| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2010, 2011, 2012, 2013 Google Inc. All rights reserved. | 
 | // http://code.google.com/p/ceres-solver/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: keir@google.com (Keir Mierle) | 
 | // | 
 | // TODO(keir): Implement a generic "compare sparse matrix implementations" test | 
 | // suite that can compare all the implementations. Then this file would shrink | 
 | // in size. | 
 |  | 
 | #include "ceres/dense_sparse_matrix.h" | 
 |  | 
 | #include "ceres/casts.h" | 
 | #include "ceres/linear_least_squares_problems.h" | 
 | #include "ceres/matrix_proto.h" | 
 | #include "ceres/triplet_sparse_matrix.h" | 
 | #include "ceres/internal/eigen.h" | 
 | #include "ceres/internal/scoped_ptr.h" | 
 | #include "glog/logging.h" | 
 | #include "gtest/gtest.h" | 
 |  | 
 | namespace ceres { | 
 | namespace internal { | 
 |  | 
 | void CompareMatrices(const SparseMatrix* a, const SparseMatrix* b) { | 
 |   EXPECT_EQ(a->num_rows(), b->num_rows()); | 
 |   EXPECT_EQ(a->num_cols(), b->num_cols()); | 
 |  | 
 |   int num_rows = a->num_rows(); | 
 |   int num_cols = a->num_cols(); | 
 |  | 
 |   for (int i = 0; i < num_cols; ++i) { | 
 |     Vector x = Vector::Zero(num_cols); | 
 |     x(i) = 1.0; | 
 |  | 
 |     Vector y_a = Vector::Zero(num_rows); | 
 |     Vector y_b = Vector::Zero(num_rows); | 
 |  | 
 |     a->RightMultiply(x.data(), y_a.data()); | 
 |     b->RightMultiply(x.data(), y_b.data()); | 
 |  | 
 |     EXPECT_EQ((y_a - y_b).norm(), 0); | 
 |   } | 
 | } | 
 |  | 
 | class DenseSparseMatrixTest : public ::testing::Test { | 
 |  protected : | 
 |   virtual void SetUp() { | 
 |     scoped_ptr<LinearLeastSquaresProblem> problem( | 
 |         CreateLinearLeastSquaresProblemFromId(1)); | 
 |  | 
 |     CHECK_NOTNULL(problem.get()); | 
 |  | 
 |     tsm.reset(down_cast<TripletSparseMatrix*>(problem->A.release())); | 
 |     dsm.reset(new DenseSparseMatrix(*tsm)); | 
 |  | 
 |     num_rows = tsm->num_rows(); | 
 |     num_cols = tsm->num_cols(); | 
 |   } | 
 |  | 
 |   int num_rows; | 
 |   int num_cols; | 
 |  | 
 |   scoped_ptr<TripletSparseMatrix> tsm; | 
 |   scoped_ptr<DenseSparseMatrix> dsm; | 
 | }; | 
 |  | 
 | TEST_F(DenseSparseMatrixTest, RightMultiply) { | 
 |   CompareMatrices(tsm.get(), dsm.get()); | 
 |  | 
 |   // Try with a not entirely zero vector to verify column interactions, which | 
 |   // could be masked by a subtle bug when using the elementary vectors. | 
 |   Vector a(num_cols); | 
 |   for (int i = 0; i < num_cols; i++) { | 
 |     a(i) = i; | 
 |   } | 
 |   Vector b1 = Vector::Zero(num_rows); | 
 |   Vector b2 = Vector::Zero(num_rows); | 
 |  | 
 |   tsm->RightMultiply(a.data(), b1.data()); | 
 |   dsm->RightMultiply(a.data(), b2.data()); | 
 |  | 
 |   EXPECT_EQ((b1 - b2).norm(), 0); | 
 | } | 
 |  | 
 | TEST_F(DenseSparseMatrixTest, LeftMultiply) { | 
 |   for (int i = 0; i < num_rows; ++i) { | 
 |     Vector a = Vector::Zero(num_rows); | 
 |     a(i) = 1.0; | 
 |  | 
 |     Vector b1 = Vector::Zero(num_cols); | 
 |     Vector b2 = Vector::Zero(num_cols); | 
 |  | 
 |     tsm->LeftMultiply(a.data(), b1.data()); | 
 |     dsm->LeftMultiply(a.data(), b2.data()); | 
 |  | 
 |     EXPECT_EQ((b1 - b2).norm(), 0); | 
 |   } | 
 |  | 
 |   // Try with a not entirely zero vector to verify column interactions, which | 
 |   // could be masked by a subtle bug when using the elementary vectors. | 
 |   Vector a(num_rows); | 
 |   for (int i = 0; i < num_rows; i++) { | 
 |     a(i) = i; | 
 |   } | 
 |   Vector b1 = Vector::Zero(num_cols); | 
 |   Vector b2 = Vector::Zero(num_cols); | 
 |  | 
 |   tsm->LeftMultiply(a.data(), b1.data()); | 
 |   dsm->LeftMultiply(a.data(), b2.data()); | 
 |  | 
 |   EXPECT_EQ((b1 - b2).norm(), 0); | 
 | } | 
 |  | 
 | TEST_F(DenseSparseMatrixTest, ColumnNorm) { | 
 |   Vector b1 = Vector::Zero(num_cols); | 
 |   Vector b2 = Vector::Zero(num_cols); | 
 |  | 
 |   tsm->SquaredColumnNorm(b1.data()); | 
 |   dsm->SquaredColumnNorm(b2.data()); | 
 |  | 
 |   EXPECT_EQ((b1 - b2).norm(), 0); | 
 | } | 
 |  | 
 | TEST_F(DenseSparseMatrixTest, Scale) { | 
 |   Vector scale(num_cols); | 
 |   for (int i = 0; i < num_cols; ++i) { | 
 |     scale(i) = i + 1; | 
 |   } | 
 |   tsm->ScaleColumns(scale.data()); | 
 |   dsm->ScaleColumns(scale.data()); | 
 |   CompareMatrices(tsm.get(), dsm.get()); | 
 | } | 
 |  | 
 | #ifndef CERES_NO_PROTOCOL_BUFFERS | 
 | TEST_F(DenseSparseMatrixTest, Serialization) { | 
 |   SparseMatrixProto proto; | 
 |   dsm->ToProto(&proto); | 
 |  | 
 |   DenseSparseMatrix n(proto); | 
 |   ASSERT_EQ(dsm->num_rows(),     n.num_rows()); | 
 |   ASSERT_EQ(dsm->num_cols(),     n.num_cols()); | 
 |   ASSERT_EQ(dsm->num_nonzeros(), n.num_nonzeros()); | 
 |  | 
 |   for (int i = 0; i < n.num_rows() + 1; ++i) { | 
 |     ASSERT_EQ(dsm->values()[i], proto.dense_matrix().values(i)); | 
 |   } | 
 | } | 
 | #endif | 
 |  | 
 | TEST_F(DenseSparseMatrixTest, ToDenseMatrix) { | 
 |   Matrix tsm_dense; | 
 |   Matrix dsm_dense; | 
 |  | 
 |   tsm->ToDenseMatrix(&tsm_dense); | 
 |   dsm->ToDenseMatrix(&dsm_dense); | 
 |  | 
 |   EXPECT_EQ((tsm_dense - dsm_dense).norm(), 0.0); | 
 | } | 
 |  | 
 | // TODO(keir): Make this work without protocol buffers. | 
 | #ifndef CERES_NO_PROTOCOL_BUFFERS | 
 | TEST_F(DenseSparseMatrixTest, AppendDiagonal) { | 
 |   DenseSparseMatrixProto proto; | 
 |   proto.set_num_rows(3); | 
 |   proto.set_num_cols(3); | 
 |   for (int i = 0; i < 9; ++i) { | 
 |     proto.add_values(i); | 
 |   } | 
 |   SparseMatrixProto outer_proto; | 
 |   *outer_proto.mutable_dense_matrix() = proto; | 
 |  | 
 |   DenseSparseMatrix dsm(outer_proto); | 
 |  | 
 |   double diagonal[] = { 10, 11, 12 }; | 
 |   dsm.AppendDiagonal(diagonal); | 
 |  | 
 |   // Verify the diagonal got added. | 
 |   Matrix m = dsm.matrix(); | 
 |  | 
 |   EXPECT_EQ(6, m.rows()); | 
 |   EXPECT_EQ(3, m.cols()); | 
 |   for (int i = 0; i < 3; ++i) { | 
 |     for (int j = 0; j < 3; ++j) { | 
 |       EXPECT_EQ(3 * i + j, m(i, j)); | 
 |       if (i == j) { | 
 |         EXPECT_EQ(10 + i, m(i + 3, j)); | 
 |       } else { | 
 |         EXPECT_EQ(0, m(i + 3, j)); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Verify the diagonal gets removed. | 
 |   dsm.RemoveDiagonal(); | 
 |  | 
 |   m = dsm.matrix(); | 
 |  | 
 |   EXPECT_EQ(3, m.rows()); | 
 |   EXPECT_EQ(3, m.cols()); | 
 |  | 
 |   for (int i = 0; i < 3; ++i) { | 
 |     for (int j = 0; j < 3; ++j) { | 
 |       EXPECT_EQ(3 * i + j, m(i, j)); | 
 |     } | 
 |   } | 
 | } | 
 | #endif | 
 |  | 
 | }  // namespace internal | 
 | }  // namespace ceres |