| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2019 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: sameeragarwal@google.com (Sameer Agarwal) |
| |
| #ifndef CERES_PUBLIC_TINY_SOLVER_COST_FUNCTION_ADAPTER_H_ |
| #define CERES_PUBLIC_TINY_SOLVER_COST_FUNCTION_ADAPTER_H_ |
| |
| #include "Eigen/Core" |
| #include "ceres/cost_function.h" |
| #include "glog/logging.h" |
| |
| namespace ceres { |
| |
| // An adapter class that lets users of TinySolver use |
| // ceres::CostFunction objects that have exactly one parameter block. |
| // |
| // The adapter allows for the number of residuals and the size of the |
| // parameter block to be specified at compile or run-time. |
| // |
| // WARNING: This object is not thread-safe. |
| // |
| // Example usage: |
| // |
| // CostFunction* cost_function = ... |
| // |
| // Number of residuals and parameter block size known at compile time: |
| // |
| // TinySolverCostFunctionAdapter<kNumResiduals, kNumParameters> |
| // cost_function_adapter(*cost_function); |
| // |
| // Number of residuals known at compile time and the parameter block |
| // size not known at compile time. |
| // |
| // TinySolverCostFunctionAdapter<kNumResiduals, Eigen::Dynamic> |
| // cost_function_adapter(*cost_function); |
| // |
| // Number of residuals not known at compile time and the parameter |
| // block size known at compile time. |
| // |
| // TinySolverCostFunctionAdapter<Eigen::Dynamic, kParameterBlockSize> |
| // cost_function_adapter(*cost_function); |
| // |
| // Number of residuals not known at compile time and the parameter |
| // block size not known at compile time. |
| // |
| // TinySolverCostFunctionAdapter cost_function_adapter(*cost_function); |
| // |
| template <int kNumResiduals = Eigen::Dynamic, |
| int kNumParameters = Eigen::Dynamic> |
| class TinySolverCostFunctionAdapter { |
| public: |
| typedef double Scalar; |
| enum ComponentSizeType { |
| NUM_PARAMETERS = kNumParameters, |
| NUM_RESIDUALS = kNumResiduals |
| }; |
| |
| // This struct needs to have an Eigen aligned operator new as it contains |
| // fixed-size Eigen types. |
| EIGEN_MAKE_ALIGNED_OPERATOR_NEW |
| |
| TinySolverCostFunctionAdapter(const CostFunction& cost_function) |
| : cost_function_(cost_function) { |
| CHECK_EQ(cost_function_.parameter_block_sizes().size(), 1) |
| << "Only CostFunctions with exactly one parameter blocks are allowed."; |
| |
| const int parameter_block_size = cost_function_.parameter_block_sizes()[0]; |
| if (NUM_PARAMETERS == Eigen::Dynamic || NUM_RESIDUALS == Eigen::Dynamic) { |
| if (NUM_RESIDUALS != Eigen::Dynamic) { |
| CHECK_EQ(cost_function_.num_residuals(), NUM_RESIDUALS); |
| } |
| if (NUM_PARAMETERS != Eigen::Dynamic) { |
| CHECK_EQ(parameter_block_size, NUM_PARAMETERS); |
| } |
| |
| row_major_jacobian_.resize(cost_function_.num_residuals(), |
| parameter_block_size); |
| } |
| } |
| |
| bool operator()(const double* parameters, |
| double* residuals, |
| double* jacobian) const { |
| if (!jacobian) { |
| return cost_function_.Evaluate(¶meters, residuals, NULL); |
| } |
| |
| double* jacobians[1] = {row_major_jacobian_.data()}; |
| if (!cost_function_.Evaluate(¶meters, residuals, jacobians)) { |
| return false; |
| } |
| |
| // The Function object used by TinySolver takes its Jacobian in a |
| // column-major layout, and the CostFunction objects use row-major |
| // Jacobian matrices. So the following bit of code does the |
| // conversion from row-major Jacobians to column-major Jacobians. |
| Eigen::Map<Eigen::Matrix<double, NUM_RESIDUALS, NUM_PARAMETERS>> |
| col_major_jacobian(jacobian, NumResiduals(), NumParameters()); |
| col_major_jacobian = row_major_jacobian_; |
| return true; |
| } |
| |
| int NumResiduals() const { return cost_function_.num_residuals(); } |
| int NumParameters() const { |
| return cost_function_.parameter_block_sizes()[0]; |
| } |
| |
| private: |
| const CostFunction& cost_function_; |
| mutable Eigen::Matrix<double, NUM_RESIDUALS, NUM_PARAMETERS, Eigen::RowMajor> |
| row_major_jacobian_; |
| }; |
| |
| } // namespace ceres |
| |
| #endif // CERES_PUBLIC_TINY_SOLVER_COST_FUNCTION_ADAPTER_H_ |