ptr<const C>& p2) { | 
 |   return p1 == p2.get(); | 
 | } | 
 |  | 
 | template <class C> | 
 | inline bool operator!=(const C* p1, const scoped_ptr<C>& p2) { | 
 |   return p1 != p2.get(); | 
 | } | 
 |  | 
 | template <class C> | 
 | inline bool operator!=(const C* p1, const scoped_ptr<const C>& p2) { | 
 |   return p1 != p2.get(); | 
 | } | 
 |  | 
 | template <class C> | 
 | scoped_ptr<C> make_scoped_ptr(C *p) { | 
 |   // This does nothing but to return a scoped_ptr of the type that the passed | 
 |   // pointer is of.  (This eliminates the need to specify the name of T when | 
 |   // making a scoped_ptr that is used anonymously/temporarily.)  From an | 
 |   // access control point of view, we construct an unnamed scoped_ptr here | 
 |   // which we return and thus copy-construct.  Hence, we need to have access | 
 |   // to scoped_ptr::scoped_ptr(scoped_ptr const &).  However, it is guaranteed | 
 |   // that we never actually call the copy constructor, which is a good thing | 
 |   // as we would call the temporary's object destructor (and thus delete p) | 
 |   // if we actually did copy some object, here. | 
 |   return scoped_ptr<C>(p); | 
 | } | 
 |  | 
 | // scoped_array<C> is like scoped_ptr<C>, except that the caller must allocate | 
 | // with new [] and the destructor deletes objects with delete []. | 
 | // | 
 | // As with scoped_ptr<C>, a scoped_array<C> either points to an object | 
 | // or is NULL.  A scoped_array<C> owns the object that it points to. | 
 | // scoped_array<T> is thread-compatible, and once you index into it, | 
 | // the returned objects have only the threadsafety guarantees of T. | 
 | // | 
 | // Size: sizeof(scoped_array<C>) == sizeof(C*) | 
 | template <class C> | 
 | class scoped_array { | 
 |  public: | 
 |   // The element type | 
 |   typedef C element_type; | 
 |  | 
 |   // Constructor.  Defaults to intializing with NULL. | 
 |   // There is no way to create an uninitialized scoped_array. | 
 |   // The input parameter must be allocated with new []. | 
 |   explicit scoped_array(C* p = NULL) : array_(p) { } | 
 |  | 
 |   // Destructor.  If there is a C object, delete it. | 
 |   // We don't need to test ptr_ == NULL because C++ does that for us. | 
 |   ~scoped_array() { | 
 |     enum { type_must_be_complete = sizeof(C) }; | 
 |     delete[] array_; | 
 |   } | 
 |  | 
 |   // Reset. Deletes the current owned object, if any. | 
 |   // Then takes ownership of a new object, if given. | 
 |   // this->reset(this->get()) works. | 
 |   void reset(C* p = NULL) { | 
 |     if (p != array_) { | 
 |       enum { type_must_be_complete = sizeof(C) }; | 
 |       delete[] array_; | 
 |       array_ = p; | 
 |     } | 
 |   } | 
 |  | 
 |   // Get one element of the current object. | 
 |   // Will assert() if there is no current object, or index i is negative. | 
 |   C& operator[](std::ptrdiff_t i) const { | 
 |     assert(i >= 0); | 
 |     assert(array_ != NULL); | 
 |     return array_[i]; | 
 |   } | 
 |  | 
 |   // Get a pointer to the zeroth element of the current object. | 
 |   // If there is no current object, return NULL. | 
 |   C* get() const { | 
 |     return array_; | 
 |   } | 
 |  | 
 |   // Comparison operators. | 
 |   // These return whether a scoped_array and a raw pointer refer to | 
 |   // the same array, not just to two different but equal arrays. | 
 |   bool operator==(const C* p) const { return array_ == p; } | 
 |   bool operator!=(const C* p) const { return array_ != p; } | 
 |  | 
 |   // Swap two scoped arrays. | 
 |   void swap(scoped_array& p2) { | 
 |     C* tmp = array_; | 
 |     array_ = p2.array_; | 
 |     p2.array_ = tmp; | 
 |   } | 
 |  | 
 |   // Release an array. | 
 |   // The return value is the current pointer held by this object. | 
 |   // If this object holds a NULL pointer, the return value is NULL. | 
 |   // After this operation, this object will hold a NULL pointer, | 
 |   // and will not own the object any more. | 
 |   C* release() { | 
 |     C* retVal = array_; | 
 |     array_ = NULL; | 
 |     return retVal; | 
 |   } | 
 |  | 
 |  private: | 
 |   C* array_; | 
 |  | 
 |   // Forbid comparison of different scoped_array types. | 
 |   template <class C2> bool operator==(scoped_array<C2> const& p2) const; | 
 |   template <class C2> bool operator!=(scoped_array<C2> const& p2) const; | 
 |  | 
 |   // Disallow evil constructors | 
 |   scoped_array(const scoped_array&); | 
 |   void operator=(const scoped_array&); | 
 | }; | 
 |  | 
 | // Free functions | 
 | template <class C> | 
 | inline void swap(scoped_array<C>& p1, scoped_array<C>& p2) { | 
 |   p1.swap(p2); | 
 | } | 
 |  | 
 | template <class C> | 
 | inline bool operator==(const C* p1, const scoped_array<C>& p2) { | 
 |   return p1 == p2.get(); | 
 | } | 
 |  | 
 | template <class C> | 
 | inline bool operator==(const C* p1, const scoped_array<const C>& p2) { | 
 |   return p1 == p2.get(); | 
 | } | 
 |  | 
 | template <class C> | 
 | inline bool operator!=(const C* p1, const scoped_array<C>& p2) { | 
 |   return p1 != p2.get(); | 
 | } | 
 |  | 
 | template <class C> | 
 | inline bool operator!=(const C* p1, const scoped_array<const C>& p2) { | 
 |   return p1 != p2.get(); | 
 | } | 
 |  | 
 | // This class wraps the c library function free() in a class that can be | 
 | // passed as a template argument to scoped_ptr_malloc below. | 
 | class ScopedPtrMallocFree { | 
 |  public: | 
 |   inline void operator()(void* x) const { | 
 |     free(x); | 
 |   } | 
 | }; | 
 |  | 
 | }  // namespace internal | 
 | }  // namespace ceres | 
 |  | 
 | #endif  // CERES_PUBLIC_INTERNAL_SCOPED_PTR_H_ |