|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2015 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  |  | 
|  | #ifndef CERES_INTERNAL_COMPRESSED_COL_SPARSE_MATRIX_UTILS_H_ | 
|  | #define CERES_INTERNAL_COMPRESSED_COL_SPARSE_MATRIX_UTILS_H_ | 
|  |  | 
|  | #include <vector> | 
|  | #include "ceres/internal/port.h" | 
|  |  | 
|  | namespace ceres { | 
|  | namespace internal { | 
|  |  | 
|  | // Extract the block sparsity pattern of the scalar compressed columns | 
|  | // matrix and return it in compressed column form. The compressed | 
|  | // column form is stored in two vectors block_rows, and block_cols, | 
|  | // which correspond to the row and column arrays in a compressed | 
|  | // column sparse matrix. | 
|  | // | 
|  | // If c_ij is the block in the matrix A corresponding to row block i | 
|  | // and column block j, then it is expected that A contains at least | 
|  | // one non-zero entry corresponding to the top left entry of c_ij, | 
|  | // as that entry is used to detect the presence of a non-zero c_ij. | 
|  | void CompressedColumnScalarMatrixToBlockMatrix( | 
|  | const int* scalar_rows, | 
|  | const int* scalar_cols, | 
|  | const std::vector<int>& row_blocks, | 
|  | const std::vector<int>& col_blocks, | 
|  | std::vector<int>* block_rows, | 
|  | std::vector<int>* block_cols); | 
|  |  | 
|  | // Given a set of blocks and a permutation of these blocks, compute | 
|  | // the corresponding "scalar" ordering, where the scalar ordering of | 
|  | // size sum(blocks). | 
|  | void BlockOrderingToScalarOrdering( | 
|  | const std::vector<int>& blocks, | 
|  | const std::vector<int>& block_ordering, | 
|  | std::vector<int>* scalar_ordering); | 
|  |  | 
|  | // Solve the linear system | 
|  | // | 
|  | //   R * solution = rhs | 
|  | // | 
|  | // Where R is an upper triangular compressed column sparse matrix. | 
|  | template <typename IntegerType> | 
|  | void SolveUpperTriangularInPlace(IntegerType num_cols, | 
|  | const IntegerType* rows, | 
|  | const IntegerType* cols, | 
|  | const double* values, | 
|  | double* rhs_and_solution) { | 
|  | for (IntegerType c = num_cols - 1; c >= 0; --c) { | 
|  | rhs_and_solution[c] /= values[cols[c + 1] - 1]; | 
|  | for (IntegerType idx = cols[c]; idx < cols[c + 1] - 1; ++idx) { | 
|  | const IntegerType r = rows[idx]; | 
|  | const double v = values[idx]; | 
|  | rhs_and_solution[r] -= v * rhs_and_solution[c]; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Solve the linear system | 
|  | // | 
|  | //   R' * solution = rhs | 
|  | // | 
|  | // Where R is an upper triangular compressed column sparse matrix. | 
|  | template <typename IntegerType> | 
|  | void SolveUpperTriangularTransposeInPlace(IntegerType num_cols, | 
|  | const IntegerType* rows, | 
|  | const IntegerType* cols, | 
|  | const double* values, | 
|  | double* rhs_and_solution) { | 
|  | for (IntegerType c = 0; c < num_cols; ++c) { | 
|  | for (IntegerType idx = cols[c]; idx < cols[c + 1] - 1; ++idx) { | 
|  | const IntegerType r = rows[idx]; | 
|  | const double v = values[idx]; | 
|  | rhs_and_solution[c] -= v * rhs_and_solution[r]; | 
|  | } | 
|  | rhs_and_solution[c] =  rhs_and_solution[c] / values[cols[c + 1] - 1]; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Given a upper triangular matrix R in compressed column form, solve | 
|  | // the linear system, | 
|  | // | 
|  | //  R'R x = b | 
|  | // | 
|  | // Where b is all zeros except for rhs_nonzero_index, where it is | 
|  | // equal to one. | 
|  | // | 
|  | // The function exploits this knowledge to reduce the number of | 
|  | // floating point operations. | 
|  | template <typename IntegerType> | 
|  | void SolveRTRWithSparseRHS(IntegerType num_cols, | 
|  | const IntegerType* rows, | 
|  | const IntegerType* cols, | 
|  | const double* values, | 
|  | const int rhs_nonzero_index, | 
|  | double* solution) { | 
|  | std::fill(solution, solution + num_cols, 0.0); | 
|  | solution[rhs_nonzero_index] = 1.0 / values[cols[rhs_nonzero_index + 1] - 1]; | 
|  |  | 
|  | for (IntegerType c = rhs_nonzero_index + 1; c < num_cols; ++c) { | 
|  | for (IntegerType idx = cols[c]; idx < cols[c + 1] - 1; ++idx) { | 
|  | const IntegerType r = rows[idx]; | 
|  | if (r < rhs_nonzero_index) continue; | 
|  | const double v = values[idx]; | 
|  | solution[c] -= v * solution[r]; | 
|  | } | 
|  | solution[c] =  solution[c] / values[cols[c + 1] - 1]; | 
|  | } | 
|  |  | 
|  | SolveUpperTriangularInPlace(num_cols, rows, cols, values, solution); | 
|  | } | 
|  |  | 
|  | }  // namespace internal | 
|  | }  // namespace ceres | 
|  |  | 
|  | #endif  // CERES_INTERNAL_COMPRESSED_COL_SPARSE_MATRIX_UTILS_H_ |