|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2016 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Authors: wjr@google.com (William Rucklidge), | 
|  | //          keir@google.com (Keir Mierle), | 
|  | //          dgossow@google.com (David Gossow) | 
|  |  | 
|  | #include "ceres/gradient_checker.h" | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <cmath> | 
|  | #include <cstdint> | 
|  | #include <numeric> | 
|  | #include <string> | 
|  | #include <vector> | 
|  |  | 
|  | #include "ceres/is_close.h" | 
|  | #include "ceres/stringprintf.h" | 
|  | #include "ceres/types.h" | 
|  |  | 
|  | namespace ceres { | 
|  |  | 
|  | using internal::IsClose; | 
|  | using internal::StringAppendF; | 
|  | using internal::StringPrintf; | 
|  | using std::string; | 
|  | using std::vector; | 
|  |  | 
|  | namespace { | 
|  | // Evaluate the cost function and transform the returned Jacobians to | 
|  | // the tangent space of the respective local parameterizations. | 
|  | bool EvaluateCostFunction(const CostFunction* function, | 
|  | double const* const* parameters, | 
|  | const std::vector<const Manifold*>& manifolds, | 
|  | Vector* residuals, | 
|  | std::vector<Matrix>* jacobians, | 
|  | std::vector<Matrix>* local_jacobians) { | 
|  | CHECK(residuals != nullptr); | 
|  | CHECK(jacobians != nullptr); | 
|  | CHECK(local_jacobians != nullptr); | 
|  |  | 
|  | const vector<int32_t>& block_sizes = function->parameter_block_sizes(); | 
|  | const int num_parameter_blocks = block_sizes.size(); | 
|  |  | 
|  | // Allocate Jacobian matrices in tangent space. | 
|  | local_jacobians->resize(num_parameter_blocks); | 
|  | vector<double*> local_jacobian_data(num_parameter_blocks); | 
|  | for (int i = 0; i < num_parameter_blocks; ++i) { | 
|  | int block_size = block_sizes.at(i); | 
|  | if (manifolds.at(i) != nullptr) { | 
|  | block_size = manifolds.at(i)->TangentSize(); | 
|  | } | 
|  | local_jacobians->at(i).resize(function->num_residuals(), block_size); | 
|  | local_jacobians->at(i).setZero(); | 
|  | local_jacobian_data.at(i) = local_jacobians->at(i).data(); | 
|  | } | 
|  |  | 
|  | // Allocate Jacobian matrices in ambient space. | 
|  | jacobians->resize(num_parameter_blocks); | 
|  | vector<double*> jacobian_data(num_parameter_blocks); | 
|  | for (int i = 0; i < num_parameter_blocks; ++i) { | 
|  | jacobians->at(i).resize(function->num_residuals(), block_sizes.at(i)); | 
|  | jacobians->at(i).setZero(); | 
|  | jacobian_data.at(i) = jacobians->at(i).data(); | 
|  | } | 
|  |  | 
|  | // Compute residuals & jacobians. | 
|  | CHECK_NE(0, function->num_residuals()); | 
|  | residuals->resize(function->num_residuals()); | 
|  | residuals->setZero(); | 
|  | if (!function->Evaluate( | 
|  | parameters, residuals->data(), jacobian_data.data())) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Convert Jacobians from ambient to local space. | 
|  | for (size_t i = 0; i < local_jacobians->size(); ++i) { | 
|  | if (manifolds.at(i) == nullptr) { | 
|  | local_jacobians->at(i) = jacobians->at(i); | 
|  | } else { | 
|  | int ambient_size = manifolds.at(i)->AmbientSize(); | 
|  | int tangent_size = manifolds.at(i)->TangentSize(); | 
|  | CHECK_EQ(jacobians->at(i).cols(), ambient_size); | 
|  | Matrix ambient_J_tangent(ambient_size, tangent_size); | 
|  | manifolds.at(i)->PlusJacobian(parameters[i], ambient_J_tangent.data()); | 
|  | local_jacobians->at(i).noalias() = jacobians->at(i) * ambient_J_tangent; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  | }  // namespace | 
|  |  | 
|  | GradientChecker::GradientChecker(const CostFunction* function, | 
|  | const vector<const Manifold*>* manifolds, | 
|  | const NumericDiffOptions& options) | 
|  | : function_(function) { | 
|  | CHECK(function != nullptr); | 
|  | if (manifolds != nullptr) { | 
|  | manifolds_ = *manifolds; | 
|  | } else { | 
|  | manifolds_.resize(function->parameter_block_sizes().size(), nullptr); | 
|  | } | 
|  |  | 
|  | auto finite_diff_cost_function = | 
|  | std::make_unique<DynamicNumericDiffCostFunction<CostFunction, RIDDERS>>( | 
|  | function, DO_NOT_TAKE_OWNERSHIP, options); | 
|  | const vector<int32_t>& parameter_block_sizes = | 
|  | function->parameter_block_sizes(); | 
|  | const int num_parameter_blocks = parameter_block_sizes.size(); | 
|  | for (int i = 0; i < num_parameter_blocks; ++i) { | 
|  | finite_diff_cost_function->AddParameterBlock(parameter_block_sizes[i]); | 
|  | } | 
|  | finite_diff_cost_function->SetNumResiduals(function->num_residuals()); | 
|  |  | 
|  | finite_diff_cost_function_ = std::move(finite_diff_cost_function); | 
|  | } | 
|  |  | 
|  | bool GradientChecker::Probe(double const* const* parameters, | 
|  | double relative_precision, | 
|  | ProbeResults* results_param) const { | 
|  | int num_residuals = function_->num_residuals(); | 
|  |  | 
|  | // Make sure that we have a place to store results, no matter if the user has | 
|  | // provided an output argument. | 
|  | ProbeResults* results; | 
|  | ProbeResults results_local; | 
|  | if (results_param != nullptr) { | 
|  | results = results_param; | 
|  | results->residuals.resize(0); | 
|  | results->jacobians.clear(); | 
|  | results->numeric_jacobians.clear(); | 
|  | results->local_jacobians.clear(); | 
|  | results->local_numeric_jacobians.clear(); | 
|  | results->error_log.clear(); | 
|  | } else { | 
|  | results = &results_local; | 
|  | } | 
|  | results->maximum_relative_error = 0.0; | 
|  | results->return_value = true; | 
|  |  | 
|  | // Evaluate the derivative using the user supplied code. | 
|  | vector<Matrix>& jacobians = results->jacobians; | 
|  | vector<Matrix>& local_jacobians = results->local_jacobians; | 
|  | if (!EvaluateCostFunction(function_, | 
|  | parameters, | 
|  | manifolds_, | 
|  | &results->residuals, | 
|  | &jacobians, | 
|  | &local_jacobians)) { | 
|  | results->error_log = "Function evaluation with Jacobians failed."; | 
|  | results->return_value = false; | 
|  | } | 
|  |  | 
|  | // Evaluate the derivative using numeric derivatives. | 
|  | vector<Matrix>& numeric_jacobians = results->numeric_jacobians; | 
|  | vector<Matrix>& local_numeric_jacobians = results->local_numeric_jacobians; | 
|  | Vector finite_diff_residuals; | 
|  | if (!EvaluateCostFunction(finite_diff_cost_function_.get(), | 
|  | parameters, | 
|  | manifolds_, | 
|  | &finite_diff_residuals, | 
|  | &numeric_jacobians, | 
|  | &local_numeric_jacobians)) { | 
|  | results->error_log += | 
|  | "\nFunction evaluation with numerical " | 
|  | "differentiation failed."; | 
|  | results->return_value = false; | 
|  | } | 
|  |  | 
|  | if (!results->return_value) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < num_residuals; ++i) { | 
|  | if (!IsClose(results->residuals[i], | 
|  | finite_diff_residuals[i], | 
|  | relative_precision, | 
|  | nullptr, | 
|  | nullptr)) { | 
|  | results->error_log = | 
|  | "Function evaluation with and without Jacobians " | 
|  | "resulted in different residuals."; | 
|  | LOG(INFO) << results->residuals.transpose(); | 
|  | LOG(INFO) << finite_diff_residuals.transpose(); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // See if any elements have relative error larger than the threshold. | 
|  | int num_bad_jacobian_components = 0; | 
|  | double& worst_relative_error = results->maximum_relative_error; | 
|  | worst_relative_error = 0; | 
|  |  | 
|  | // Accumulate the error message for all the jacobians, since it won't get | 
|  | // output if there are no bad jacobian components. | 
|  | string error_log; | 
|  | for (int k = 0; k < function_->parameter_block_sizes().size(); k++) { | 
|  | StringAppendF(&error_log, | 
|  | "========== " | 
|  | "Jacobian for block %d: (%ld by %ld)) " | 
|  | "==========\n", | 
|  | k, | 
|  | static_cast<long>(local_jacobians[k].rows()), | 
|  | static_cast<long>(local_jacobians[k].cols())); | 
|  | // The funny spacing creates appropriately aligned column headers. | 
|  | error_log += | 
|  | " block  row  col        user dx/dy    num diff dx/dy         " | 
|  | "abs error    relative error         parameter          residual\n"; | 
|  |  | 
|  | for (int i = 0; i < local_jacobians[k].rows(); i++) { | 
|  | for (int j = 0; j < local_jacobians[k].cols(); j++) { | 
|  | double term_jacobian = local_jacobians[k](i, j); | 
|  | double finite_jacobian = local_numeric_jacobians[k](i, j); | 
|  | double relative_error, absolute_error; | 
|  | bool bad_jacobian_entry = !IsClose(term_jacobian, | 
|  | finite_jacobian, | 
|  | relative_precision, | 
|  | &relative_error, | 
|  | &absolute_error); | 
|  | worst_relative_error = std::max(worst_relative_error, relative_error); | 
|  |  | 
|  | StringAppendF(&error_log, | 
|  | "%6d %4d %4d %17g %17g %17g %17g %17g %17g", | 
|  | k, | 
|  | i, | 
|  | j, | 
|  | term_jacobian, | 
|  | finite_jacobian, | 
|  | absolute_error, | 
|  | relative_error, | 
|  | parameters[k][j], | 
|  | results->residuals[i]); | 
|  |  | 
|  | if (bad_jacobian_entry) { | 
|  | num_bad_jacobian_components++; | 
|  | StringAppendF(&error_log, | 
|  | " ------ (%d,%d,%d) Relative error worse than %g", | 
|  | k, | 
|  | i, | 
|  | j, | 
|  | relative_precision); | 
|  | } | 
|  | error_log += "\n"; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Since there were some bad errors, dump comprehensive debug info. | 
|  | if (num_bad_jacobian_components) { | 
|  | string header = StringPrintf( | 
|  | "\nDetected %d bad Jacobian component(s). " | 
|  | "Worst relative error was %g.\n", | 
|  | num_bad_jacobian_components, | 
|  | worst_relative_error); | 
|  | results->error_log = header + "\n" + error_log; | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | }  // namespace ceres |