| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2017 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: sameeragarwal@google.com (Sameer Agarwal) |
| |
| #ifndef CERES_INTERNAL_INNER_PRODUCT_COMPUTER_H_ |
| #define CERES_INTERNAL_INNER_PRODUCT_COMPUTER_H_ |
| |
| #include <vector> |
| |
| #include "ceres/block_sparse_matrix.h" |
| #include "ceres/compressed_row_sparse_matrix.h" |
| #include "ceres/internal/scoped_ptr.h" |
| |
| namespace ceres { |
| namespace internal { |
| |
| // This class is used to repeatedly compute the inner product |
| // |
| // result = m' * m |
| // |
| // where the sparsity structure of m remains constant across calls. |
| // |
| // Upon creation, the class computes and caches information needed to |
| // compute v, and then uses it to efficiently compute the product |
| // every time InnerProductComputer::Compute is called. |
| // |
| // See sparse_normal_cholesky_solver.cc for example usage. |
| // |
| // Note that the result matrix is a block upper or lower-triangular |
| // matrix, i.e., it will contain entries in the upper or lower |
| // triangular part of the matrix corresponding to the block that occur |
| // along its diagonal. |
| // |
| // This is not a problem as sparse linear algebra libraries can ignore |
| // these entries with ease and the space used is minimal/linear in the |
| // size of the matrices. |
| class InnerProductComputer { |
| public: |
| // Factory |
| // |
| // m is the input matrix |
| // |
| // Since m' * m is a symmetric matrix, we only compute half of the |
| // matrix and the value of storage_type which must be |
| // UPPER_TRIANGULAR or LOWER_TRIANGULAR determines which half is |
| // computed. |
| // |
| // The user must ensure that the matrix m is valid for the life time |
| // of this object. |
| static InnerProductComputer* Create( |
| const BlockSparseMatrix& m, |
| CompressedRowSparseMatrix::StorageType storage_type); |
| |
| // This factory method allows the user control over range of row |
| // blocks of m that should be used to compute the inner product. |
| // |
| // a = m(start_row_block : end_row_block, :); |
| // result = a' * a; |
| static InnerProductComputer* Create( |
| const BlockSparseMatrix& m, |
| int start_row_block, |
| int end_row_block, |
| CompressedRowSparseMatrix::StorageType storage_type); |
| |
| // Update result_ to be numerically equal to m' * m. |
| void Compute(); |
| |
| // Accessors for the result containing the inner product. |
| // |
| // Compute must be called before accessing this result for |
| // the first time. |
| const CompressedRowSparseMatrix& result() const { return *result_; } |
| CompressedRowSparseMatrix* mutable_result() const { return result_.get(); } |
| |
| private: |
| // A ProductTerm is a term in the block inner product of a matrix |
| // with itself. |
| struct ProductTerm { |
| ProductTerm(const int row, const int col, const int index) |
| : row(row), col(col), index(index) {} |
| |
| bool operator<(const ProductTerm& right) const { |
| if (row == right.row) { |
| if (col == right.col) { |
| return index < right.index; |
| } |
| return col < right.col; |
| } |
| return row < right.row; |
| } |
| |
| int row; |
| int col; |
| int index; |
| }; |
| |
| InnerProductComputer(const BlockSparseMatrix& m, |
| int start_row_block, |
| int end_row_block); |
| |
| void Init(CompressedRowSparseMatrix::StorageType storage_type); |
| |
| CompressedRowSparseMatrix* CreateResultMatrix( |
| const CompressedRowSparseMatrix::StorageType storage_type, |
| int num_nonzeros); |
| |
| int ComputeNonzeros(const std::vector<ProductTerm>& product_terms, |
| std::vector<int>* row_block_nnz); |
| |
| void ComputeOffsetsAndCreateResultMatrix( |
| const CompressedRowSparseMatrix::StorageType storage_type, |
| const std::vector<ProductTerm>& product_terms); |
| |
| const BlockSparseMatrix& m_; |
| const int start_row_block_; |
| const int end_row_block_; |
| scoped_ptr<CompressedRowSparseMatrix> result_; |
| |
| // For each term in the inner product, result_offsets_ contains the |
| // location in the values array of the result_ matrix where it |
| // should be stored. |
| // |
| // This is the principal look up table that allows this class to |
| // compute the inner product fast. |
| std::vector<int> result_offsets_; |
| }; |
| |
| } // namespace internal |
| } // namespace ceres |
| |
| #endif // CERES_INTERNAL_INNER_PRODUCT_COMPUTER_H_ |