|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2013 Google Inc. All rights reserved. | 
|  | // http://code.google.com/p/ceres-solver/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  | // | 
|  | // CostFunctionToFunctor is an adapter class that allows users to use | 
|  | // CostFunction objects in templated functors which are to be used for | 
|  | // automatic differentiation.  This allows the user to seamlessly mix | 
|  | // analytic, numeric and automatic differentiation. | 
|  | // | 
|  | // For example, let us assume that | 
|  | // | 
|  | //  class IntrinsicProjection : public SizedCostFunction<2, 5, 3> { | 
|  | //    public: | 
|  | //      IntrinsicProjection(const double* observations); | 
|  | //      virtual bool Evaluate(double const* const* parameters, | 
|  | //                            double* residuals, | 
|  | //                            double** jacobians) const; | 
|  | //  }; | 
|  | // | 
|  | // is a cost function that implements the projection of a point in its | 
|  | // local coordinate system onto its image plane and subtracts it from | 
|  | // the observed point projection. It can compute its residual and | 
|  | // either via analytic or numerical differentiation can compute its | 
|  | // jacobians. | 
|  | // | 
|  | // Now we would like to compose the action of this CostFunction with | 
|  | // the action of camera extrinsics, i.e., rotation and | 
|  | // translation. Say we have a templated function | 
|  | // | 
|  | //   template<typename T> | 
|  | //   void RotateAndTranslatePoint(const T* rotation, | 
|  | //                                const T* translation, | 
|  | //                                const T* point, | 
|  | //                                T* result); | 
|  | // | 
|  | // Then we can now do the following, | 
|  | // | 
|  | // struct CameraProjection { | 
|  | //   CameraProjection(double* observation) { | 
|  | //     intrinsic_projection_.reset( | 
|  | //         new CostFunctionToFunctor<2, 5, 3>( | 
|  | //             new IntrinsicProjection(observation_))); | 
|  | //   } | 
|  | //   template <typename T> | 
|  | //   bool operator(const T* rotation, | 
|  | //                 const T* translation, | 
|  | //                 const T* intrinsics, | 
|  | //                 const T* point, | 
|  | //                 T* residual) const { | 
|  | //     T transformed_point[3]; | 
|  | //     RotateAndTranslatePoint(rotation, translation, point, transformed_point); | 
|  | // | 
|  | //     // Note that we call intrinsic_projection_, just like it was | 
|  | //     // any other templated functor. | 
|  | // | 
|  | //     return (*intrinsic_projection_)(intrinsics, transformed_point, residual); | 
|  | //   } | 
|  | // | 
|  | //  private: | 
|  | //   scoped_ptr<CostFunctionToFunctor<2,5,3> > intrinsic_projection_; | 
|  | // }; | 
|  |  | 
|  | #ifndef CERES_PUBLIC_COST_FUNCTION_TO_FUNCTOR_H_ | 
|  | #define CERES_PUBLIC_COST_FUNCTION_TO_FUNCTOR_H_ | 
|  |  | 
|  | #include <numeric> | 
|  | #include <vector> | 
|  |  | 
|  | #include "ceres/cost_function.h" | 
|  | #include "ceres/internal/fixed_array.h" | 
|  | #include "ceres/internal/port.h" | 
|  | #include "ceres/internal/scoped_ptr.h" | 
|  |  | 
|  | namespace ceres { | 
|  |  | 
|  | template <int kNumResiduals, | 
|  | int N0, int N1 = 0, int N2 = 0, int N3 = 0, int N4 = 0, | 
|  | int N5 = 0, int N6 = 0, int N7 = 0, int N8 = 0, int N9 = 0> | 
|  | class CostFunctionToFunctor { | 
|  | public: | 
|  | explicit CostFunctionToFunctor(CostFunction* cost_function) | 
|  | : cost_function_(cost_function) { | 
|  | CHECK_NOTNULL(cost_function); | 
|  |  | 
|  | CHECK_GE(kNumResiduals, 0); | 
|  | CHECK_EQ(cost_function->num_residuals(), kNumResiduals); | 
|  |  | 
|  | // This block breaks the 80 column rule to keep it somewhat readable. | 
|  | CHECK((!N1 && !N2 && !N3 && !N4 && !N5 && !N6 && !N7 && !N8 && !N9) || | 
|  | ((N1 > 0) && !N2 && !N3 && !N4 && !N5 && !N6 && !N7 && !N8 && !N9) || | 
|  | ((N1 > 0) && (N2 > 0) && !N3 && !N4 && !N5 && !N6 && !N7 && !N8 && !N9) || | 
|  | ((N1 > 0) && (N2 > 0) && (N3 > 0) && !N4 && !N5 && !N6 && !N7 && !N8 && !N9) || | 
|  | ((N1 > 0) && (N2 > 0) && (N3 > 0) && (N4 > 0) && !N5 && !N6 && !N7 && !N8 && !N9) || | 
|  | ((N1 > 0) && (N2 > 0) && (N3 > 0) && (N4 > 0) && (N5 > 0) && !N6 && !N7 && !N8 && !N9) || | 
|  | ((N1 > 0) && (N2 > 0) && (N3 > 0) && (N4 > 0) && (N5 > 0) && (N6 > 0) && !N7 && !N8 && !N9) || | 
|  | ((N1 > 0) && (N2 > 0) && (N3 > 0) && (N4 > 0) && (N5 > 0) && (N6 > 0) && (N7 > 0) && !N8 && !N9) || | 
|  | ((N1 > 0) && (N2 > 0) && (N3 > 0) && (N4 > 0) && (N5 > 0) && (N6 > 0) && (N7 > 0) && (N8 > 0) && !N9) || | 
|  | ((N1 > 0) && (N2 > 0) && (N3 > 0) && (N4 > 0) && (N5 > 0) && (N6 > 0) && (N7 > 0) && (N8 > 0) && (N9 > 0))) | 
|  | << "Zero block cannot precede a non-zero block. Block sizes are " | 
|  | << "(ignore trailing 0s): " << N0 << ", " << N1 << ", " << N2 << ", " | 
|  | << N3 << ", " << N4 << ", " << N5 << ", " << N6 << ", " << N7 << ", " | 
|  | << N8 << ", " << N9; | 
|  |  | 
|  | const vector<int16>& parameter_block_sizes = | 
|  | cost_function->parameter_block_sizes(); | 
|  | const int num_parameter_blocks = | 
|  | (N0 > 0) + (N1 > 0) + (N2 > 0) + (N3 > 0) + (N4 > 0) + | 
|  | (N5 > 0) + (N6 > 0) + (N7 > 0) + (N8 > 0) + (N9 > 0); | 
|  | CHECK_EQ(parameter_block_sizes.size(), num_parameter_blocks); | 
|  |  | 
|  | CHECK_EQ(N0, parameter_block_sizes[0]); | 
|  | if (parameter_block_sizes.size() > 1) CHECK_EQ(N1, parameter_block_sizes[1]);  // NOLINT | 
|  | if (parameter_block_sizes.size() > 2) CHECK_EQ(N2, parameter_block_sizes[2]);  // NOLINT | 
|  | if (parameter_block_sizes.size() > 3) CHECK_EQ(N3, parameter_block_sizes[3]);  // NOLINT | 
|  | if (parameter_block_sizes.size() > 4) CHECK_EQ(N4, parameter_block_sizes[4]);  // NOLINT | 
|  | if (parameter_block_sizes.size() > 5) CHECK_EQ(N5, parameter_block_sizes[5]);  // NOLINT | 
|  | if (parameter_block_sizes.size() > 6) CHECK_EQ(N6, parameter_block_sizes[6]);  // NOLINT | 
|  | if (parameter_block_sizes.size() > 7) CHECK_EQ(N7, parameter_block_sizes[7]);  // NOLINT | 
|  | if (parameter_block_sizes.size() > 8) CHECK_EQ(N8, parameter_block_sizes[8]);  // NOLINT | 
|  | if (parameter_block_sizes.size() > 9) CHECK_EQ(N9, parameter_block_sizes[9]);  // NOLINT | 
|  |  | 
|  | CHECK_EQ(accumulate(parameter_block_sizes.begin(), | 
|  | parameter_block_sizes.end(), 0), | 
|  | N0 + N1 + N2 + N3 + N4 + N5 + N6 + N7 + N8 + N9); | 
|  | } | 
|  |  | 
|  | bool operator()(const double* x0, double* residuals) const { | 
|  | CHECK_NE(N0, 0); | 
|  | CHECK_EQ(N1, 0); | 
|  | CHECK_EQ(N2, 0); | 
|  | CHECK_EQ(N3, 0); | 
|  | CHECK_EQ(N4, 0); | 
|  | CHECK_EQ(N5, 0); | 
|  | CHECK_EQ(N6, 0); | 
|  | CHECK_EQ(N7, 0); | 
|  | CHECK_EQ(N8, 0); | 
|  | CHECK_EQ(N9, 0); | 
|  |  | 
|  | return cost_function_->Evaluate(&x0, residuals, NULL); | 
|  | } | 
|  |  | 
|  | bool operator()(const double* x0, | 
|  | const double* x1, | 
|  | double* residuals) const { | 
|  | CHECK_NE(N0, 0); | 
|  | CHECK_NE(N1, 0); | 
|  | CHECK_EQ(N2, 0); | 
|  | CHECK_EQ(N3, 0); | 
|  | CHECK_EQ(N4, 0); | 
|  | CHECK_EQ(N5, 0); | 
|  | CHECK_EQ(N6, 0); | 
|  | CHECK_EQ(N7, 0); | 
|  | CHECK_EQ(N8, 0); | 
|  | CHECK_EQ(N9, 0); | 
|  | internal::FixedArray<const double*> parameter_blocks(2); | 
|  | parameter_blocks[0] = x0; | 
|  | parameter_blocks[1] = x1; | 
|  | return cost_function_->Evaluate(parameter_blocks.get(), residuals, NULL); | 
|  | } | 
|  |  | 
|  | bool operator()(const double* x0, | 
|  | const double* x1, | 
|  | const double* x2, | 
|  | double* residuals) const { | 
|  | CHECK_NE(N0, 0); | 
|  | CHECK_NE(N1, 0); | 
|  | CHECK_NE(N2, 0); | 
|  | CHECK_EQ(N3, 0); | 
|  | CHECK_EQ(N4, 0); | 
|  | CHECK_EQ(N5, 0); | 
|  | CHECK_EQ(N6, 0); | 
|  | CHECK_EQ(N7, 0); | 
|  | CHECK_EQ(N8, 0); | 
|  | CHECK_EQ(N9, 0); | 
|  | internal::FixedArray<const double*> parameter_blocks(3); | 
|  | parameter_blocks[0] = x0; | 
|  | parameter_blocks[1] = x1; | 
|  | parameter_blocks[2] = x2; | 
|  | return cost_function_->Evaluate(parameter_blocks.get(), residuals, NULL); | 
|  | } | 
|  |  | 
|  | bool operator()(const double* x0, | 
|  | const double* x1, | 
|  | const double* x2, | 
|  | const double* x3, | 
|  | double* residuals) const { | 
|  | CHECK_NE(N0, 0); | 
|  | CHECK_NE(N1, 0); | 
|  | CHECK_NE(N2, 0); | 
|  | CHECK_NE(N3, 0); | 
|  | CHECK_EQ(N4, 0); | 
|  | CHECK_EQ(N5, 0); | 
|  | CHECK_EQ(N6, 0); | 
|  | CHECK_EQ(N7, 0); | 
|  | CHECK_EQ(N8, 0); | 
|  | CHECK_EQ(N9, 0); | 
|  | internal::FixedArray<const double*> parameter_blocks(4); | 
|  | parameter_blocks[0] = x0; | 
|  | parameter_blocks[1] = x1; | 
|  | parameter_blocks[2] = x2; | 
|  | parameter_blocks[3] = x3; | 
|  | return cost_function_->Evaluate(parameter_blocks.get(), residuals, NULL); | 
|  | } | 
|  |  | 
|  | bool operator()(const double* x0, | 
|  | const double* x1, | 
|  | const double* x2, | 
|  | const double* x3, | 
|  | const double* x4, | 
|  | double* residuals) const { | 
|  | CHECK_NE(N0, 0); | 
|  | CHECK_NE(N1, 0); | 
|  | CHECK_NE(N2, 0); | 
|  | CHECK_NE(N3, 0); | 
|  | CHECK_NE(N4, 0); | 
|  | CHECK_EQ(N5, 0); | 
|  | CHECK_EQ(N6, 0); | 
|  | CHECK_EQ(N7, 0); | 
|  | CHECK_EQ(N8, 0); | 
|  | CHECK_EQ(N9, 0); | 
|  | internal::FixedArray<const double*> parameter_blocks(5); | 
|  | parameter_blocks[0] = x0; | 
|  | parameter_blocks[1] = x1; | 
|  | parameter_blocks[2] = x2; | 
|  | parameter_blocks[3] = x3; | 
|  | parameter_blocks[4] = x4; | 
|  | return cost_function_->Evaluate(parameter_blocks.get(), residuals, NULL); | 
|  | } | 
|  |  | 
|  | bool operator()(const double* x0, | 
|  | const double* x1, | 
|  | const double* x2, | 
|  | const double* x3, | 
|  | const double* x4, | 
|  | const double* x5, | 
|  | double* residuals) const { | 
|  | CHECK_NE(N0, 0); | 
|  | CHECK_NE(N1, 0); | 
|  | CHECK_NE(N2, 0); | 
|  | CHECK_NE(N3, 0); | 
|  | CHECK_NE(N4, 0); | 
|  | CHECK_NE(N5, 0); | 
|  | CHECK_EQ(N6, 0); | 
|  | CHECK_EQ(N7, 0); | 
|  | CHECK_EQ(N8, 0); | 
|  | CHECK_EQ(N9, 0); | 
|  | internal::FixedArray<const double*> parameter_blocks(6); | 
|  | parameter_blocks[0] = x0; | 
|  | parameter_blocks[1] = x1; | 
|  | parameter_blocks[2] = x2; | 
|  | parameter_blocks[3] = x3; | 
|  | parameter_blocks[4] = x4; | 
|  | parameter_blocks[5] = x5; | 
|  | return cost_function_->Evaluate(parameter_blocks.get(), residuals, NULL); | 
|  | } | 
|  |  | 
|  | bool operator()(const double* x0, | 
|  | const double* x1, | 
|  | const double* x2, | 
|  | const double* x3, | 
|  | const double* x4, | 
|  | const double* x5, | 
|  | const double* x6, | 
|  | double* residuals) const { | 
|  | CHECK_NE(N0, 0); | 
|  | CHECK_NE(N1, 0); | 
|  | CHECK_NE(N2, 0); | 
|  | CHECK_NE(N3, 0); | 
|  | CHECK_NE(N4, 0); | 
|  | CHECK_NE(N5, 0); | 
|  | CHECK_NE(N6, 0); | 
|  | CHECK_EQ(N7, 0); | 
|  | CHECK_EQ(N8, 0); | 
|  | CHECK_EQ(N9, 0); | 
|  | internal::FixedArray<const double*> parameter_blocks(7); | 
|  | parameter_blocks[0] = x0; | 
|  | parameter_blocks[1] = x1; | 
|  | parameter_blocks[2] = x2; | 
|  | parameter_blocks[3] = x3; | 
|  | parameter_blocks[4] = x4; | 
|  | parameter_blocks[5] = x5; | 
|  | parameter_blocks[6] = x6; | 
|  | return cost_function_->Evaluate(parameter_blocks.get(), residuals, NULL); | 
|  | } | 
|  |  | 
|  | bool operator()(const double* x0, | 
|  | const double* x1, | 
|  | const double* x2, | 
|  | const double* x3, | 
|  | const double* x4, | 
|  | const double* x5, | 
|  | const double* x6, | 
|  | const double* x7, | 
|  | double* residuals) const { | 
|  | CHECK_NE(N0, 0); | 
|  | CHECK_NE(N1, 0); | 
|  | CHECK_NE(N2, 0); | 
|  | CHECK_NE(N3, 0); | 
|  | CHECK_NE(N4, 0); | 
|  | CHECK_NE(N5, 0); | 
|  | CHECK_NE(N6, 0); | 
|  | CHECK_NE(N7, 0); | 
|  | CHECK_EQ(N8, 0); | 
|  | CHECK_EQ(N9, 0); | 
|  | internal::FixedArray<const double*> parameter_blocks(8); | 
|  | parameter_blocks[0] = x0; | 
|  | parameter_blocks[1] = x1; | 
|  | parameter_blocks[2] = x2; | 
|  | parameter_blocks[3] = x3; | 
|  | parameter_blocks[4] = x4; | 
|  | parameter_blocks[5] = x5; | 
|  | parameter_blocks[6] = x6; | 
|  | parameter_blocks[7] = x7; | 
|  | return cost_function_->Evaluate(parameter_blocks.get(), residuals, NULL); | 
|  | } | 
|  |  | 
|  | bool operator()(const double* x0, | 
|  | const double* x1, | 
|  | const double* x2, | 
|  | const double* x3, | 
|  | const double* x4, | 
|  | const double* x5, | 
|  | const double* x6, | 
|  | const double* x7, | 
|  | const double* x8, | 
|  | double* residuals) const { | 
|  | CHECK_NE(N0, 0); | 
|  | CHECK_NE(N1, 0); | 
|  | CHECK_NE(N2, 0); | 
|  | CHECK_NE(N3, 0); | 
|  | CHECK_NE(N4, 0); | 
|  | CHECK_NE(N5, 0); | 
|  | CHECK_NE(N6, 0); | 
|  | CHECK_NE(N7, 0); | 
|  | CHECK_NE(N8, 0); | 
|  | CHECK_EQ(N9, 0); | 
|  | internal::FixedArray<const double*> parameter_blocks(9); | 
|  | parameter_blocks[0] = x0; | 
|  | parameter_blocks[1] = x1; | 
|  | parameter_blocks[2] = x2; | 
|  | parameter_blocks[3] = x3; | 
|  | parameter_blocks[4] = x4; | 
|  | parameter_blocks[5] = x5; | 
|  | parameter_blocks[6] = x6; | 
|  | parameter_blocks[7] = x7; | 
|  | parameter_blocks[8] = x8; | 
|  | return cost_function_->Evaluate(parameter_blocks.get(), residuals, NULL); | 
|  | } | 
|  |  | 
|  | bool operator()(const double* x0, | 
|  | const double* x1, | 
|  | const double* x2, | 
|  | const double* x3, | 
|  | const double* x4, | 
|  | const double* x5, | 
|  | const double* x6, | 
|  | const double* x7, | 
|  | const double* x8, | 
|  | const double* x9, | 
|  | double* residuals) const { | 
|  | CHECK_NE(N0, 0); | 
|  | CHECK_NE(N1, 0); | 
|  | CHECK_NE(N2, 0); | 
|  | CHECK_NE(N3, 0); | 
|  | CHECK_NE(N4, 0); | 
|  | CHECK_NE(N5, 0); | 
|  | CHECK_NE(N6, 0); | 
|  | CHECK_NE(N7, 0); | 
|  | CHECK_NE(N8, 0); | 
|  | CHECK_NE(N9, 0); | 
|  | internal::FixedArray<const double*> parameter_blocks(10); | 
|  | parameter_blocks[0] = x0; | 
|  | parameter_blocks[1] = x1; | 
|  | parameter_blocks[2] = x2; | 
|  | parameter_blocks[3] = x3; | 
|  | parameter_blocks[4] = x4; | 
|  | parameter_blocks[5] = x5; | 
|  | parameter_blocks[6] = x6; | 
|  | parameter_blocks[7] = x7; | 
|  | parameter_blocks[8] = x8; | 
|  | parameter_blocks[9] = x9; | 
|  | return cost_function_->Evaluate(parameter_blocks.get(), residuals, NULL); | 
|  | } | 
|  |  | 
|  | template <typename JetT> | 
|  | bool operator()(const JetT* x0, JetT* residuals) const { | 
|  | CHECK_NE(N0, 0); | 
|  | CHECK_EQ(N1, 0); | 
|  | CHECK_EQ(N2, 0); | 
|  | CHECK_EQ(N3, 0); | 
|  | CHECK_EQ(N4, 0); | 
|  | CHECK_EQ(N5, 0); | 
|  | CHECK_EQ(N6, 0); | 
|  | CHECK_EQ(N7, 0); | 
|  | CHECK_EQ(N8, 0); | 
|  | CHECK_EQ(N9, 0); | 
|  | return EvaluateWithJets(&x0, residuals); | 
|  | } | 
|  |  | 
|  | template <typename JetT> | 
|  | bool operator()(const JetT* x0, | 
|  | const JetT* x1, | 
|  | JetT* residuals) const { | 
|  | CHECK_NE(N0, 0); | 
|  | CHECK_NE(N1, 0); | 
|  | CHECK_EQ(N2, 0); | 
|  | CHECK_EQ(N3, 0); | 
|  | CHECK_EQ(N4, 0); | 
|  | CHECK_EQ(N5, 0); | 
|  | CHECK_EQ(N6, 0); | 
|  | CHECK_EQ(N7, 0); | 
|  | CHECK_EQ(N8, 0); | 
|  | CHECK_EQ(N9, 0); | 
|  | internal::FixedArray<const JetT*> jets(2); | 
|  | jets[0] = x0; | 
|  | jets[1] = x1; | 
|  | return EvaluateWithJets(jets.get(), residuals); | 
|  | } | 
|  |  | 
|  | template <typename JetT> | 
|  | bool operator()(const JetT* x0, | 
|  | const JetT* x1, | 
|  | const JetT* x2, | 
|  | JetT* residuals) const { | 
|  | CHECK_NE(N0, 0); | 
|  | CHECK_NE(N1, 0); | 
|  | CHECK_NE(N2, 0); | 
|  | CHECK_EQ(N3, 0); | 
|  | CHECK_EQ(N4, 0); | 
|  | CHECK_EQ(N5, 0); | 
|  | CHECK_EQ(N6, 0); | 
|  | CHECK_EQ(N7, 0); | 
|  | CHECK_EQ(N8, 0); | 
|  | CHECK_EQ(N9, 0); | 
|  | internal::FixedArray<const JetT*> jets(3); | 
|  | jets[0] = x0; | 
|  | jets[1] = x1; | 
|  | jets[2] = x2; | 
|  | return EvaluateWithJets(jets.get(), residuals); | 
|  | } | 
|  |  | 
|  | template <typename JetT> | 
|  | bool operator()(const JetT* x0, | 
|  | const JetT* x1, | 
|  | const JetT* x2, | 
|  | const JetT* x3, | 
|  | JetT* residuals) const { | 
|  | CHECK_NE(N0, 0); | 
|  | CHECK_NE(N1, 0); | 
|  | CHECK_NE(N2, 0); | 
|  | CHECK_NE(N3, 0); | 
|  | CHECK_EQ(N4, 0); | 
|  | CHECK_EQ(N5, 0); | 
|  | CHECK_EQ(N6, 0); | 
|  | CHECK_EQ(N7, 0); | 
|  | CHECK_EQ(N8, 0); | 
|  | CHECK_EQ(N9, 0); | 
|  | internal::FixedArray<const JetT*> jets(4); | 
|  | jets[0] = x0; | 
|  | jets[1] = x1; | 
|  | jets[2] = x2; | 
|  | jets[3] = x3; | 
|  | return EvaluateWithJets(jets.get(), residuals); | 
|  | } | 
|  |  | 
|  | template <typename JetT> | 
|  | bool operator()(const JetT* x0, | 
|  | const JetT* x1, | 
|  | const JetT* x2, | 
|  | const JetT* x3, | 
|  | const JetT* x4, | 
|  | JetT* residuals) const { | 
|  | CHECK_NE(N0, 0); | 
|  | CHECK_NE(N1, 0); | 
|  | CHECK_NE(N2, 0); | 
|  | CHECK_NE(N3, 0); | 
|  | CHECK_NE(N4, 0); | 
|  | CHECK_EQ(N5, 0); | 
|  | CHECK_EQ(N6, 0); | 
|  | CHECK_EQ(N7, 0); | 
|  | CHECK_EQ(N8, 0); | 
|  | CHECK_EQ(N9, 0); | 
|  | internal::FixedArray<const JetT*> jets(5); | 
|  | jets[0] = x0; | 
|  | jets[1] = x1; | 
|  | jets[2] = x2; | 
|  | jets[3] = x3; | 
|  | jets[4] = x4; | 
|  | return EvaluateWithJets(jets.get(), residuals); | 
|  | } | 
|  |  | 
|  | template <typename JetT> | 
|  | bool operator()(const JetT* x0, | 
|  | const JetT* x1, | 
|  | const JetT* x2, | 
|  | const JetT* x3, | 
|  | const JetT* x4, | 
|  | const JetT* x5, | 
|  | JetT* residuals) const { | 
|  | CHECK_NE(N0, 0); | 
|  | CHECK_NE(N1, 0); | 
|  | CHECK_NE(N2, 0); | 
|  | CHECK_NE(N3, 0); | 
|  | CHECK_NE(N4, 0); | 
|  | CHECK_NE(N5, 0); | 
|  | CHECK_EQ(N6, 0); | 
|  | CHECK_EQ(N7, 0); | 
|  | CHECK_EQ(N8, 0); | 
|  | CHECK_EQ(N9, 0); | 
|  | internal::FixedArray<const JetT*> jets(6); | 
|  | jets[0] = x0; | 
|  | jets[1] = x1; | 
|  | jets[2] = x2; | 
|  | jets[3] = x3; | 
|  | jets[4] = x4; | 
|  | jets[5] = x5; | 
|  | return EvaluateWithJets(jets.get(), residuals); | 
|  | } | 
|  |  | 
|  | template <typename JetT> | 
|  | bool operator()(const JetT* x0, | 
|  | const JetT* x1, | 
|  | const JetT* x2, | 
|  | const JetT* x3, | 
|  | const JetT* x4, | 
|  | const JetT* x5, | 
|  | const JetT* x6, | 
|  | JetT* residuals) const { | 
|  | CHECK_NE(N0, 0); | 
|  | CHECK_NE(N1, 0); | 
|  | CHECK_NE(N2, 0); | 
|  | CHECK_NE(N3, 0); | 
|  | CHECK_NE(N4, 0); | 
|  | CHECK_NE(N5, 0); | 
|  | CHECK_NE(N6, 0); | 
|  | CHECK_EQ(N7, 0); | 
|  | CHECK_EQ(N8, 0); | 
|  | CHECK_EQ(N9, 0); | 
|  | internal::FixedArray<const JetT*> jets(7); | 
|  | jets[0] = x0; | 
|  | jets[1] = x1; | 
|  | jets[2] = x2; | 
|  | jets[3] = x3; | 
|  | jets[4] = x4; | 
|  | jets[5] = x5; | 
|  | jets[6] = x6; | 
|  | return EvaluateWithJets(jets.get(), residuals); | 
|  | } | 
|  |  | 
|  | template <typename JetT> | 
|  | bool operator()(const JetT* x0, | 
|  | const JetT* x1, | 
|  | const JetT* x2, | 
|  | const JetT* x3, | 
|  | const JetT* x4, | 
|  | const JetT* x5, | 
|  | const JetT* x6, | 
|  | const JetT* x7, | 
|  | JetT* residuals) const { | 
|  | CHECK_NE(N0, 0); | 
|  | CHECK_NE(N1, 0); | 
|  | CHECK_NE(N2, 0); | 
|  | CHECK_NE(N3, 0); | 
|  | CHECK_NE(N4, 0); | 
|  | CHECK_NE(N5, 0); | 
|  | CHECK_NE(N6, 0); | 
|  | CHECK_NE(N7, 0); | 
|  | CHECK_EQ(N8, 0); | 
|  | CHECK_EQ(N9, 0); | 
|  | internal::FixedArray<const JetT*> jets(8); | 
|  | jets[0] = x0; | 
|  | jets[1] = x1; | 
|  | jets[2] = x2; | 
|  | jets[3] = x3; | 
|  | jets[4] = x4; | 
|  | jets[5] = x5; | 
|  | jets[6] = x6; | 
|  | jets[7] = x7; | 
|  | return EvaluateWithJets(jets.get(), residuals); | 
|  | } | 
|  |  | 
|  | template <typename JetT> | 
|  | bool operator()(const JetT* x0, | 
|  | const JetT* x1, | 
|  | const JetT* x2, | 
|  | const JetT* x3, | 
|  | const JetT* x4, | 
|  | const JetT* x5, | 
|  | const JetT* x6, | 
|  | const JetT* x7, | 
|  | const JetT* x8, | 
|  | JetT* residuals) const { | 
|  | CHECK_NE(N0, 0); | 
|  | CHECK_NE(N1, 0); | 
|  | CHECK_NE(N2, 0); | 
|  | CHECK_NE(N3, 0); | 
|  | CHECK_NE(N4, 0); | 
|  | CHECK_NE(N5, 0); | 
|  | CHECK_NE(N6, 0); | 
|  | CHECK_NE(N7, 0); | 
|  | CHECK_NE(N8, 0); | 
|  | CHECK_EQ(N9, 0); | 
|  | internal::FixedArray<const JetT*> jets(9); | 
|  | jets[0] = x0; | 
|  | jets[1] = x1; | 
|  | jets[2] = x2; | 
|  | jets[3] = x3; | 
|  | jets[4] = x4; | 
|  | jets[5] = x5; | 
|  | jets[6] = x6; | 
|  | jets[7] = x7; | 
|  | jets[8] = x8; | 
|  | return EvaluateWithJets(jets.get(), residuals); | 
|  | } | 
|  |  | 
|  | template <typename JetT> | 
|  | bool operator()(const JetT* x0, | 
|  | const JetT* x1, | 
|  | const JetT* x2, | 
|  | const JetT* x3, | 
|  | const JetT* x4, | 
|  | const JetT* x5, | 
|  | const JetT* x6, | 
|  | const JetT* x7, | 
|  | const JetT* x8, | 
|  | const JetT* x9, | 
|  | JetT* residuals) const { | 
|  | CHECK_NE(N0, 0); | 
|  | CHECK_NE(N1, 0); | 
|  | CHECK_NE(N2, 0); | 
|  | CHECK_NE(N3, 0); | 
|  | CHECK_NE(N4, 0); | 
|  | CHECK_NE(N5, 0); | 
|  | CHECK_NE(N6, 0); | 
|  | CHECK_NE(N7, 0); | 
|  | CHECK_NE(N8, 0); | 
|  | CHECK_NE(N9, 0); | 
|  | internal::FixedArray<const JetT*> jets(10); | 
|  | jets[0] = x0; | 
|  | jets[1] = x1; | 
|  | jets[2] = x2; | 
|  | jets[3] = x3; | 
|  | jets[4] = x4; | 
|  | jets[5] = x5; | 
|  | jets[6] = x6; | 
|  | jets[7] = x7; | 
|  | jets[8] = x8; | 
|  | jets[9] = x9; | 
|  | return EvaluateWithJets(jets.get(), residuals); | 
|  | } | 
|  |  | 
|  | private: | 
|  | template <typename JetT> | 
|  | bool EvaluateWithJets(const JetT** inputs, JetT* output) const { | 
|  | const int kNumParameters =  N0 + N1 + N2 + N3 + N4 + N5 + N6 + N7 + N8 + N9; | 
|  | const vector<int16>& parameter_block_sizes = | 
|  | cost_function_->parameter_block_sizes(); | 
|  | const int num_parameter_blocks = parameter_block_sizes.size(); | 
|  | const int num_residuals = cost_function_->num_residuals(); | 
|  |  | 
|  | internal::FixedArray<double> parameters(kNumParameters); | 
|  | internal::FixedArray<double*> parameter_blocks(num_parameter_blocks); | 
|  | internal::FixedArray<double> jacobians(num_residuals * kNumParameters); | 
|  | internal::FixedArray<double*> jacobian_blocks(num_parameter_blocks); | 
|  | internal::FixedArray<double> residuals(num_residuals); | 
|  |  | 
|  | // Build a set of arrays to get the residuals and jacobians from | 
|  | // the CostFunction wrapped by this functor. | 
|  | double* parameter_ptr = parameters.get(); | 
|  | double* jacobian_ptr = jacobians.get(); | 
|  | for (int i = 0; i < num_parameter_blocks; ++i) { | 
|  | parameter_blocks[i] = parameter_ptr; | 
|  | jacobian_blocks[i] = jacobian_ptr; | 
|  | for (int j = 0; j < parameter_block_sizes[i]; ++j) { | 
|  | *parameter_ptr++ = inputs[i][j].a; | 
|  | } | 
|  | jacobian_ptr += num_residuals * parameter_block_sizes[i]; | 
|  | } | 
|  |  | 
|  | if (!cost_function_->Evaluate(parameter_blocks.get(), | 
|  | residuals.get(), | 
|  | jacobian_blocks.get())) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Now that we have the incoming Jets, which are carrying the | 
|  | // partial derivatives of each of the inputs w.r.t to some other | 
|  | // underlying parameters. The derivative of the outputs of the | 
|  | // cost function w.r.t to the same underlying parameters can now | 
|  | // be computed by applying the chain rule. | 
|  | // | 
|  | //  d output[i]               d output[i]   d input[j] | 
|  | //  --------------  = sum_j   ----------- * ------------ | 
|  | //  d parameter[k]            d input[j]    d parameter[k] | 
|  | // | 
|  | // d input[j] | 
|  | // --------------  = inputs[j], so | 
|  | // d parameter[k] | 
|  | // | 
|  | //  outputJet[i]  = sum_k jacobian[i][k] * inputJet[k] | 
|  | // | 
|  | // The following loop, iterates over the residuals, computing one | 
|  | // output jet at a time. | 
|  | for (int i = 0; i < num_residuals; ++i) { | 
|  | output[i].a = residuals[i]; | 
|  | output[i].v.setZero(); | 
|  |  | 
|  | for (int j = 0; j < num_parameter_blocks; ++j) { | 
|  | const int16 block_size = parameter_block_sizes[j]; | 
|  | for (int k = 0; k < parameter_block_sizes[j]; ++k) { | 
|  | output[i].v += | 
|  | jacobian_blocks[j][i * block_size + k] * inputs[j][k].v; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | private: | 
|  | internal::scoped_ptr<CostFunction> cost_function_; | 
|  | }; | 
|  |  | 
|  | }  // namespace ceres | 
|  |  | 
|  | #endif  // CERES_PUBLIC_COST_FUNCTION_TO_FUNCTOR_H_ |